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Abstract 
Within Industry 4.0, the augmented reality (AR) interfaces may become important components 
of industrial digital twins (DT) enabling human operators to manage smart manufacturing 
processes. Different aspects of DTs’ design have to be analyzed in context, including relevant data 
identification, taking into account AR-interface data flow. Development of augmented reality-
enhanced interface for a DT in the metal processing industry is proposed which takes into 
account the data flows specific for IoT devices and DT architecture.  An integration of essential 
stages of AR-enabled DT development will assure compliance with the concept of Industry 4.0 
and allow new innovative solutions. 
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1. Introduction 

The advent of the Internet of Things (IoT) has paved the way for novel opportunities to 
enhance industrial processes through the integration and intricate management of sensor-
equipped machines and actuators [1, 2]. In process operations, the Industrial Internet of 
Things (IIoT) empowers manufacturers to gain a comprehensive view of every stage in the 
manufacturing process, facilitating real-time adjustments to ensure seamless production 
flow and mitigate the probability of defects and failures stemming from human errors, in 
accordance with principles of Industry 4.0 [3, 4]. The positive implications of smart 
manufacturing transcend the realms of production operation, equipment, and inventory 
optimization. Coupled with improved flexibility of highly specialized production adapted 
for rapid reconfiguration, this factor offsets the substantial costs associated with creating, 
operating, and ensuring the security of IIoT systems [5, 6]. 

This paper considers a task of development of the intuitive and efficient interface for the 

digital twin of the Industry 4.0 compliant production line. The paper is organized as follows. 

In Section 2, literature review is presented to substantiate the research topic. In Section 3 
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the methodology of study is described. In Section 4 the results of our study and the interface 

development are presented. Section 5 is devoted to conclusions.  

2. Related Works 

Digital twins (DTs), widely used in Industry 4.0 to model and control production processes 
[7-10], are virtual replicas of physical objects or systems that can be created and 
manipulated using augmented reality (AR) and virtual reality (VR) technologies [11-15]. 
These technologies facilitate the creation of realistic 3D models that can interact with the 
real world and offer a myriad of functionalities [12, 16].  

DTs have emerged as a distinctive hallmark of smart manufacturing [10, 17-21], offering 

multiple benefits. In the industrial domain, DTs can be harnessed to simulate, control, and 

optimize production processes, enable predictive maintenance of equipment [10, 22-24], 

and foster collaboration among workers [25]. 

The efficacy of augmented reality (AR) assistance frameworks in manufacturing 

workflows is contingent upon the underlying software and hardware capabilities, as well as 

the system's design attributes that facilitate the seamless integration of human operator 

performance across relevant use cases (e.g., assembly/disassembly, 

maintenance/inspection) [26-28]. Immersive visualization layered upon physical 

environments using AR enables industrial personnel to assimilate and manipulate digital 

interactivity with enhanced perceptibility and workflow integration [29]. Associated 

improvements in specialized employee training and developmental modes also arise [30, 

31], facilitated by tailored simulations of manufacturing operations, including emergency 

contingencies – executed safely in virtual factory environments [16, 32]. Through such 

immersive learning functionality, the AR-based platforms significantly augment contextual 

employee environmental awareness and competencies. Consequently, quantitatively fewer 

deviations can be projected, stemming from superior comprehension of workplace 

dynamics [33]. 

AR integration within production environments can enhance real-time recognition of 

hazardous situations for industrial personnel, enabling expeditious assessment of probable 

risk exposure from discrete processes. Prior investigations [34-36] delineate the capacity 

for AR to mitigate error-induced harm on the production floor through sequential 

occupational safety, equipment operation, and maintenance instruction mapped to precise 

spatial worksite coordinates. Additionally, the AR-enabled warning systems demonstrate 

applicability within construction verticals [37] for advance notification of violations of 

safety protocols before accidents occur. Workers will be able to determine risks with 

improved precision in comparison to conventional techniques, subsequently adjusting 

behaviors to amplify on-site protections [38].   

However, there are challenges that need to be addressed to fully realize the potential of 

AR application in production processes. One of the primary challenges is the presence of 

spatial inaccuracies in the binding to markers recognized by computer vision  [39]. AR 

systems may experience technical glitches, such as network issues, and sometimes have 

difficulties in interpreting complex scenarios, which may lead to incorrect information 

being provided to staff. Consequently, there is a risk of emergencies if employees rely solely 



on AR systems. Therefore, it is crucial not only to improve the tools themselves to support 

AR but also to carry out a continuous process of staff training, for whom these tools are 

merely one of many tools in the production environment [40]. Another issue with 

production-type AR systems is their potential to distract attention and partially block the 

field of vision, which can potentially lead to a violation of the safety of production processes. 

