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Abstract 
Machine learning and artificial intelligence are significant areas of interest in both contemporary 
science and society. There are various optimization algorithms used. The algorithm's speed 
depends on the size of the dataset, the number of model parameters, and the number of iterations. 
Standard gradient descent requires computing the gradient of the cost function over the entire 
dataset, which can be resource-intensive, especially with large datasets. In Adam, a separate 
learning rate is maintained for each parameter weight, which is adapted and updated 
individually. The algorithm selects a smaller learning rate for frequently updated parameters and 
a larger one for parameters corresponding to rare features. To measure the effectiveness and 
universality of the Adam, we compared it with other optimization algorithms. Analysis of the 
experiment results conducted on various datasets, indicates a significant advantage of the Adam 
optimization algorithm. To make sure our model works well for our specific needs, we made a 
small dataset ourselves. The famous MNIST dataset, created by American researchers, might not 
match our handwritten numbers perfectly. The results appear promising, with the model 
achieving an accuracy of 97%, meaning it correctly predicted 97 out of 100 images. This level of 
accuracy suggests that the model is performing well on our custom dataset, demonstrating its 
effectiveness in recognizing and classifying our handwritten numbers. Experiments on various 
datasets showed that the Adam algorithm is capable of achieving good results across a wide range 
of machine learning tasks. 
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1. Introduction 

Machine learning and artificial intelligence are significant areas of interest in both 

contemporary science and society [1]. They represent some of the most advanced 
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technologies applicable across various industries, including healthcare, finance, 

transportation and entertainment. The theoretical foundations of machine learning have 

been explored and expanded upon by some of the greatest figures in the field. Geoffrey 

Hinton, often revered as the "Godfather of Deep Learning," has laid the groundwork for 

many modern machine learning techniques with his groundbreaking research on neural 

networks  

Yann LeCun's work on convolutional neural networks (CNNs) has revolutionized 

computer vision and pattern recognition, while Yoshua Bengio's contributions to neural 

network models have greatly advanced natural language processing and unsupervised 

learning. Ian Goodfellow's work on generative adversarial networks (GANs) has opened up 

new avenues in unsupervised learning and generative modeling, while Juergen 

Schmidhuber's contributions to recurrent neural networks (RNNs) and long short-term 

memory (LSTM) networks have propelled advancements in sequential learning and AI [2]. 

Each year the number of scientific publications dedicated to algorithms and machine 

learning methods continues to increase. However, despite significant progress made by 

researchers in this field, a range of unresolved and insufficiently studied issues persists. 

These include challenges related to optimization, which entail the search for optimal model 

parameters to achieve maximum prediction accuracy. 

The main objective of this article is to investigate the Adam optimization algorithm, 

compare its effectiveness with other well-known algorithms on standard datasets such as 

MNIST and FashionMNIST, and assess its accuracy in recognizing and classifying 

handwritten characters [3]. 

2. General principles of optimization to find the best algorithm in 

machine learning 

When an input signal is received by the machine model, it undergoes processing through a 

function, and after a series of computations, it transforms into an output value. Then the 

model compares the generated output with the actual output value and computes the loss 

function. The loss function is a measure of how well the model performs on a given task. For 

example, a popular loss function MSE computes squared difference between values: 
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Now we need some algorithm that will adjust the parameters of a model (w1, w2,...wn) 

to minimize (or maximize) the loss function. That’s the basic concept of optimization in 

machine learning. 

There are various optimization algorithms used for this task. These algorithms are 

iterative, meaning they update the model parameters during each epoch during the training 

process. 



3. The description of the gradient descent algorithm as a fundamental 

optimization technique 

The idea of gradient descent is to update the parameters of the model (weights) by moving 

in the direction of the steepest descent of the loss function [5]. 

At first algorithm initializes random weights (or zeros). Then it calculates the loss 

function of the whole dataset, for example, MSE. 

Then gradient descent calculates the derivative of the loss function concerning each 

model parameter (weight) to determine the direction of the update. 

After computing the gradient of the loss function concerning each weight, the algorithm 

updates the weights by subtracting a fraction of the gradient from the current value of each 

weight. This fraction is known as the learning rate, denoted by 𝛼, and it controls the size of 

the step taken in the direction of the negative gradient. 

