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Abstract 
With its powerful modeling ability of real data, graph-based convolutional recommendation 
algorithms have become an important tool for providing personalized services to users. 
However, the existing graph-based recommendation algorithms mainly face the following 
problems: 1. Simple graph-based neural network models are difficult to this complex 
interaction relationship between user-items and their interaction high order.2. Personalized 
recommendation systems rely on users to generate their own data, which makes it difficult to 
obtain effective labeling information.3. Interaction noise. User-item interaction is saturated 
with noise interference. In order to overcome these problems and improve the performance of 
personalized recommendation, in this paper, we design a course comparison recommendation 
method based on enhanced hypergraph convolution (DHSL-Cu). Specifically, first, we design the 
introduction of a dual hypergraph convolutional network to capture the higher-order 
relationships between users and items and the potential interaction information under 
different interaction types. Second, we design a momentum-driven twin-based architecture to 
optimize the target network using a momentum-based parameter update strategy. Finally, a 
negative sample selection mechanism based on course learning is designed as our training 
strategy. Finally, through extensive experiments on real-world datasets and parameter analysis, 
we demonstrate that our proposed DHSL-Cu model can efficiently improve recommendation 
services. 

Keywords  
Hypergraph, Contrastive Learning, Recommendation, Course Learning 1 

1. Introduction 

In recent years, due to the powerful learning capability demonstrated by graph 
convolutional networks in the field of non-Euclidean data, many researchers have 
introduced them into the recommendation domain [1,2]. They consider users and items in 
the recommendation domain as nodes of an item, and the network relationships formed 
between nodes as the interactions between users and items, and learn the embedded 
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information of users and items embedded in the graph structure through convolution [3]. 
Yin et al. proposed to demonstrate the potential of the graph CNN approach in Pinterest's 
recommendation task [4]. GC-MC [5] and NGCF [5] have constructed bipartite graphs of 
user-item interactions from user-item interaction data in order to learn user preferences 
by utilizing the user-item graph structure. Compared to the above simple graph models in 
recommendation, HyperGCN [6] combines hypergraph with graph neural network, 
introduces the concept of hypergraph convolution [7], and propagates the information of 
nodes with the same interactions through hyperedge aggregation, which is able to 
efficiently capture the higher-order interaction information between nodes. 

Although the above work has made some progress, it is still subject to the following 2 
limitations: 1) the personalized recommendation system relies on users to generate their 
own data, which makes it difficult to obtain effective labeling information [8]. 2) It is well 
known that GCN-based recommendation models are susceptible to the noise of user-item 
interactions [9]. 

For this reason, in this paper, in order to alleviate the shortcomings in existing 
methods, we propose a course comparison recommendation method based on enhanced 
hypergraph convolution (DHSL-Cu). Specifically, firstly, in order to capture the complex 
interactions between users and programs, we introduce a dual hypergraph convolutional 
model to serve as an encoder to capture the higher-order relationships between user 
programs and the potential interaction information under different interaction types. 
Second, we design a momentum-driven twin architecture to optimize the target network 
using a momentum-based parameter update strategy. Next, we introduce the idea of 
course learning and design a negative sample selection mechanism based on course 
learning as our training strategy. Through extensive experiments on real-world datasets 
as well as parameter analysis, the effectiveness and superiority of the DHSL-Cu model are 
demonstrated. 

2. Model 

 

Figure 1: Overall model framework 

Figure 1 illustrates our model for DHSL-Cu. As shown, our model consists of three main 
core modules: 



Hypergraph Convolution Module: it is used to construct two-view and user-item 
hypergraph sets. In this module, we adopt graph augmentation to obtain new views of 

user-item interactions. After that, for two views, we construct user hypergraph set uG  and 

item hypergraph set iG  for online view and user hypergraph set 
'
uG  and item hypergraph 

set 
'
iG  for target view based on the interaction information of users and items. Then, 

similar to the literature [10], the characterization of users and items is carried out based 
on the convolution operation. 

Twin network-based course comparison learning module:  

1. Momentum-driven twin network based module: in this module both online network 
and target network use the gated dual hypergraph based convolutional model as the 
network structure. Meanwhile, we use the momentum update mechanism to optimize 
the target network's representation learning module during the parameter training 
process, which aims to utilize the characteristics of the momentum update mechanism 
to encode historical information in the target network, thus guiding the online network 
to learn to explore richer and more effective feature representations. At the same time, 
the asymmetry of the comparison network is enhanced by this parameter updating 
method thus alleviating the possible training collapse problem. 

