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Abstract 
The work presents a hardware-software complex for digital diagnostics of neuropsychological 
disorders, injuries, and diseases of the human cerebral cortex caused by the consequences of combat 
and technogenic injuries, stress in extreme situations, etc. A new methodology and hybrid model 
for digital analysis of cognitive neural signals of the human cerebral cortex have been developed, 
and a matrix algorithm has been implemented to determine the indicators of the multisensory 
impact of EEG signals on the amplitude and frequency characteristics of patient limb tremors. This 
allows for rapid and accurate computer diagnosis of neuro-disorders related to combat and 
technogenic injuries, detection of damaged areas of the human cerebral cortex, and selection of 
effective and timely treatment methods to restore the patient's normal neurological state. 
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1. Introduction 

Computer diagnostic systems use new information technologies to help diagnose and treat 
neurological problems and diseases in people who have brain damage from different causes 
and injuries, such as stress, extreme situations, combat, or disasters. Manifestations of these 
diseases are manifested in humans as abnormal neurological movements (ANM) or 
tremors and their extreme forms in the form of critical diseases - Parkinson's and Alzheimer's 
diseases [1]. ANM, as unwanted oscillatory movements, refers to the involuntary contraction 
of the muscles of a certain part of the body, in particular, the limbs of the hands, eyelids, 
organs of speech, etc. [2]. The characteristic features of these ANMs, which lead to a violation 
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of the regulation of human movements, are an increase in their amplitude, a change in the 
frequency and form of oscillations. 

The analysis of these ANM parameters is decisive for understanding the role of feedback 
dysfunction of neural nodes of the cerebral cortex in the processes of cognitive control of 
human movements and detection of neuromotor disorders. The complexity of ANM research 
lies in the imperfection of existing diagnostic methods, their low accuracy, and the lack of 
high-quality mathematical and software tools for identifying the neural feedback influences of 
cerebral cortex nodes on their behavior [2, 3]. 

Studies of the behavior of patients with signs of tremor were conducted by a number of 
researchers, such as Haubenberg D., Kalowitz D. Legrand A.-P., Vidailhet M., Louis E. and 
others [2-5]. The main attention was paid here to the analysis of parameters relative to 
normal states and behavior using digital processing methods based on the classical Fourier 
transformation [2-4], which are currently imperfect and practically unsuitable in the sense of 
a complex analysis of abnormal states and complex, hard-to-predict behavior of patients with 
a high degree of tremor [6-7]. Due to the low quality of assessment of ANM parameters of 
such methods, 60-80% of important information for assessing the patient's neurological 
condition is lost due to noise. 

2. Development Methodology 

Our proposed method for digital diagnostics of neurological and psychological disorders 
relies on information technology. This technology continuously tracks the limb position of a 
patient's hand and uses cognitive neuro signals from the cerebral cortex. The cerebral cortex 
triggers oscillating movements by responding to these signals while mimicking a specified test 
trajectory on a high-resolution interactive tablet using an electronic pen [8]. The electronic 
pen's position on the tablet and the sensor readings from the cerebral cortex neuro nodes in 
the patient's helmet are recorded synchronously and stored digitally. We analyze this data 
using a hybrid model of digital Fourier analysis. This model examines wave signals 
representing ANM of the patient's limb, influenced by cognitive signals from the cerebral 
cortex neuro nodes. A comprehensive description of this hybrid analysis model appears in our 
further writings [8]. 

2.1. The digital ANM trajectory of a patient's limb movement 

We use a model solution previously derived in matrix form [8]. Matrix relations determine 
the position of the electronic pen on the interactive tablet. These relations facilitate the 
parallelization of calculations. 

Figure 1 illustrates the experimental setup for recording EEG signals and ANM movements 
using a graphic tablet/monitor. The EEG signals are captured by electrodes attached to the 
scalp of the participant, who performs a drawing task on the tablet/monitor. The ANM 
movements are recorded by the tablet/monitor as the participant traces a spiral pattern with a 
stylus. The EEG signals and ANM movements are synchronized and processed to extract 
features related to cognitive load and motor control. 



 
a) EEG signals b) graphic tablet/monitor 

Figure 1: Demonstration of using research hardware. 
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The following matrices and vectors are used here: 

( , ) , 1, 1j j ju t l j n      the vector of amplitude deviations of ANM movements from 

standard values (Archimedes spirals), ,j jl t  — the position of the geometric coordinate z  

along the movement trajectory correlates with the Archimedean spiral's linear 
transformation. This position is contingent upon the passage of time corresponding to z . The 
variable j  serves as an index that specifies the sequence number of the elementary segment 

within the trajectory of the ANM. Furthermore, n  — represents the total count of division 
points on the ANM trajectory, segregating it into elementary, more straightforward motion 
segments. 