𝑤 = 𝑤 − 𝛼 [
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
], (2) 

This process is repeated iteratively, and with each iteration, the algorithm progressively 

approaches a local minimum of the loss function, where the weight values are optimal 

(Figure 1).  

 
Figure 1: The relationship between the loss function and the weight value w 

Source: photographed by the author 

The algorithm's speed depends on the size of the dataset, the number of model 

parameters, and the number of iterations. Typically, larger datasets and more complex 

models require more time and resources for training. Additionally, the speed of the 

algorithm can be influenced by the choice of learning rate. Selecting a too large learning rate 

may cause the algorithm to move too quickly and fail to find the minimum of the weight 



function (Figure 2), while choosing a too small learning rate may prolong the training 

process. 

 
Figure 2: Demonstrative example where a learning rate that is too large. 

Source: photographed by the author 

4. Stochastic gradient descent, SGD 

Standard gradient descent requires computing the gradient of the cost function over the 

entire dataset, which can be resource-intensive, especially with large datasets. Therefore, 

in such cases, stochastic gradient descent (SGD) is applied, which is more efficient for 

optimizing models with a large amount of data [4]. 

Standard gradient descent updates the model weights at each iteration using the entire 

dataset to compute the gradient of the loss function. However, stochastic gradient descent 

computes the gradient and updates the weights for each data sample in the dataset 

separately. That is, on each iteration, SGD uses only one data sample instead of the entire 

dataset, allowing for quick weight updates and more efficient processing of large datasets 

[5]. 

However, SGD can be sensitive to the initial values of the weights, causing it to get stuck 

in a local minimum and fail to find the global minimum of the loss function (Figure 3). Data 

normalization could help mitigate this issue for linear models, however, in more complex 

models like neural networks, normalization may not be sufficient. 

 



Figure 3: Graphical example where the algorithm failed to find the global minimum of the 

function 

Source: photographed by the author 

That’s where Adam comes in handy. It uses the history of previous gradients to 

adaptively adjust the learning rates for each parameter, helping to overcome the limitations 

of SGD. 

5. Adam 

Adam was presented by Diederik Kingma from OpenAI and Jimmy Ba from the University 

of Toronto in their 2015 ICLR paper (poster) titled “Adam: A Method for Stochastic 

Optimization“. The name Adam is derived from adaptive moment estimation. 

Adam differs from classical stochastic gradient descent. Standard stochastic gradient 

descent uses a single learning rate (alpha) for updating weights, and this learning rate 

remains constant throughout training [6]. 

In Adam, a separate learning rate is maintained for each parameter weight, which is 

adapted and updated individually. The algorithm selects a smaller learning rate for 

frequently updated parameters and a larger one for parameters corresponding to rare 

features. 

The authors describe Adam as combining the advantages of two other extensions of 

stochastic gradient descent. Specifically: 

• The Adaptive Gradient Algorithm (AdaGrad) which is particularly effective with 

sparse gradients, such as in natural language processing tasks (NLP) and computer 

vision. It employs a method that maintains an individual learning rate for each 

parameter, facilitating efficient updates for rarely used parameters. However, 

AdaGrad may encounter the issue of rapidly decreasing learning rates, which can 

prematurely halt the learning process. 



• The Root Mean Square Propagation (RMSProp) algorithm which, unlike AdaGrad, 

mitigates the problem of decreasing learning rates. It utilizes a method that sustains 

individually adjusted learning rates for each parameter, adapted based on the recent 

average of gradient magnitudes for weights. This algorithm performs effectively on 

online tasks and tasks where parameters may change over time (non-stationary 

tasks). 

The hyperparameters of Adam include: 

1. Learning rate: Determines the size of the step by which the model weights will 

change during each iteration. A large learning rate can lead to unstable model 

training, while a too small value can slow down the learning process. Typically, an 

initial learning rate is chosen, but Adam automatically adapts it over time. 

2. Beta1 and Beta2: These parameters control the exponential smoothing of previous 

gradients and their squares, respectively. Beta1 is responsible for smoothing 

gradients, while Beta2 handles the smoothing of gradient squares. Typically, values 

such as Beta1 = 0.9 and Beta2 = 0.999 work well, but they can be manually adjusted 

if needed. 