2. Negative sampling training strategy based on course learning, meanwhile, in order to 
solve the problem of too much randomness of negative sampling in contrast learning, 
we introduce the method of course learning. In the negative sampling process first 
through the Scoring function  ( )S �  , we sort the negative samples from easy to hard. In 
addition, a Pacing function ( )P �  is used to control the negative samples into the 
training process. Then, the mutual and consistency information between the two views 
is maximized, thus enhancing the user-item representation learning. Finally the user-
item feature representation learned through the whole model is used as the final user-
item representation for subsequent prediction tasks.  

2.1. Formalization 

Let a multipartite bipartite graph  , ,U I E   have two different types of node sets (user 

set U  and item set I ) consisting of edge sets  1 2 KE E E E  
 , where jE  denotes 

the jth type of edge. For example, Amazon data user behavior log can be represented as, a 
multiple bipartite graph containing two kinds of nodes (users, items) and two kinds of 
edges (clicks, queries).  

Input: Firstly, the original data is used to perform the corresponding data division and 
processing, according to the interaction behavior between users and items, for the 
embedding initialization of user-item nodes, to obtain the user-item initial feature matrix 

 ,U IX X X  , where 
N F

UX
� , 

M F
IX

� denote the feature representations of the 
user set and the item set, respectively, and F  is the feature dimensionality, N , M are the 



number of users and the number of items. The user eigenvalues UX  and item eigenvalues   

IX  are used as inputs to the model in terms of hypergraph sets.  
Output: By feeding the corresponding data and structures to our model, the model 

learns the final user-item representation for the next prediction recommendation task. 

2.2. Hypergraph Building Blocks 

We base our approach on two different enhancement methods to enhance the topological 
and attribute information of the graphs in order to obtain a new view of the user-item 
interaction. For both views we construct the user hypergraph set UG  for the online view 

and the user hypergraph set '
UG  for the target view based on the user set  U  and the user 

hypergraph set IG  for the original view and the project hypergraph set '
IG  for the target 

view based on the project set I  . Among them, by combining the edge modification policy 
[11] is used to construct the online view, and we use the GD policy [12] for constructing 
the target view.  

We transform both views resulting from the above graph enhancement operations into 
two isomorphic hypergraph sets. It is shown below: 

ܧ = ݉    , ,1 , , ,1 ,, ..., , , ...,U U base U U k I I base I I kG g g g G g g g  , (3) 

where  , ,,U j U jg U   and  , ,,I j I jg I  , where ,U j and ,I j  denote the 

hyperedges in the hypergraphs ,U jg  and ,I jg  , respectively. Note that all hypergraphs in 

UG  share the same set of user nodes U  while all hypergraphs in IG  share the same set of 

project nodes I . For each project node i I , a hyperedge ,U j  is introduced in the 

hypergraph ,U jg  connecting  | , ( , ) ju u U u i E  , i.e., all user nodes in the set of user 

nodes U  that are directly connected to the project node i  through the interaction type 
jE . Similarly, for a user node u U , a hyperedge ,I j  is introduced in ,I jg  that connects

 | , ( , ) ji i I u i E    i.e., all project nodes in the set of project nodes I  that are directly 

connected to the user node u  through the interaction type jE . Note that two special 

hypergraphs ,U base Ug G and ,I base Ig G  are defined as ,
1

,
k

U j
j

g U 


 
 
 

  and ,
1

,
k

I j
j

g V 


 
 
 

 , 

i.e., the hypergraph is the one consisting of all interaction types between user items. 

2.3. Dual Hypergraph Convolution Module 

Dual Hypergraph Convolution Module mainly utilizes two chi-sub hypergraphs UG  and 

IG  in online view  or target view  to obtain the potential features of users and items 
behind different interaction types by aggregating and propagating the feature 



representations of users and items through the hyperedge aggregation and propagation of 
corresponding hypergraphs constructed on the basis of different interaction types in two 
hypergraphs through convolution operation. The specific process is as follows:  

First, we introduce an association matrix H in the hypergraph to describe the 

relationship between nodes and hyperedges, given the hypergraph  , ,,U j U jg U   , 

where  ,1,...,j base k  denotes the different interaction types between user-items, and 

k  is the number of interaction types between user-items, and defines the association 
matrix of ,U jg  as: 

