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Abstract 
The article developed an algorithm for identifying types of damage on the surface of sheet 
metal. Given that contour detection of elements based on classical methods, including surface 
scratches, is already part of modern digital microscopic systems, our approach simplifies the 
system by transitioning from image analysis or object detection to signal analysis. We achieve 
this by transforming coordinates to highlight the contours of surface scratches on metal, 
potentially revealing new informative features about their shape. 
In this study, by conducting Exploratory Data Analysis, we propose a novel approach for the 
classification of images of surface scratches using point-estimate based signal analysis instead 
of traditional image analysis techniques commonly utilized in contemporary digital microscopy 
systems due to contour detection being inherent in them. Our strategy offers significant benefits 
over standard procedures, including smaller datasets required during model training, simpler 
modeling processes, and potential identification of unanticipated informative characteristics 
related to scratch geometry. To attain these objectives, we implement a sequence of 
preprocessing steps followed by assorted mathematical functions intended to extract pertinent 
details regarding the scratches from the initial pictures. 

Keywords  
Algorithm, metal surface scratches, classification, coordinate transformation, methods of 

identification, selection of contours, centroid, software, algorithmic support. 1 

1. Introduction 

One of the important elements of modern metallurgical production is quality control of 

rolled metal, which allows to ensure high quality of products under the conditions of 
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continuous operation of units. Detection of metal surface defects is implemented taking 

into account machine vision. Cameras that provide high-speed video recording are used to 

monitor surface defects. The analytical part of the defectometric system detects and 

classifies existing defects and evaluates their admissibility from the point of view of 

current standards (for example, GOST 21014-88). The system photographs the surface of 

metal strips using high-speed cameras. The software recognizes possible surface defects 

and highlights them on individual images. Detected defects are tied to the length of the 

strip, this allows the VTK specialist to view the entire list of detected defects in each 

individual roll. New types of defects that can be detected in the production process are 

entered into a special defect classifier of the measurement system and are memorized. 

The main task of diagnostic systems in metallurgical production is to detect defects in 

time, which allows to determine the cause of their formation, which makes it possible to 

adjust the operation of the unit, eliminate the cause of the defect (correct the technological 

process) and/or reject finished products. 

Analyzing the known studies, we can come to the conclusion that there is currently a 

certain system of methods, models and means of detecting defects in the production of 

rolled products, methodological principles of their use have been developed, which allow 

solving a wide range of tasks. At the same time, the intensification of rolling causes the 

emergence of new types of defects and the need to improve the accuracy of diagnosing the 

known ones, which necessitates the development of new parameters and algorithms. 

2. Analysis of recent research 

Recent studies suggest that new perspectives have emerged in the field of classifying 

surface damage on sheet metal. Rather than relying on traditional image analysis methods 

commonly used in contemporary digital microscopy systems for contour detection, we 

propose a novel approach based on signal analysis. This transition simplifies the system 

by transforming coordinates to highlight the contours of surface scratches on metal, 

potentially revealing new informative features about their shape. 

The endeavor to achieve unparalleled accuracy in the classification of microscopic 

images of surface scratches epitomizes the unwavering commitment to advancing the 

frontiers of material science and enhancing the rigor of quality control processes. This 

sophisticated domain is anchored at the intersection of cutting-edge computational 

models, sophisticated machine learning algorithms, and intricate image processing 

techniques. Together, they forge a comprehensive framework that underpins the detailed 

analysis and recognition of surface anomalies. These imperfections, though typically 

imperceptible to unaided human vision, can significantly impact the functional integrity 

and aesthetic value of materials. 

In the realm of material science, the meticulous examination of surface scratches is not 

merely a technical challenge; it represents a critical step in safeguarding the structural 

integrity of materials subjected to rigorous use. By leveraging the power of advanced 

algorithms and computational resources, researchers and practitioners are able to dissect 

and interpret the complex patterns of scratches, translating microscopic aberrations into 

actionable data. This data is pivotal in informing the manufacturing process, guiding the 



refinement of materials, and ensuring that the final products meet the highest standards of 

quality and durability. 