 , , , , 1, 1ji i j it l l j i n      — the impact matrix, which determines the segmental 

feedback effects of cognitive signals on individual elements of ANM, is determined by the 
formula [10]: 

         22
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where ib  — amplitude characteristic on the i-th segment of ANM,  ,j j mV l  , 

, 0,m m    — components of the spectral hybrid Fourier function and the set of spectral 

values;  

( ) , 1, , 1, 1
ji js t i m j n       — the matrix of the values of cognitive signals coming from 

the sensors of the neuron nodes of the cerebral cortex, the number of installed sensors in the 
helmet 

 , 1,i i m   — the vector of adaptive coefficients of influence of cognitive signals of the  

i-th sensor on indicators of ANM movement elements (determined by the matrix algorithm 
presented below). 

As a result of matrix calculations, we obtain an analytical vector solution that establishes a 
direct connection between the values of amplitude deviations and the influence of the 
numerical values of all vectors of cognitive signals throughout the entire duration of ANM: 
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(3) 

The efficiency and convenience of using vector dependency (4) lie in the ability to 
determine specific feedback effects of cognitive signals from all EEG sensors of the system on 
each movement segment at the current time ti. This takes into account the current values of 
the sensor signals, as well as the aftereffects of the sequence of partially attenuated EEG 
sensor signal values at previous time points ti, ti-1,, ..., t1. 



2.2. The matrix algorithm for the ANM adaptive coefficients 

Considering the specific structure and triangular shape of the matrix of cognitive signals 
 influence, as well as its multidimensionality compared to the non-square 

matrix of cognitive signal sensor indicators, we suggest a method. This method involves 
calculating adaptive coefficients for the cerebral cortex sensor's cognitive signals. These 
coefficients are computed for distinct groups of m consecutive segments along the ANM 
movement trajectory m < n+1: 
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Figure 2: The representation of the impact exerted by cognitive signals. 



The process of calculating the adaptive coefficients of influence for cognitive signals from 
cerebral cortex sensors across various segments of the ANM trajectory can be extended to the 
entire set of ANM trajectory segments of dimension 1n  . This generalization enables the use 
of a computational scheme that is both rapid and cost-effective compared to machine learning 
methods, as depicted in Figure 2. 

To increase the accuracy, such calculations can be repeated by shifting the initial positions of 
the groups of studied segments of the ANM by several positions up or down in the matrix of 
the influence of cognitive signals. 

 
3. Computational analysis of ANM and the cerebral cortex signals. 

We can obtain high-quality data on the behavior of the curve drawn by the patient. All 
data records are saved and can be analyzed using the developed program, to gain insights into 
the patient's neurological condition. 

 

Figure 3: Data cleaning and fitting curve. 

Figure 3 shows the user interface of the software for visual analysis of the recorded curve 
by providing the csv file containing the recorded data from the tablet. The software displays 
the red curve drawn by the patient and the original curve given to it. The software also allows 
cleaning some of the noises and fitting the curves.  



 

Figure 4: 3D visualization in Cartesian coordinates for x, y [mm] and t [s]. 

Figure 4 shows the raw data collected from the tablet, which consists of the x and y 
coordinates of the pen tip and the corresponding time stamps. The data is plotted in a 3D 
space, where the x-axis represents the horizontal position, the y-axis represents the vertical 
position, and the z-axis represents the time. The curve drawn by the patient can be seen as a 
trajectory in this 3D space, which reflects the speed, accuracy, and smoothness of the patient's 
movement. 

In order to obtain the polar coordinates of the pen tip from the Cartesian coordinates, we 
need to calculate the radius and the angle of each point in the curve. The radius is given by 
the Euclidean distance between the origin. 

Figure 5 shows the result of applying this coordinate transformation to the data, where the 
x-axis represents the radius and the y-axis represents the angle. The curve in polar 
coordinates can reveal the shape and symmetry of the patient's movement, as well as the 
variation of the speed and direction. A non-linear least square is applied to smooth the curve 
and reduce the noise. 
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n is the number of data points. 

i  and i  are the i th  data point. 