  , 1    
,

 0    
U j

U, j

u e e
H u e

otherwise
 

 



 

(4) 

where ,

,
U jU

U jH
�  ,  ,U j  denotes the set of hyperedges in the hypergraph ,U jg  , 

where  ,1,...,j base k  , By the same definition, we define the cross association matrix 

for the hypergraph ,I jg  . Let the diagonal matrices   | | | |
, , U U

U jD u u  �  and  , ,| | | |
,

U j U j
U jB  �  

denote the node degree matrix and the hyperedge degree matrix, respectively. Where  
   

,, ,, ,
U jU j e U jD u u H u e  and    , ,, ,U j u U U jB e e H u e  . We utilize the hypergraph 

spectral convolution operator to learn the embedding of each hypergraph in the model, 
and the hypergraph convolution operator is denoted as: 

1 ( )l T l lX HWH X P    (5) 

Then, we use the normalized hypergraph convolution operator and define the 
hypergraph convolution operator for ,U jg  as: 

1 1 1
, , , , , , ,( )l T l l

U j U j U j U U j U j U j U jX D H W B H X P     (6) 

where   denotes the nonlinear activation function, | |
,

lU dFl
U jX  �  denotes the user 

features in layer l  , | | | |I I
UW

�  is a unitary matrix, 1
,

l lF Fl
U jP � is a learnable 

transformation matrix, and lF  and 1lF 
 denote the embedding dimensions in layers  l  and 

1l   . For the dual isomorphic hypergraph sets UG  and IG  , we independently learn the 

node features from each isomorphic hypergraph ,U jg  and ,I jg  . As a result, we obtain 

node representations for users and projects based on different interaction types: 

 , ,1 ,, ,...,U base U U kX X X   and   , ,1 ,, ,...,I base I I kX X X . 

Finally based on each layer of hypergraph convolution operator, after t  rounds of 
iterations, we can get the embeddings of users and items under different types of 
interaction data, defined as  , ,1 ,, , ,t t t t

U U base U U kX X X X   , ,
tu Ft

U jX R   , 



 , ,1 ,, , ,t t t t
I I base I I kX X X X   , ,

ti Ft
I jX R   . where tF  is the final embedding dimension 

and k  is the number of edge types. Finally, the feature values learned from multiple 
interaction types are concatenated together to obtain the final embedding result as follows: 

,t t
U U U U I I I IX X W b X X W b       (7) 

where   1 *, t tk F F
U IW W  �  and , tF

U Ib b �   are trainable parameters. tU F
UX

�  and
tI F

IX
� . This allows us to obtain the final embedding  ,U IZ X X  of users and items in 

the online graph. 

2.4. Momentum-driven course comparison based module 

2.4.1. Momentum-driven twinning-based network structure 

In this module we construct a momentum-driven twin network-based architecture as our 
backbone, consisting of two identical network structures - the online network and the 
target network - which use the same encoder - the hypergraph convolutional module. 
Through the momentum optimization-based twin network feature, while the online 
network encodes the node features, the historical training information is retained in the 
target network, and then the mutual information between the two view representations is 
maximized in the course-based comparative learning module, which guides the online 
network to learn to explore richer and more effective feature representations.  

The details are as follows: the target network uses the momentum update mechanism 
in the way of updating the parameters. The purpose is to make the target graph retain part 
of the historical information in the optimization process through the characteristics of the 
momentum update mechanism, and guide the online graph to learn richer and more 
effective feature representations in the comparison learning session. The iterative process 
of its model parameters is as follows:  

 1 1t t ta a     A A A  (8) 

where a  is an adjustable parameter controlling the degree of temporary information 
retention, and tA  and tA denote the learnable parameters of the encoder at round t  for 
the online network and target network, respectively. Thus, the embedding of users and 

items in the target graph is obtained  ,U IZ X X   . 

2.4.2. Negative Sampling Module Based on Course Learning 

Aiming at the problems arising from the negative sampling strategies of existing 
comparison learning papers, we design a novel negative sampling method based on course 
learning. The main idea is to sort the negative samples according to the difficulty during 
the training period, and introduce different negative samples into the training at different 
stages according to the difference in the difficulty of the negative samples. 