Furthermore, the fusion of machine learning algorithms with image processing 

techniques has catalyzed a transformative shift in how surface scratches are classified. 

Through the iterative process of training and model optimization, these algorithms can 

learn to identify and categorize a vast array of scratch characteristics with remarkable 

precision. The integration of these technologies enables a dynamic and adaptive approach 

to scratch analysis, accommodating the ever-evolving demands of material science and 

quality assurance. 

In essence, the classification of microscopic images of surface scratches is more than a 

technical chalange that drives innovation and excellence in material science. As 

researchers continue to push the boundaries of what is possible, the classification systems 

will become increasingly sophisticated, offering deeper insights into the minute details 

that define the quality of materials. This ongoing quest not only enhances our 

understanding of material properties but also underscores the importance of precision 

and attention to detail in the broader context of scientific inquiry and industrial 

application. 

The pursuit of precision in the classification of microscopic images of surface scratches 

is not only a testament to the dedication to material science and quality control but also a 

reflection of the broader scientific endeavor to understand and manipulate the 

microscopic world. This field, which intricately intertwines advanced computational 

models, machine learning algorithms, and image processing techniques, stands as a 

beacon of interdisciplinary innovation, driving forward our ability to discern and 

categorize the minutest of surface irregularities. 

In the context of scientific research, the classification of microscopic images of surface 

scratches serves a dual purpose. Firstly, it is an essential component of quality control, 

ensuring that materials meet the stringent standards required for high-performance 

applications. Secondly, it contributes to the fundamental understanding of material 

behavior under various conditions, informing the development of new materials and 

treatments that are more resistant to wear and degradation. 

The realm of deep learning has not remained untouched by the quest for flawless 

classification. A comprehensive review of image-based surface defect detection using deep 

learning highlights the unique challenges and rapid advancements in this field. It 

underscores the potential of deep learning algorithms to revolutionize defect detection, 

offering insights into future research directions that could further refine these 

computational techniques [4]. 

The scarcity of defect data poses a significant hurdle in training robust models. 

Addressing this, Xiaopin Zhong and associates provide an overview of image generation 

techniques for industrial surface defects. Their work explores the synthesis of defect 

images through traditional and deep learning-based methods, establishing benchmarks 

that could serve as the foundation for models capable of learning from a rich tapestry of 

artificially generated yet realistic defect images [5]. 

At the forefront of this scientific endeavor is the application of transfer learning 

methods within convolutional neural networks (CNNs). Jing Zhang and colleagues have 



pioneered the use of pre-trained CNN models, applying fine-tuning strategies to classify 

microscopic laser engraving surface defect images with remarkable success. Their 

approach, which eschews the need for handcrafted features, not only enhances robustness 

but also achieves an impressive accuracy, demonstrating the power of deep learning in 

extracting and processing complex image features [6]. 

Complementing the computational prowess of CNNs is the innovative use of laser 

scattering techniques. Mohammad A. Younes has shed light on the potential of these 

techniques for the on-line detection and classification of surface defects. The scattered 

field produced by laser interaction with surface scratches offers a unique signature that 

can be harnessed for real-time inspection, providing a non-contact method that is both 

efficient and effective [7]. 

The development of specialized neural network architectures has also made significant 

strides. Wei Li and collaborators introduced WearNet, a new lightweight deep neural 

network tailored for automatic scratch detection. WearNet's design allows for a smaller 

model size and faster detection speed without compromising on accuracy, making it a 

valuable tool for industrial applications where time and computational resources are of 

the essence [8]. 

The role of image segmentation in scratch classification cannot be overstated, and here, 

the U-Net architecture has emerged as a key player. A comprehensive survey by Jian Wu et 

al. has chronicled the evolution of U-Net and its variants, highlighting the critical 

importance of segmentation in the overall classification process. The adaptability and 

effectiveness of U-Net in various scenarios underscore its significance in the field [9]. 