3. Epsilon: A small numerical value added to the denominator in the Adam formula to 

avoid division by zero. 

The Adam algorithm computes the exponential moving average of the gradient (first 

moment) and the squared gradient (second moment) of the weights, where the parameters 

beta1 and beta2 control the smoothing rates of these moving averages [7]. 

In the context of exponential moving average (Figure 4), smoothing occurs by assigning 

more weight to newer data. Thus, the model responds more to the recent changes in data 

than to older values, allowing it to adapt more quickly to any new data trends. 

 
Figure 4: Example of exponential moving average (blue line) 

Source: photographed by the author 



The first and the second moments are statistical concepts. The first moment of data is 

their mean value, and the second moment is the variance, which indicates how spread out 

the data is around the mean value. 

In the context of the Adam optimization algorithm, the first moment of gradients is used 

to estimate the mean value of gradients (which can be viewed as the "rate of change" of 

model parameters), and the second moment of gradients is used to estimate the variance of 

gradients (reflecting how gradients are spread out around the mean value). 

The main idea behind using moments in the Adam algorithm is to provide the algorithm 

with additional information about previous weight updates and the gradient direction, 

enabling better control over the optimization process. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡, 
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2 
(3) 

As mt and vt are initialized as vectors of zeros, they tend to be biased towards zero, 

especially during the initial time steps, and especially when the decay rates are small (i.e. β1 

and β2 are close to 1). In the Adam algorithm, a bias correction is done by adjusting the 

estimates 𝑚t and 𝑣t by dividing them by (1−𝛽t), where t represents the current step. This 

reduces the bias towards zero, ensuring that the initial parameter updates are more 

accurate. 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (4) 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (5) 

Taking this correction into account, the parameter update rule takes the following form: 

𝑤𝑡+1 = 𝑤𝑡 −
𝑛

√𝑣𝑡 + 𝑒
𝑚𝑡 , (6) 

6. Simple Adam example 

In this section, we will provide an example of how the Adam algorithm works in its simplest 

form. We will consider a scenario where we have a simple function that needs to be 

optimized, and we will apply the Adam algorithm to find its minimum. 

Firstly, we need to define the loss function. We will use a simple two-dimensional 

function that squares the input data and defines the range of input data from -1.0 to 1.0: 

def loss_function(x, y): 

   return x ** 2.0 + y ** 2.0 

To visually observe the progress of the function, let's create a 2D plot: 

bounds = asarray([[-1.0, 1.0], [-1.0, 1.0]]) 

xaxis = arange(bounds[0,0], bounds[0,1], 0.1) 

yaxis = arange(bounds[1,0], bounds[1,1], 0.1) 

x, y = meshgrid(xaxis, yaxis) 



results = objective(x, y) 

pyplot.contourf(x, y, results, levels=50, cmap='jet') 

pyplot.show() 

Executing this code snippet generates a two-dimensional contour plot of the objective 

loss function (Figure 5). This plot will serve as a visual representation of the points 

investigated throughout the search for the local minimum of the function. 

 
Figure 5: Two-dimensional plot of the loss function using Adam 

Source: photographed by the author 

Let's move on to the Adam algorithm. First, we initialize the first and second moments 

as zeros: 

m = [0.0 for _ in range(bounds.shape[0])] 

v = [0.0 for _ in range(bounds.shape[0])] 

 

After that, we compute the gradient (derivative) of the data: 

gradient = derivative(w[0], w[1]) 

 

Now we need to apply the Adam parameter update rule. While in practice, a matrix 

method is typically utilized for computation, for the sake of clarity in this example, we'll 

employ an iterative approach. Given we have two parameters, we'll use a loop to update 

both of them: 

for i in range(x.shape[0]): 

   m[i] = beta1 * m[i] + (1.0 - beta1) * g[i] 

   v[i] = beta2 * v[i] + (1.0 - beta2) * g[i]**2 

Then we apply the bias correction: 



mhat = m[i] / (1.0 - beta1**(t+1)) 

vhat = v[i] / (1.0 - beta2**(t+1)) 

In the end we update the parameters of the model and calculate the loss: 

w[i] = w[i] - alpha * mhat / (sqrt(vhat) + eps) 

score = loss_function(w[0], w[1]) 

 

The Figure 6 illustrates the outcome of executing the code. The "Score" indicates the 

value of the loss function. 