Similar to the literature [39], firstly, for the embedding result of any node in the online 
graph, c  negative embeddings { }cz  with different difficulties can be found in the target 
graph. meanwhile, a scoring function  S �  is defined to map the different negative 

embeddings into the target graph. that maps different negative embeddings to a numerical 
score  cS z  to measure this difficulty. Further, the scoring function is set to  ,v csim z z  to 

fully measure the difficulty of negative samples. The formula is as follows:  

  | |
| || |

v c
c

v c

z zS z
z z

 


 
(9) 

( )c v cS z z z    (10) 

    . 1, ( ) ( )T
c v c v c v cS z sim z z z z z z         (11) 

where   is the covariance matrix of multidimensional random variables. 
In line with the literature [12], after we obtain the fraction  cS z  of each individual 

negative embedding cz  in the memory bank, we use the pacing function to schedule how 

to introduce negative samples into the training process. The pacing function ( )P t  
specifies the size of the memory bank to be used at each step t  . The memory bank for t
consists of the ( )P t  lowest scoring samples. Negative sample batches are sampled 
uniformly from this set. We denote the complete memory bank size by C  and the total 
number of training steps by T . The formula is as follows: 

10( ) 1 .1log tP t e K
T

         
 

(12) 

 ( ) t/P t T K   (13) 

where   is a smoothing parameter used to control the speed of the training process.   
1/ 2,1,2   denote the root, linear and quadratic pacing functions, respectively. 

2.4.3. Contrastive loss 

To maximize the consistency between the online view and the target view. We use noise to 
estimate the contrast loss. Specifically, we define a "memory bank" Q  , which contains 

each positive pair  ,v vz z , i.e., the same node in both views, and C  negative samples 

embedded in 1{ }Cc cz   , the different nodes in both views, and then we use the similarity 

measure function  ,sim ��  to compute the positive pair  ,v vz z and negative pair{ , }v cz z  

, based on which the loss function is as follows: 

  
 1

exp , /
log

exp( ( , ) / ) exp( ( , ) / )
v v

NCE C
v v v cc

sim z z
l

sim z z sim z z



 



 

 
 

(14) 



where    denotes the temperature parameter. To simplify the calculation, we use dot 
product as the similarity measure function. 

2.5. Model Optimization 

We first use the edges that already exist in the interaction data as positive edges and 
extract some non-existing edges as negative edges. Finally, the loss function is designed by 
maximizing the positive edge probability and minimizing the negative edge probability. 
The loss function is defined as: 

 r ( ) ( )
( , ) 1

log ( ) (1 ) log(1 ( )) log(1 ( )) (15)
j j j j

n
T T T
u i u P u u u i P i i i

u i E j

l Z Z Z Z Z Z    
 

 
        

 
  � �E E  

where   is the sigmoid activation function,   is the weight parameter in order to 
balance the importance of positive and negative samples, ( )P u  defines the distribution of  
u candidate nodes, and n  is the number of negative samples, the existing edges in the 
multipartite bipartite graph are used as positive samples, and for each positive sample of 
edge ( , )u i  ,  n  negative edges are randomly sampled from node u and node i . 

Ultimately, we unify the representation learning module for the main recommendation 
task and the self-supervised comparison learning module for auxiliary enhancement into 
an overall learning framework. Formally, the final learning objective is defined as: 

r NCEl l l   (16) 

where   is a variable factor that controls the self-supervised contrast learning task. 
Finally we train our model using the Adam algorithm. 

3. Experimental Comparison and Analysis 

3.1. Datasets 

To evaluate the performance of our model, we conducted experiments on two real-world 
datasets, Amazon [12] and Alibaba[12]. The relevant attribute statistics of the two 
datasets are shown in Table 1. 

Table 1 
Statistics of the data set 

3.2. Experimental Setup 

Consistent with the literature [13], we use AUROC, AUPRC, Precision and Recall as 
evaluation metrics. Meanwhile, we randomly select 60% of the edges as the training set 

Datasets User Item Interaction Interaction 
types 

Density 

Amazon 3781 5749 60658 2 0.279% 
Alibaba 1869 13349 27036 3 0.108% 



and the rest of the edges as the test set. The whole process is repeated five times to obtain 
different random samples for the training and test sets. The mean and standard deviation 
values of the classification evaluation metrics are reported. 

3.3. Experimental Design 

In order to comprehensively test the performance of the DHSL-Cu model proposed in this 
paper, we test it from different perspectives as follows. 

1. comparison with mainstream advanced algorithms: in order to assess the effectiveness 
of the DHSL-Cu model, this paper compares it with eight mainstream advanced 
algorithms. 