The current landscape of microscopic image classification is characterized by a 

convergence of diverse techniques. From the self-learning capabilities of deep 

convolutional networks to the precision of laser diagnostics and the innovation in network 

architectures, the field is witnessing a synergy that is pushing the boundaries of what is 

possible. Researchers and practitioners are continually refining these methods, ensuring 

that the classification of surface scratches remains not just a scientific endeavor but also a 

practical tool for quality assurance in manufacturing and beyond [10-12]. 

3. Main part 

In this study, we propose an algorithm for identifying types of damage on metal 

surface. Rather than relying on classical image analysis or object detection methods, we 

simplify the system by transitioning to signal analysis. Our approach involves 

transforming coordinates to highlight the contours of surface scratches on metal, 

potentially revealing new informative features about their shape. 

Since contour detection based on classical well-established methods, including surface 

scratch detection, is already an integral part of modern digital microscopic systems, our 

approach does not require significant system complexity through complex or hardware-

specific algorithms.  

The essence of our method lies in transitioning from image analysis or object detection 

to point-estimates-based signal analysis, which potentially contains new informative 

features about scratch shapes. 



Our innovative approach includes the following steps: 

Step 1: Image Preprocessing 

- Convert RGB images to gray scale to simplify edge detection and decrease the number 

of channels required for processing. 

- Apply Gaussian filtering to minimize noise levels and improve edge detection 

accuracy. This technique uses a weighted average blurring effect on neighboring pixels to 

smoothen out minor variations in brightness levels, allowing clearer identification of 

sharp transitions in light intensity indicative of possible fractures or structural anomalies. 

- Normalize the resultant matrix such that each value lies within the range of 0 to 1. 

This facilitates comparisons between different images as normalized data represents 

relative brightness rather than absolute luminance. 

Step 2: Binary Image using Otsu's Thresholding Technique 

Step 3: Remove unwanted pixels from binary images utilizing morphology functions to 

eliminate areas with less than 0.00015 times the total area's worth of pixels. 

Step 4: Perform Morphological Closing on Grayscale Images. The Morphological Close 

Operation combines a dilation and erosion process with identical structuring elements 

applied to both procedures. 

Step 5: Fill any empty spaces estimated based on the boundary perimeter. 

Step 6: Identify the borders and centers of mass (centroids) of each object. 

Step 7: Calculate distances from each centroid's location to its border in all directions 

(i.e., 360 degrees). 

Step 8: Extract time-invariant features known as Power Spectral Density (PSD). 

Step 9: Conduct further data exploration through Exploratory Data Analysis (EDA). 

For simplification, in this work we will consider several types of damage, in particular, 

we will consider three types, conditionally dividing them into: attrition, line, scratch. 

Figure 1 shows three types of damage. 
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а)                                                       b)                                                       c) 

Figure 1: Example of identified pseudocolored metal surface damage 

 

 
а)                                              b)                                              c) 

Figure 2: Example of converting contours of damage types 



Below is a high-level flowchart illustrating the steps of the proposed algorithm for 

identifying metal surface damage based on contour analysis of surface scratches: 

 
Figure 3: Proposed algorithm flow chart 

 

Let's consider the algorithm in more detail step by step. 
Step 1: Image Preprocessing 
Grayscale Conversion 
The initial phase of image preprocessing involves the conversion of RGB (Red, Green, 

Blue) images to grayscale. This is a critical step because it simplifies the subsequent edge 
detection process by reducing the complexity of the image data. In a grayscale image, each 
pixel represents a shade of gray, corresponding to the luminance of the original colors. 
The transformation from RGB to grayscale can be mathematically represented as: 

 

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵                                     (1) 
 

where Yis the luminance component, and R, G, B are the red, green, and blue color 
components, respectively. This formula is derived from the human eye’s sensitivity to 
different colors, with green being the most sensitive and blue the least. 