( , , , , )if a b c d  is the function we are trying to fit to the data, which is 

* * ( ) * ( )a b c cos d sin     . 

a, b, c, and d are the parameters of the function that “curve_fit” (Python 3) is trying to 
optimize. 



Figure 5: Measured R values and Gaussian filter-based fitting of R data.

 
Figure 6 shows the deviation of the measured R values from the fitted R values on the y-

axis, and time offset from the beginning of recording on the x-axis. 

       measured fittedR R R    (6) 

 

Figure 6: Residual fluctuation ΔR. 

After applying the developed matrix algorithm, the result of the calculations is shown on 
Figure 7 as ΔR calculated together with the ΔR measured. 



 

Figure 7: Comparison of ΔR calculated and ΔR measured values for normalized data. MinMax 
Scaler for each EEG column separately 

Figure 7 shows the comparison of the residual fluctuation ΔR calculated by the matrix 
algorithm and the ΔR measured by the EEG device for the normalized data. The data was 
normalized using the MinMax Scaler method, which scales each column of the EEG data 
separately to the range [0, 1]. The figure displays two scatter plots, one for each condition 
(resting and watching), with the x-axis representing the ΔR calculated and the y-axis 
representing the ΔR measured.  

 

Figure 8: Comparison of ΔR calculated and ΔR measured values for normalized data. MinMax 
Scaler for all EEG columns values range 

Figure 8 shows the comparison of the residual fluctuation ΔR calculated by the matrix 
algorithm and the ΔR measured by the EEG device for the normalized data. The data was 
normalized using the MinMax Scaler method, which scales all the columns of the EEG data 
together to the range [0, 1].  



Figure 9: Comparison of ΔR calculated and ΔR measured values for normalized data standard
Scaler for each EEG column separately

Figure 9 shows the comparison of the residual fluctuation ΔR calculated by the matrix
algorithm and the ΔR measured by the EEG device for the normalized data. The data was
normalized using the Standard Scaler method, which scales each column of the EEG data
separately to have zero mean and unit variance. The figure illustrates that the two methods of
normalization produce similar results in terms of the correlation between the calculated and
measured values of ΔR. However, the Standard Scaler method seems to have less outliers and
a narrower range of values than the MinMax Scaler method.

Using a high-speed matrix computational procedure, we regularized and enhanced the
adaptive coefficient vectors αi for cognitive signals from all EEG sensors according to
formulas (4) and (2). This resulted in significant model adequacy (over 95%) after several
iterations, specifically 3 regularization iterations. The final coefficient values are presented in
the last column of Table 1.

These data help determine the cognitive impacts of specific neural node zones on the
oscillatory deviations of the patient's limb movement along different sections of the studied
ANR trajectory. The computed αi vector indicators are crucial in this process. Importantly,
this method identifies causal relationships and their quantitative characteristics. It focuses on
the ANR motion zones with the highest oscillatory amplitudes and the αi coefficient values for
cognitive EEG signals of specific neural node zones, as shown in Table 1.

This approach provides neurologists with a key tool to analyze suspicious human cerebral
cortex zones in more detail. It aids in prescribing appropriate specialized restorative therapy,
which aims to improve the condition of individuals with tremors and other anomalies,
including those affected by technological or military factors.

Table 1 shows the results of applying the proposed hybrid model to different neurological
conditions, such as post-traumatic stress disorder, traumatic brain injury, and stroke. The
table compares the descriptive statistic values of  values for evaluated normalization
approaches.



Table 1 
Descriptive statistics for  values 

Therefore, the report demonstrates the effectiveness and efficiency of the proposed hybrid
model for wave signal analysis of abnormal neurological movements.

Conclusions

Utilizing the proposed hybrid model for wave signal analysis of abnormal neurological
movements, influenced by cognitive signals from cerebral cortex neural nodes, the system
facilitates rapid and precise computerized diagnosis of neurological conditions. This diagnosis
stems from combat and man-made injuries. It also identifies the impacted cerebral cortex
regions and quantifies their influence on the overall neurological state of an individual. The
obtained results of such a digital analysis make it possible to determine effective and timely
methods of treatment and restoration of the normal neurological condition of a person.
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