The solution to such challenges lies in further optimization of the user interface, active 

utilization of sound prompts, and the use of tools that will evaluate the priority of 

information delivery and ensure the balancing of the AR layer's saturation, enabling 

employees to remain focused on their primary tasks.  

The adoption of extended reality (XR) technologies in manufacturing offers numerous 

potential benefits and additional opportunities for producers and consumers [41] as a tool 

for simulations, computer-aided design of systems and components, professional training, 

and equipment maintenance. Machine learning algorithms can play a pivotal role [42] in 

resolving common challenges of marker-based AR by visual recognition of dynamically 

changing patterns. This will lead to a new quality of AR interfaces and create more realistic 

experiences with novel applications. However, this is contingent upon considerable 

improvement of user interfaces, as AR interface efficiency depends on the recognition of 

certain images and sounds, which can be easily compromised in production environments. 

 

3. Proposed methodology 

The effective integration of AR technology into smart manufacturing environments 
necessitates a meticulous design of the software platform architecture, with particular 
emphasis on the velocity and variety of data to be harvested and processed, as well as the 
resource constraints of the IIoT components embedded within the production equipment. 
Furthermore, the architectural considerations must account for the need to seamlessly 
integrate high-resource and high-load AR interface devices, while simultaneously 
addressing the potential cybersecurity risks arising from the processing of sensitive 
information within such a diverse and interconnected system. The synergistic convergence 
of AR technology and smart manufacturing practices demands a holistic approach that 
harmonizes the data processing capabilities, resource optimization, and security measures, 
thereby enabling the realization of an efficient industrial ecosystem. 

Metrological assessments should be conducted at various stages of the production 

process to ensure adherence to quality standards and technological specifications. The 

initial phase (00) involves shape and size verification of the workpieces through optical 

inspection utilizing camera systems and laser measurement sensor upon completion of 

metal processing operations. Subsequently, in the internal production silo (phase 01), the 

quantity and assortment of the workpieces are accounted for based on their weight and 

geometrical parameters. Welding procedures performed by a Kuka robotic system (phase 

03) necessitate the examination of weld seams through multispectral imaging and 

conductivity analyses. After the corrective press operation (phase 04), the workpieces are 

evaluated against a predefined template or through laser measurement sensor data. Upon 

completion of the painting process (phase 06) the quality assessment is done with use of an 

ultrasound meter, the finished products undergo visual inspection via camera imaging, and 

ready parts are laser marked (phase 07). Measurements and metrological assessment are 



to be performed after procedures 00, 03, 04, 06, however internal (phases 02, 08) and 

external logistics (phases 09, 10) may require additional measurements as well.  

 

Figure 1: Process diagram for the modeled production line. 

 

Compliance of the entire complex of measured characteristics with the technological 

production map is a prerequisite for achieving high product quality. In instances where a 

processed component deviates from the product specification, it is redirected to a heating 

stage (phase 05), after which the correction procedure (phase 04) is repeated iteratively 

until conformance is attained. Furthermore, the incorporation of laser-imprinted QR codes 

onto the products facilitates compliance with the European Digital Product Passport 

initiative, enabling access to product-related data essential for ensuring sustainability and 

circularity throughout the product lifecycle. 

The diagram depicted in Figure 2 illustrates data processing in the digital twin (DT) for 
a metal parts manufacturer. It comprises several blocks that group uniform processes or 
data processing hubs, with the aim of avoiding data processing centralization, restricting 
information propagation within and outside the DT, and ultimately enabling fast distributed 
decision-making and implementation of augmented reality (AR) tools for smart 
manufacturing. From the manufacturer's perspective, the most fundamental block is the 
digitized industrial platform. While the existing infrastructure simplifies further 
development, it also introduces complexities due to the necessity of ensuring system 
consistency, especially when legacy equipment interacts with novel components. In such 
scenarios, the presence of an architectural diagram becomes a critical requirement to 
promptly identify bottlenecks and resolve issues. 

The enterprise requirement for the DT was to enable on-site personnel training and 
enhance simulation capabilities through a personal AR assistant, justifying connection to a 
well-structured, expandable knowledge base, which may be an external component to the 
business entity but must be a part of the DT. To leverage the capabilities of AR-enabled 
human-machine interfaces optimally, a separate infrastructure and resources must be 



allocated for AR development. This block will be most effective if deployed on a cloud 
environment that can guarantee high computing power for processing AR images, coupled 
with elastic and cost-effective storage. While there is a debate regarding whether storing 
data in the cloud may compromise sensitive information and comply with national 
legislation, it should be emphasized that a hybrid data infrastructure can be designed (and 
subsequently improved) to mitigate such risks. Finally, for implementing the AR interface 
on the factory floor, a set of physical devices must be in place. 
 