Gaussian Filtering 
After the conversion to grayscale, Gaussian filtering is applied to the image. Gaussian 

filtering is a smoothing technique that reduces noise in an image. It is named after the 
Gaussian (normal) distribution, which is used to create a convolution matrix (kernel) 
applied to each pixel and its neighbors in the image. The Gaussian function is given by: 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2                                             (2) 

 

where x and y  are the distances from the origin in the horizontal and vertical axes, 
respectively, and σ  is the standard deviation of the Gaussian distribution. The effect of this 



filtering is to blur the image, which helps in reducing the impact of noise on edge 
detection. 

Normalization 
The final step in the preprocessing stage is normalization. Normalization adjusts the 

range of pixel intensity values. The purpose of normalization is to bring the intensity 
values within a standard range, 0 to 1. This is important for comparing images captured 
under different conditions and lighting. The normalization can be expressed as: 

 

𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
                                            (3) 

 

where Inorm is the normalized intensity, I is the original intensity, Imin and Imax are the 
minimum and maximum intensities in the image, respectively. 

By performing these steps, the image is prepared for further analysis, such as 
thresholding and feature extraction, which are crucial for the classification of surface 
scratches. The preprocessing not only simplifies the data but also enhances the features 
that are essential for accurate classification. 

Step 2: Binaration (thresholding) Image using Otsu’s Thresholding Technique 
Thresholding is a fundamental technique in image processing, particularly useful for 

segmenting images into different regions. Among other (Global Thresholding, Adaptive 
Thresholding, Entropy-based Thresholding, Multiple Thresholding) we applied, Otsu’s 
Method is outstanding, which become stand-of-the-art method. 

The key idea is to find the threshold value ( t ) that minimizes the weighted within-class 
variance, which is equivalent to maximizing the between-class variance. This can be 
mathematically represented as: 

 
σB

2 (t) = ω0(t)ω1(t)[μ0(t) − μ1(t)]2                                           (4) 
 

where:  σB
2 (t) is the between-class variance;  ω0(t) and  ω1(t) are the probabilities of the 

two classes separated by the threshold t ; μ0(t) and μ1(t) are the class means. 

The algorithm exhaustively searches for the threshold that maximizes 𝜎𝐵
2(𝑡). 

The implementation of Otsu’s method involves computing the histogram of the 
grayscale image and then calculating the probability of each intensity level. The 
cumulative probability and cumulative mean are also computed, followed by the between-
class variance for each intensity level. The optimal threshold is the intensity level that 
maximizes the between-class variance. 

The advantages of using Otsu’s method for creating binary images are: - Automatic 
threshold selection: It does not require manual intervention, making it suitable for 
automated systems. - Robustness: It is relatively unaffected by the overall brightness of 
the image, which is beneficial when processing images with varying illumination 
conditions. - Efficiency: It can be implemented efficiently, which is critical when dealing 
with large datasets or real-time applications. 

The resulting binary image after applying Otsu’s thresholding is a simplified 
representation where the pixels are assigned a value of 0 or 1. This binary representation 
is crucial for the subsequent steps in our approach, as it lays the groundwork for 
morphological operations and feature extraction. 

Step 3, 4, 5: Morphology Image Processing 



In step 3 of our approach, we utilize morphology functions to remove unwanted pixels 
from binary images. Morphology refers to the study of geometric structures and their 
properties, particularly as they relate to mathematical morphology, which deals with the 
spatial structure of objects by examining how they change under various transformations. 
In this context, morphological operations are applied to binary images to modify their 
shape, size, or position without affecting their logical content. 

Morphological closing operation, also called reconstruction or hitting, is one of these 
operations. It involves combining dilatation and erosion processes with identical 
structuring elements applied to both operations. A structuring element is a small mask or 
template used to manipulate an image at specific locations by shifting it over the original 
image. 

Dilatation is a morphological transformation that enlarges the objects in an image 
while preserving their shape. It fills holes inside the foreground region (the white portion) 
of an image with background values (black), thereby thickening the boundaries of those 
regions. Erosion, conversely, reduces the size of objects in an image by removing pixels 
near the edges. It shrinks the boundaries of objects, leaving them thinner but more 
distinct. 

