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Abstract 
In this work, the properties of epoxy composites modified with an active plasticizer were 
modeled. The material was treated with electrospark water hammer. The material was treated 
with electric spark water hammer, which improves their physical and mechanical properties. 
The main attention is paid to the study of the thermal coefficient of linear expansion, which is a 
critical parameter for the use of composites in different temperature conditions. The results of 
modeling the thermophysical characteristics showed a high correlation with the experimental 
data, where the correlation coefficient in the test sample was 0.99%. The prediction error of 
epoxy polymers filled with DEG-1, aluminum oxide, chromium oxide, and carbon black by 
neural networks is 0.11, 0.17, 0.93, and 0.04% in test samples for different fillers. It has been 
shown that neural networks are capable of analyzing data and learning from it. Therefore, 
modeling the properties of materials by neural networks allows achieving high prediction 
accuracy. 
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1. Introduction 

The development of modern industry raises the problem of using new materials with 

predetermined characteristics. In this area of research, the use of automation systems for 

research processes is promising when creating such materials. The use of automated 

systems, namely, neural networks [1, 2], creates conditions for predicting and targeted 

regulation of the performance characteristics of materials. Neural networks are used in 
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research to predict the properties and process the experimental results obtained for 

polymer composites containing various additives [3, 4]. It is known [5, 6] that machine 

learning uses intelligent data analysis with the ability to build a meaningful relationship 

between the results of experiments in the system "material composition - properties". In 

particular, this approach is effective in the study of polymeric composite materials based 

on reactoplastics. An epoxy diane binder was used in the successful cutout. It should be 

emphasized that the accuracy of the systems depends on the selected parameters of 

neural networks [7]. In general, the properties of polymer composites are modeled with 

great accuracy using machine learning algorithms, namely, neural networks. The 

advantage of this approach is the possibility of obtaining research results by the proposed 

method of non-destructive testing without its effect on changes in the structure of the 

epoxy composite. 

The modern technology of creating polymer composites, including epoxy composites, is 

aimed at studying methods of controlled directed changes in the material structure 

parameters. The latter, in most cases, determine the physical, mechanical, and operational 

characteristics of epoxy composites [8-11]. This approach is based on theoretical concepts 

of structure formation processes and analysis of empirical data on the performance 

properties of the developed materials. To obtain composites with optimal characteristics, 

a set of requirements for the polymer matrix is established, such as high physical, 

mechanical, adhesive, and thermal characteristics, as well as the necessary rheological 

properties. This is achieved through the selection of ingredients in the polymer binder, 

such as modifiers, plasticizers, catalysts, and fillers [12-17]. In addition, one of the 

promising areas for improving the properties of heterogeneous composite systems at the 

present stage of development of materials science is the modification of compositions 

using external force fields: electromagnetic, ultrasonic, ultraviolet, and electrospark water 

hammer [18]. The technology of activation of oligomeric compositions by these fields at 

the initial stages of material formation opens up new opportunities for scientifically 

directed regulation of the processes of interaction between components.  The possibility 

of adjusting the structure parameters for the targeted creation of epoxy composite 

materials with predetermined performance characteristics has been proven. 

Polymer composite materials are used in various industries: mechanical engineering, 

construction, automotive, and aviation. Composite materials are increasingly used in 

critical elements of aircraft and automobiles. They are also used as protective coatings in 

oil and pumping units due to their high physical, mechanical, thermal and corrosion 

properties. However, to realize the potential properties of composite epoxy materials, it is 

necessary to use fillers, plasticizers, and modify the epoxy matrix itself with force fields. In 

particular, obtaining composites with high technological and operational characteristics is 

based on ensuring a strong and stable bond between the active centers on the surface of 

the filler and the macromolecules of the binder [8, 12]. It is known that the parameters of 

the thermal coefficient of linear expansion (TCLE) of polymers in the region of their glass 

transition temperature depend on the rate of temperature change. 

In connection with the above, the use of neural networks in the study of TCLE, which is 

an important property of the thermal characteristics of epoxy composites, is an urgent 

problem of modern materials science.   



The article [19] gives the results of the study of qualitative neural networks, including 

discrete and distributed time delays. A method for calculating the exponential decay rate 

for a neural network model based on differential equations with a discrete delay was 

developed and applied [20, 21]. 

When studying the properties of thermomechanical characteristics of epoxy 

composites, important characteristics of converters are taken into account [22, 23], the 

main of which is stability [24, 25]. Scientific studies [26] and [27] give examples of sensor 

response modelling. Numerical modelling in cyber-physical sensor systems [28, 29] is 

important at the stage of their design. 

However, insufficient attention has been paid to modeling the thermal and physical 

characteristics of neural networks. It is important to study the materials at different 

temperatures of plasticized epoxy composites filled with DEG-1, aluminum oxide, 

chromium oxide, and carbon black using neural networks.  