Figure 2: Processing of data in AR-enabled industrial digital twin. 

 
With the architecture designed, the actual selection of edge electronic devices and 

software development necessitate the specification of a model for the product 

manufacturing cycle, which will serve as a tool for process optimization and a data flow 

model for cybersecurity purposes. From an operator's perspective, the modules of the 

digitized industrial platform and the simulation and training modules will be 

indistinguishable, provided that the training scenarios are highly realistic and encompass 

all possible operations, malfunctions, and that the AR processing device possesses sufficient 

computing power. This condition can be easily fulfilled by modern-day smartphones and 

tablet devices. 

In contrast to a conventional web-oriented digital twin, our workflow assigns equal value 

to physical and virtual assets, rendering them interchangeable for simulation purposes. This 

approach may offer enhanced flexibility and faster informed decision-making cycles. The 

AR layer will essentially enhance on-site information comprehension by incorporating 

scene capture and visual recognition. There exists an opportunity to avoid critical failures 

through an AI-assisted digital twin, whose improvement will be a natural extension of the 

present work. The reprocessing of AR layers is prompted by state changes, reflecting both 

the evolution of parameters and the outcomes of optimization. In this manner, the industrial 

digital twin empowers human operators to make well-informed real-time decisions. 



4. Results 

The present research is grounded in a holistic view of the industrial DT for Industry 4.0, 
encompassing models for manufacturing facility equipment, manufacturing processes, the 
product and its characteristics, interfaces for harvesting data and providing support for 
decision-making, quality assurance, and equipment maintenance [43-47]. The showcased 
metal processing enterprise, with its peculiar features and commonalities, allows for the 
design of a secure-by-design architecture if the data, energy, and material flows are 
considered on equal footing in the DT model [48]. 

 
Figure 3: Virtual models of the robotic welding apparatus (left) and the support structure 
(right). 

 

The proposed development workflow, as illustrated by Figures 3-4, enables intuitive, 
efficient and safe AR-enabled monitoring of the metal processing, allowing to represent all 
relevant data from industrial IoT sensors, as well as real-time data processed by DT, to 
optimize manufacturing processes and avoid hazards and malfunctions [4, 18, 49, 50]. The 
enterprise personnel will be supplied with accurate and relevant data for decision-making 
and predictive maintenance [22, 23]. This will allow management and personnel to focus 
on choosing and implementing innovative solutions for greater customer satisfaction and 
improved production efficiency. 

 

 
Figure 4: Window of the mobile application with the superimposed AR objects,  messages 
and alerts. 
 



It is known that when developing an effective interface for a digital twin of a production 
line compatible with Industry 4.0 to ensure natural and precise movements, imitating the 
functions of human hands, artificial neural networks are used in feedback loops to improve 
the coordination of movements, accuracy and speed of production processes [51]. 

The article [52] presents the results of a qualitative study of a neural network, including 
discrete and distributed time delays. A method for calculating the exponential decay rate 
for a neural network model based on differential equations with a discrete delay was 
developed and applied [53], [54]. 

When developing an effective interface for a digital twin of a production line compatible 
with Industry 4.0, the direction of using sensors [55], [56], in particular for monitoring the 
coordination of movements, accuracy and speed of production processes, is promising. An 
important characteristic [57] of different types of biosensors is stability [58], [59]. Scientific 
studies [60], [61] provide examples of modeling sensor responses. Numerical modeling in 
cyberphysical biosensor systems [62], [63] is important at the stage of their design. 
 

5. Conclusions 

Digital Twins with augmented reality interfaces can serve as a powerful tool for realizing 
human creativity in smart manufacturing, ensuring numerous advantages such as higher 
product quality, better energy efficiency, and more efficient predictive maintenance [10, 
16]. As an information technology, the implementation of AR interfaces holds great 
potential for industrial DTs. AR can provide more realistic visualizations of relevant data, 
enabling informed decision-making by human operators and facilitating communication in 
spatially distributed teams [64]. Consequently, digital twins for smart manufacturing, 
developed in accordance with the Industry 4.0 model, will be greatly enhanced by 
incorporating AR interfaces for human-machine interaction. The central challenge faced in 
DT development is the adequate implementation of connectivity between the physical 
facility and the DTs [4, 65]. 

For a characteristic example of a metal processing line with a high level of digitization, 

industrial data-based modeling allows for the design of an appropriate DT architecture. The 

paper emphasizes the importance and practical viability of the following workflow for DT 

design for Industry 4.0: industry-specific data analysis, manufacturing process modeling, 

human-machine interface design prior to the actual development and deployment of the DT. 

While each of these steps individually depends on the peculiarities of the manufacturing 

process, the industrial data platform design, specifications of embedded sensors and 

actuators, the general approach is quite universal, and none of the stages can be skipped. 
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