Closing is the combination of dilation followed immediately by erosion. It helps to fill 
narrow gaps or thin lines that may arise during segmentation, thus improving connectivity 
among adjacent objects. By applying a close operator to a binary image, we smooth out its 
boundary and enhance the contrast between objects and the background, making it easier 
to analyze the resulting pattern. 

Here, we apply the morphological closing operation to grayscale images instead of 
binary ones because some scratches might have weak contrast against the substrate, 
leading to low signal-to-noise ratios. In such cases, the gray level intensities of scratches 
might fall below the threshold set during binarization, causing false negatives. Applying 
closing first increases the pixel intensity in shallow areas around the scratch boundaries, 
effectively boosting the contrast before converting back into binary format. 

Aside from increasing the contrast and filling narrow gaps, another advantage of 
implementing morphological closing is its ability to reduce salt-and-pepper noise, which 
occurs randomly across the image. Salt-and-pepper noise appears as isolated black and 
white specks scattered throughout an otherwise homogeneous background. These spots 
often cause problems during segmentation, especially if the noise level exceeds the 
contrast difference between the objects and the background. Morphological closing can 
mitigate salt-and-pepper noise by merging nearby black and white specks together, 
creating larger, more cohesive patches. 

Employing morphological closing techniques enhances image quality by eliminating 
unwanted pixel artifacts arising from noise and other irregularities. As a result, we achieve 
improved segmentation outcomes and more reliable feature extractions during 
exploratory data analysis. Therefore, incorporating morphological closing into our 
innovative approach serves as a crucial stage that amplifies the effectiveness of 
subsequent stages, making our proposed framework superior to traditional methods 
based solely on classical well-established methods for contour detection. 

Morphological closing is defined as the dilation of an image A by a structuring element 
B, followed by erosion of the resulting image by the same structuring element. This can be 
represented as: 

 
Closing(A, B) = Erosion(Dilation(A, B), B)                                       (5) 



 
The dilation of A by B, denoted A ⊕ B, is defined as: 
 

A ⊕ B = ⋃
b∈B

Ab                                                     (6) 

 
where Ab is the translation of A by b. In simpler terms, it’s the set of all displacements 

of B that intersect with A. 
The erosion of A by B , denoted A ⊖ B, is defined as: 
 

A ⊖ B = ⋂
b∈B

A−b                                                    (7) 

 
where A−b is the translation of A by −b. It’s the set of all points x such that B, translated 

by x, is contained in A. 
For grayscale images, the operations are slightly different. The dilation of a grayscale 

image f by a structuring element B is given by: 
 

(f ⊕ B)(x) = max
b∈B

{f(x − b)}                                              (8) 

 
And the erosion is given by: 
 

(f ⊖ B)(x) = min
b∈B

{f(x + b)}                                              (9) 

 
Thus, the closing of a grayscale image f by B can be represented as: 
 

Closing(f, B) = (f ⊕ B) ⊖ B                                           (10) 
 
This operation enhances the contrast and fills in the gaps, as described, making it easier 

to segment and analyze the scratches in our images. 
Step 6, 7: Identification of Borders and Centers of Mass (Centroids) 
Step 6, 7 of our approach, focusing on the identification of borders and centers of mass 

(centroids) of each object in the context of surface scratch analysis. 
The identification of borders and centers of mass, or centroids, is a pivotal step in the 

analysis of microscopic images of surface scratches. This step is crucial for understanding 
the geometric properties of the scratches and for subsequent feature extraction processes. 

Centroid Identification 
The centroid of an object in an image is the geometric center, and it’s a fundamental 

characteristic used in various analyses and in most cases is already already an integral 
part of modern digital microscopic systems. Mathematically, the centroid C of a shape is 
the arithmetic mean position of all the points in the shape. For a discrete set of points 
{xi, yi} representing the object in a binary image, the centroid coordinates (Cx, Cy) are 

calculated as: 
 

Cx =
∑ xi

n
i=1

n
, Cy =

∑ yi
n
i=1

n
                                                 (11) 

 
where n is the number of pixels in the object. 