2. ablation analysis: the contribution of each component is analyzed. 
3. parameter sensitivity analysis: the influence degree of momentum-driven update 

weight ratio, learning rate, and self-supervised comparison learning factor is analyzed. 

3.4. Baseline Algorithms 

To evaluate the performance of the DHSL-Cu model, we compare it with the following 
existing mainstream state-of-the-art recommendation algorithms.  

1. GraphSAGE [13]: proposes a generalized induction architecture that uses local 
neighbor sampling of nodes and aggregated features to generate embeddings of nodes. 

2. GCN [13] uses spectral graph convolution operators to learn local graph network 
structures and node features in order to achieve semi-supervised learning directly on 
graph structure data. 

3. GAT [13] uses masked self-attention to assign different weights to each node and its 
neighboring nodes based on their features, eliminating the need to use a pre-
constructed graph. 

4. HGNN [13] designed the hyperedge convolution operation to deal with data correlation 
during representation learning. By this method, the hyperedge convolution operation 
can be effectively utilized to capture the implicit layer representation of higher order 
data structures. 

5. HyperGCN [13] is a new method of GCN training for semi-supervised learning of 
hypergraphs based on hypergraph theory. 

6. DualHGCN [13] a self-supervised Dual Hypergraph Convolutional Network (DualHGCN) 
model that transforms a multilayer two-part graph network into two sets of its 
hypergraph sets. 

7. SGL [13] designed three types of data augmentation based on different perspectives to 
complement/supervise the recommendation task with self-supervised signals on user-
item graphs. 

8. HCCF [13] designed hypergraph structure learning module and cross view hypergraph 
contrast coding model based on contrast learning to learn better user representations 
by characterizing both local and global collaborative relationships in joint embedding 
space. 



3.5. Analysis of experimental results 

3.5.1. Comparison with baseline algorithm 

Table 2 
Comparison of overall performance in auroc, auprc, precision and recall 

The results of all algorithm experiments on both datasets are shown in Table 2. From the 
experimental results of the four evaluation metrics AUROC, AUPRC, Precision and Recall, 
we can conclude that:  

1. GraphSAGE, GCN and GAT perform poorly on the two datasets, which may be due 
to the fact that these embedding methods based on simple homogeneous graphs 
have a weak interaction representation and do not deal well with non-planar 
relationships between nodes compared to hypergraph convolution. 

2. DualHGCN outperforms HGNN and HyperGCN, probably because HyperGCN and 
HGNN are both based on the same type of interaction information, and when 
confronted with complex user-item interactions under different types, it is difficult 
to capture the potential higher-order information of the user and the item based on 
different types of interactions. While DualHGCN effectively captures the interaction 
information between different interaction types by designing the information 
transfer mechanism between hypergraphs, the overall performance of DualHGCN 
is weaker than that of HCCF, probably because HCCF is designed with a 
hypergraph-based comparison learning model, which efficiently utilizes the local-
to-global cross-view supervision information. 

In conclusion, DHSL-Cu outperforms the other benchmarks. This may be related to the 
following two main reasons: 1) DHSL-Cu can effectively incorporate historical training 
information by designing a momentum-driven target network structure, and the 
parameter updating method of momentum update with gradient vanishing can effectively 
alleviate the training collapse problem during the self-supervised learning process. 2) 
During the training process, we use negative sampling based on course learning, which is 
different from the general random sampling method, and it can effectively utilize local-to-
global cross-view supervision information. The negative sampling method based on 

Methods Amazon Alibaba 
auroc auprc precision recall auroc auprc precision recall 

GraphSAGE 66.99 69.39 63.47 52.74 66.49 60.36 63.47 52.74 
GCN 64.93 77.45 69.46 71.53 56.87 77.66 69.46 71.53 
GAT 66.7 70.16 63.34 51.39 55.38 54.49 63.34 51.39 

HGNN 80.14 82.94 78.54 69.51 69.64 73.5 78.54 69.51 
HyperGCN 68.42 73.78 67.12 61.61 61.38 65.21 67.12 61.61 
DualHGCN 83.46 88.69 85.63 76.39 84.57 86.02 85.63 76.39 
   HCCF 94.27 95.32 91.56 91.67 90.13 89.32 90.27 82.13 
DHSL-Cu 96.68 97.89 93.7 94.68 93.57 91.76 91.76 84.94 



course learning is different from the general random sampling method, which can 
effectively introduce different training phases according to different sample 
characteristics, and effectively improve the generalization ability and prediction accuracy 
of the model. 