2. Method of research by neural networks 

Neural networks are one of the most widespread machine learning methods. In 

particular, the prerequisite for their emergence was the study of the human nervous 

system. In general, a neural network is a system with a large number of neurons that can 

approximate rather complex dependencies and find patterns between input and output 

data [30]. It is known that each neuron communicates with the other through axons and 

synapses to process the received data and perform appropriate actions. Therefore, to 

simulate such a process, a perceptron is used, i.e., an artificial neuron that receives several 

inputs and produces one output (Fig. 1). 

 

Figure 1: Model of an artificial neuron [5]. 

To achieve the minimum error in a neural network, it is necessary to adjust the weights 

between neurons [31]. That is, you need to find a set of parameters that most accurately 

reflects the real data distribution. 



The back-propagation method is a way to adjust the weights so that the neural network 

produces a smaller error on training examples. Therefore, iteration after iteration, feeding 

the neural network with example after example and adjusting the weights, it is necessary 

to bring the connection vector closer to a state in which the data is obtained that meets 

expectations.  

In general, the main parameters affecting the training process are the step size, 

methods of changing the step, and the method of initializing the initial values of the 

weights in the network. In addition, when building neural networks, it is important to 

choose the architecture, learning algorithm, error function, activation function of the 

hidden and output layers [32, 33]. The neural network training stop parameter is 1000 

epochs.  

In particular, in this study, such networks were built as MLP 2-10-1, for composites 

filled with DEG-1 and carbon black, respectively, MLP 2-8-1 for aluminum oxide and 

chromium oxide. The learning algorithm was BFGS, the error function was SOS, and the 

hidden layer activation functions were logarithmic for all fillers. Whereas the activation 

function of the original layer was logarithmic, and for the filler with aluminum oxide - 

tangential [34, 35]. 

3. Experimental approach 

The introduction into the epoxy oligomer (ED-20), as a plasticizer, of the aliphatic resin 

DEG-1, which is chemically inert to the binder, but participates in the structural 

organization of the "sol in gel" matrix. In the process of crosslinking such a two-

component system, an increase in the molecular weight of the components and gelling is 

accompanied by a change in the compatibility of the ingredients and, as a result, leads to 

the separation of the system into phases. In this case, it was assumed that the 

supramolecular structure of chains of aliphatic oligomer is formed in the mesh structure 

of the crosslinked material. The existence of globular structures of the aliphatic resin DEG-

1 in the form of inclusions in the glassy epoxy mesh was established by electron 

microscopy. At the same time, such inclusions can be in both glassy and viscous states 

depending on the polymerization conditions. 

It should be noted that the processes of phase separation in such two-component 

systems are accompanied by a change in physical properties, in particular, volumetric 

shrinkage, due to a decrease in the free volume in the epoxy composite material. At the 

same time, the gelation viscosity of the compositions is significantly reduced due to a 

decrease in the number of physical bonds between the macromolecules of the original 

epoxy oligomer. However, during polymerization, filling the free volume of the system 

with plasticizer molecules and, accordingly, independent crosslinking of the two-phase 

system leads to an improvement in the cohesive characteristics of the composite material 

(CM), which is confirmed by thermophysical and physicomechanical studies. The main 

factor in improving these characteristics is, first of all, the compatibility of the matrix 

components. If the considered mechanism is correct, then the improvement of the above 

properties should also be expected as a result of modification of the matrix components by 

electric spark water hammer (ESWH).  



The first stage of the research was to study its effect on the physical, mechanical and 

thermal properties of heterogeneous materials during arc discharge treatment of matrix 

components. Experimentally, it was found that an excessive amount of plasticizer in the 

matrix, i.e. sol fraction, which is in a viscous-fluid state, significantly reduces the degree of 

crosslinking of the matrix. In addition, dilatometric studies have shown that the thermal 

coefficient of linear expansion of TCLE composites at different temperature ranges varies 

in the range of 293...433 K. TCLE was calculated from the curve of relative strain versus 

temperature, approximating this dependence with an exponential function. It is shown 

that the TCLE of composites with modified epoxy resin compared to a CM containing the 

original ED-20 is an order of magnitude lower, regardless of the concentration of the 

plasticizer. 

It should be noted that in the temperature range of 293...383 K, a sharp decrease in the 

TCLE value was observed compared to other temperature ranges after the water hammer 

action. In this temperature range, a more significant contribution of crosslinking is 

realized due to the appearance of physical nodes in the spatial grid of the binder. [35, 36]. 

This is explained by a decrease in the strain value when the material is heated during 

temperature tests. We observed a decrease in the value of the thermal expansion 

coefficient of the TCLE. It has been experimentally established that the degree of 

crosslinking in the material increases [36-39]. This mechanism of TCLE reduction is 

confirmed by the high value of the sol fraction in the system (92-94 %). It has been proven 

that the yield strength of composites containing unmodified ED-20 resin in the glass 

transition zone is significantly higher than that of plasticized composites with a modified 

plasticizer. This indicates an increase in the degree of cross-linking of the matrix material 

after treatment with an electrohydraulic arc discharge. 