 
Figure 6: Two-dimensional graph of the loss function using Gradient Descent 

Source: photographed by the author 

For comparison, the gradient descent algorithm, with the same function and the same 

number of iterations, achieved significantly worse results (Figure 7). 



 
Figure 7: Graph illustrating the performance using Gradient descent algorithm 

Source: photographed by the author 

7. Comparing Adam with other algorithms 

To measure the effectiveness and universality of the Adam, we compared it with other 

optimization algorithms on two datasets, MNIST and FashionMNIST. We chose them 

because they are often used as a benchmark for testing new machine learning algorithms 

and models. 

MNIST (Modified National Institute of Standards and Technology) is a classic dataset 

consisting of 60,000 black and white images of handwritten digits in the training set and 

10,000 images in the test set.  

FashionMNIST is another popular dataset that contains 60,000 images in the training set 

and 10,000 images in the test set. The images represent various types of clothing items such 

as T-shirts, dresses, trousers, etc. This dataset is created for use in image classification tasks. 

We chose to test the Adam algorithm on both MNIST and FashionMNIST datasets 

because they contain different kinds of data. MNIST has images of handwritten digits, while 

FashionMNIST consists of more complicated pictures of clothing items. By evaluating 

Adam's performance on these diverse datasets, we can see how well it works across 

different types of data, showing its usefulness in various situations. 

Figure 8 illustrates the training process of models on the MNIST dataset using various 

optimization algorithms. The results indicate that, despite the task not being very 

complicated, Adam successfully demonstrated the best performance among all the 

algorithms. This is further evidenced in Figure 9, where the test accuracy of Adam surpasses 

that of all other algorithms. 



 
Figure 8: Graph illustrating the performance of different algorithms on MNIST dataset 

Source: photographed by the author 

 
Figure 9: Test accuracy of different algorithms on MNIST dataset 

Source: photographed by the author 

Figure 10 illustrates the training process of models on the FashionMNIST dataset, which 

is slightly more complex. Despite this complexity, Adam managed to outperform other 

algorithms, demonstrating its effectiveness even for more challenging tasks. This is further 

supported by Figure 11, where it is shown that the test accuracy of Adam exceeds that of all 

other algorithms. 



 
Figure 10: Graph illustrating the performance of different algorithms on FashionMNIST 

dataset 

Source: photographed by the author 

 
Figure 11: Test accuracy of different algorithms on FashionMNIST dataset  

Source: photographed by the author 

Analysis of the experiment results conducted on various datasets, including MNIST and 

FashionMNIST indicates a significant advantage of the Adam optimization algorithm. Its 

effectiveness was demonstrated regardless of the complexity of object structures and the 

diversity of classes in the datasets. Interestingly, while some algorithms may have shown 

slightly better results on datasets with simpler structures and fewer classes, Adam proved 

to be more efficient in all modeled scenarios. Overall, Adam provided faster and higher-

quality solutions to classification tasks compared to most other algorithms, confirming its 

advantages in machine learning. 

To make sure our model works well for our specific needs, we made a small dataset 

ourselves. The famous MNIST dataset, created by American researchers, might not match 



our handwritten numbers perfectly. So, we wanted to see if our model could still understand 

and categorize our handwritten characters correctly. This way, we could check if our model 

is flexible and reliable for our purposes, not just for standard datasets. 

The dataset consists of 100 handwritten numbers from 0 to 9 (Figure 12). 

 
Figure 12: An example of our handwritten dataset 

Source: photographed by the author 

The results appear promising, with the model achieving an accuracy of 97%, meaning it 

correctly predicted 97 out of 100 images. This level of accuracy suggests that the model is 

performing well on our custom dataset, demonstrating its effectiveness in recognizing and 

classifying our handwritten numbers. 

In further research, it is planned to use Adam's algorithm to analyze the data of 

cyberphysical systems [8, 9], biosensors [10] and the results of cardiac signal processing 

[11]. 