3.5.2. Ablation Analysis 

In order to verify the different effects on the algorithm brought by the gating-based dual 
hypergraph convolution module, the momentum-driven twin network structure, and the 
negative sampling strategy based on course learning, we conducted experiments and 
comparative analysis. The experimental results are shown in Table. 3, where DHSL-Cu-Init 
denotes the feature initialization module only, DHSL-Cu-H introduces the gating-based 
dual hypergraph convolution module after the feature priming module, and DHSL-Cu-M 
introduces the momentum-driven twin-network-based module and comparative learning 
on top of DHSL-Cu-H. DHSL-Cu-Both, i.e., the introduction of negative sampling strategy 
after the introduction of the complete DHSL-Cu model. 

Table 3 
Comparative analysis of algorithmic impact 

As shown in Table. 3, DHSL-Cu-Init performs the worst. DHSL-Cu-H better and 
accurately shows the effectiveness and efficiency of the gating-based dual hypergraph 
mechanism than it. The improvement in the performance of DHSL-Cu-M and DHSL-Cu-
Both illustrates the power of the self-supervised contrast learning framework. Among 
them, the best performance of DHSL-Cu-Both shows that the introduction of negative 
sampling strategy can effectively improve and enhance the learning performance of 
contrast learning, and DHSL-Cu and its variants outperform the Alibaba dataset on the 
Amazon dataset. The possible reason could be that the Amazon dataset is denser, which 
helps to capture more effective data during various types of user-item interactions. 

3.5.3. Parameter sensitivity analysis 

This section focuses on the effect of the factor   setting for self-supervised learning on 
the model performance.  

As shown in Tables. 4, 5, the model performance at contrast learning factor less than 
0.5 is improves with increasing contrast learning factor and reaches the optimal point for 
all four evaluation metrics on the 0.5beta   two datasets, after which the performance 
decreases with increasing contrast learning factor. This may be a result of learning loss 

 auroc auprc precision recall 
amazon alibaba amazon alibaba amazon alibaba amazon alibaba 

Init 59.50 72.37 64.77 59.00 63.48 48.73 57.36% 62.75 
H 83.46 87.59 89.95 82.20 85.63 69.81 82.30 79.92 
M 92.99 89.33 94.54 86.47 90.69 86.47 91.07 81.31 

Both 96.68 93.59 97.89 91.76 93.70 91.76 94.98 84.94 



pairs that are too high in the gradient conflict between the prediction and comparison 
tasks during training. 

Table 4 
Results of different contrasting learning factors on AUROC and AUPRC metrics 

Table 5 
Results of different comparison learning factors on Precision and Recall metrics 

4. Conclusion 

We propose a new self-supervised learning method DHSL-Cu. Specifically, we first 
generate two hypergraph views based on a two-part graph network of users and items 
after 2 different graph enhancement strategies. For the target network in the twin 
network we use a momentum-based parameter update mechanism. The slow moving 
target network is made to encode the online network history observations. A course 
comparison framework based on a negative sample selection mechanism for course 
learning is also designed. Finally, the effectiveness and superiority of the proposed DHSL-
Cu model is well demonstrated through extensive experiments on real-world datasets as 
well as parameter analysis. 

beta AUROC AUPRC 
Amazon Alibaba Amazon Alibaba 

0.1 96.39 92.29 97.74 90.91 
0.2 96.39 92.67 97.70 90.94 
0.3 96.44 92.56 97.76 90.56 
0.4 96.53 93.36 97.79 90.53 
0.5 96.64 93.57 97.86 91.44 
0.6 96.50 93.24 97.77 90.78 
0.7 96.51 93.09 97.74 90.40 
0.8 96.43 93.07 97.77 90.89 

  0.9 96.49 93.15 97.74 90.53 

beta Precision Recall 
Amazon Alibaba Amazon Alibaba 

0.1 93.12 88.85 94.25 82.03 
0.2 93.27 89.24 94.35 81.86 
0.3 92.79 88.83 94.43 82.73 
0.4 93.39 89.15 94.44 83.48 
0.5 93.53 89.47 94.48 84.93 
0.6 93.34 88.48 94.44 83.45 
0.7 93.33 88.31 94.21 82.14 
0.8 93.17 87.59 94.31 82.23 

  0.9 93.23 88.91 94.21 81.57 
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