It should be noted that the activity of the radicals formed during electrospark water 

hammering is determined by both the kinetic and thermodynamic parameters of the 

system. From the thermodynamic point of view, free radicals in the form of segments 

should be considered as active dipoles. The electric forces of both attraction and repulsion 

determine the behavior of active radicals when crosslinking the system. As a result, a 

double electric layer was observed in the system in some areas at the interface, which, in 

turn, significantly increases the cohesive characteristics of the material at the epoxy resin-

plasticizer interface. 

It was found that with an increase in temperature, the TCLE of all samples without 

exception also increases.  Therefore, the next stage of research to reduce the TCLE was the 

filling of the plasticized binder with dispersed particles of aluminum oxide, chromium 

oxide, and carbon black. It was found that with an increase in the content of dispersed 

particles in the composite, the thermal coefficient of linear expansion decreases only up to 

certain limits. Based on this, we have determined the critical concentrations of each of the 

selected fillers. It has been experimentally proven that the introduction of dispersed 

particles at optimal concentrations (aluminum oxide 100 wt%, chromium oxides (50 

wt%), carbon black (40 wt%) per 100 wt% of epoxy oligomers (hereinafter, the 

concentration of fillers is presented in wt. wt. % per 100 wt. % of the binder) with 

simultaneous pretreatment of the epoxy composite by electric spark water hammer, 



provides a 2.5...3.0-fold reduction in the TCLE of composites compared to the treated 

matrix. 

The thermal coefficient of linear expansion was modeled using the experimental data 

obtained in [35] by neural networks. In particular, in the process of training neural 

networks, the data were divided into two parts - training and test samples. That is, 18,000 

elements for each epoxy polymer filled with DEG-1 and carbon black, and 31,000 elements 

for the polymer filled with aluminum oxide and chromium oxide, respectively. Of this data, 

80% was randomly selected for the training set, and the remaining 20% was left to 

evaluate the quality of the prediction. Here, the output parameter was the thermal 

coefficient of linear expansion 10-5, К-1. Filler concentration (wt%) of the plasticizer and 

temperature were considered as input parameters.          

The dependences of the experimental data of the thermal coefficient of linear 

expansion on the predicted ones obtained by the neural network method are shown in 

Figs. 2-5. 

  

Figure 2: Predicted and experimental 

dependences for the composite filled with 

plasticizer DEG-1 

Figure 3: Predicted and experimental 

dependences for an aluminum oxide-filled 

composite 

 
 

 

Figure 4: Predicted and experimental 

dependences for a chromium oxide-filled 

composite 

Figure 5: Predicted and experimental 

dependences for a composite filled with gas 

soot 



 

The dependences of the predicted thermal coefficient of linear expansion on the filler 

concentration in the composite and temperature are shown in Figs. 6-9.  

To analyze data, a statistical graph in the form of residuals diagrams is often used. It 

was found that the residuals have a normal distribution. 

 

  

Figure 6: Temperature dependence of the 

thermal coefficient of linear expansion filled 

with DEG-1 

Figure 7: Temperature dependence of the 

thermal coefficient of linear expansion of 

aluminum oxide filled with aluminum oxide 

  
Figure 8: Temperature dependence of the 

thermal coefficient of linear expansion of 

chromium oxide filled glass 

Figure 9: Temperature dependence of the 

thermal coefficient of linear expansion 

filled with carbon black 

 

The diagrams of residual values for composites filled with DEG-1, aluminum oxide, 

chromium oxide, and carbon black, respectively, are shown in Figs. 10(a, b, c, d). 



  

a) b) 

  

 
 

c) d) 

Figure 10: Diagram of residual values for composites filled with : a) DEG-1; b) aluminum oxide;   

c) chromium oxide; d)carbon black 
 

4. Conclusion 

The neural networks modeled the change in the thermal coefficient of linear expansion of 

epoxy polymers filled with DEG-1, aluminum oxide, chromium oxide, and carbon black. 

The results are in good agreement with the experimental data. The prediction error of the 

neural networks is 0.11, 0.17, 0.93, and 0.04 % in the test samples in particular, the 

prediction accuracy depends on such parameters as the architecture of the neural 

network, the activation functions of the hidden and output layers, and the learning 

hyperparameters. In general, optimization of each of them is critical to achieving high 

results. The obtained results will allow to create conditions for targeted regulation of 

physical and thermal characteristics by forming a structural organization in the material. 

The practical value of the obtained results lies in the possibility of implementing the 

neural network method in production processes to improve the characteristics of 

composite materials in various industries. Thus, the results of the study will help to 

increase the productivity and competitiveness of enterprises that use neural network 

modeling of thermal and physical characteristics in their activities.  Further research is 

planned to optimize the processes of developing epoxy composites for various functional 

purposes. 
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