8. Conclusions 

In this study, the Adam algorithm was investigated in the context of optimization in machine 

learning. The main conclusions and results of the study are as follows: 

1. The Adam algorithm is an effective optimization method that combines ideas from 

other algorithms such as RMSProp and AdaGrad. 

2. Experiments on various datasets, such as MNIST and FashionMNIST showed that the 

Adam algorithm is capable of achieving good results across a wide range of machine 

learning tasks. 



3. The Adam algorithm is effective for optimizing tasks involving both large and small 

datasets, as demonstrated by experimental results. 

9. References 

[1] D. P. Kingma and J. L. Ba, Adam: a method for stochastic optimization, 

arXiv:1412.6980v9 [cs.LG], 2015. 

[2] R. Zaheer and H. Shaziya, A Study of the Optimization Algorithms in Deep Learning, 

March 2020. 

[3] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for 

benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747, 2017. 

[4] S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint 

arXiv:1609.04747, 2016. 

[5] S. Wang, C. Li, X. Ding, Demystifying Parallel and Distributed Deep Learning: An In-

Depth Concurrency Analysis, arXiv:1802.09941v2 [cs.LG], 15 Sep 2018. 

[6] J. Brownlee  Gentle Introduction to the Adam Optimization Algorithm for Deep 

Learning, 2017, https://machinelearningmastery.com/adam-optimization-algorithm-

for-deep-learning/  

[7] J. Brownlee  Code Adam Optimization Algorithm From Scratch, 2021, 

https://machinelearningmastery.com/adam-optimization-from-scratch/ 

[8] V. Martsenyuk, A. Sverstiuk, A. Klos-Witkowska, N.Kozodii, O. Bagriy-Zayats, I. 

Zubenko, Numerical analysis of results simulation of cyber-physical biosensor systems. 

CEUR Workshop Proceedings, 2019, 2516, pp. 149–164. 

[9] V. Martsenyuk, A. Sverstiuk, O. Bahrii-Zaiats, A. Kłos-Witkowska, Qualitative and 

Quantitative Comparative Analysis of Results of Numerical Simulation of Cyber-

Physical Biosensor Systems. (2022) CEUR Workshop Proceedings, 3309, pp. 134 – 149. 

[10] V. Martsenyuk, A. Klos-Witkowska,  S. Dzyadevych, A. Sverstiuk, Nonlinear Analytics for 

Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action. 

Sensors, 2022, 22(3), 980. 

[11] V. Trysnyuk,  A. Zozulia,  S. Lupenko, I. Lytvynenko, A. Sverstiuk,  Methods of rhythm-

cardio signals processing based on a mathematical model in the form of a vector of 

stationary and stationary connected random sequences. CEUR Workshop 

Proceedings, 2021, 3021, pp. 197–205.  

https://machinelearningmastery.com/adam-optimization-from-scratch/
https://www.scopus.com/authid/detail.uri?authorId=6603347161
https://www.scopus.com/authid/detail.uri?authorId=57202987503
https://www.scopus.com/authid/detail.uri?authorId=7006704987
https://www.scopus.com/authid/detail.uri?authorId=58042755600
https://www.scopus.com/authid/detail.uri?authorId=57212602064
https://www.scopus.com/record/display.uri?eid=2-s2.0-85077188220&origin=resultslist
https://www.scopus.com/sourceid/21100218356?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=6603347161
https://www.scopus.com/authid/detail.uri?authorId=7006704987
https://www.scopus.com/authid/detail.uri?authorId=57212448897
https://www.scopus.com/authid/detail.uri?authorId=57202987503
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123344290&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123344290&origin=resultslist
https://www.scopus.com/sourceid/130124?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57210750621
https://www.scopus.com/authid/detail.uri?authorId=57210555729
https://www.scopus.com/authid/detail.uri?authorId=36069365600
https://www.scopus.com/authid/detail.uri?authorId=54911988600
https://www.scopus.com/authid/detail.uri?authorId=57202987503
https://www.scopus.com/record/display.uri?eid=2-s2.0-85120686737&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85120686737&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85120686737&origin=resultslist
https://www.scopus.com/sourceid/21100218356?origin=resultslist
https://www.scopus.com/sourceid/21100218356?origin=resultslist