In the context of surface scratches, identifying the centroid allows us to analyze the 
scratch’s orientation, length, and other morphological features relative to its central point. 

Border Detection 
Border detection involves identifying the outermost edges of objects within an image. 

This is typically achieved through edge detection algorithms that look for discontinuities 
in pixel intensity. For surface scratches, accurate border detection is essential for 
determining the exact shape and size of the scratches. 

Once the borders are detected, we can represent the boundary of a scratch using a set 
of contour points {(xj, yj)}. These points are ordered and form a closed loop around the 

object. 
Centroid to Border Distance Measurement 
With the centroids and borders identified, we can measure the distance from the 

centroid to the border in all directions for 360 degrees. This radial distance function R(θ) 
can be expressed as: 

 

R(θ) = √(xj − Cx)
2

+ (yj − Cy)
2

                                         (12) 

 
where (xj, yj) are the coordinates of the contour points closest to vector oriented in n-th 

integer degree direction, and θ is the angle between the centroid-to-border line and a 
reference axis, typically the horizontal axis of the image. 

This radial distance function provides a profile of the scratch shape and is particularly 
useful for characterizing irregularities and asymmetries in the scratch morphology. 

Feature Extraction from Centroid and Border Information 
The information obtained from the centroids and borders serves as a basis for 

extracting various features that describe the scratches. These features can include: 
Area: Calculated by integrating the radial distance function over the entire contour. 
Perimeter: Sum of the distances between consecutive contour points. 
Circularity: A measure of how close the shape is to a perfect circle, calculated using the 

area and perimeter. 
Aspect Ratio: The ratio of the scratch’s length to its width, providing insights into its 

elongation. 
Orientation: The angle between the major axis of the scratch and a reference axis. 
These features are instrumental in classifying scratches and understanding their 

impact on the material’s surface properties. 
The identification of borders and centroids is a foundational step in the classification of 

microscopic images of surface scratches. It enables the extraction of meaningful features 
as well as “time-invariant” features that are critical for the accurate characterization of 
scratches. By transitioning from traditional image analysis to signal analysis, we can 
uncover new informative features that enhance our understanding of scratch shapes and 
their implications. 

Step 6 and 7 is essential point what highlights the importance of precise geometric 
analysis in the broader context of surface scratch classification and sets the stage for 
further data analysis and ML model training. 

 
 
 



4. Discussion of obtained results 

The developed algorithm provides the following advantages: 
The ability to do without large databases, but to use classic time-tested methods. 
After feature extraction, my method eliminates the need for complex AI-based 

approaches and everything comes down to simple AI-based methods. 
The transition from image analysis or Object Detection to the analysis of signals that 

potentially contain new, previously unknown, informative signs about the shape of 
scratches. 

1. No need for large databases as traditional methods can still be used. 
2. After feature extraction, simpler AI-based approaches become sufficient since 

complicated AI-based approaches are no longer necessary. 
3. Transitioning from analyzing images or Object Detection to analyzing signals that 

may hold newly discovered informative features regarding scratch shapes.  
This shift towards signal analysis has several benefits, including: 
a) Reduction in data requirements as traditional methods may suffice with fewer 

examples needed for training models. 
b) Simplified modeling processes due to less complex AI-based approaches required 

after feature extraction. 
c) Potential discovery of novel informative features related to scratch shapes through 

signal analysis. 
In our recent study, we propose a novel approach for the analysis of scratch 

morphology using machine learning techniques. Unlike traditional image processing 
methods such as contour detection and segmentation, which have been integrated into 
most electronic microscope systems, our approach focuses on extracting information from 
the extracted contours themselves. 

By focusing on the extracted contours, we transition from image processing to signal 
analysis, a shift that holds the promise of uncovering novel insights into the nature of 
surface scratches. This perspective is particularly advantageous for scratches that exhibit 
complex shapes or orientations [13], as the signal representation can capture intricate 
details that may be challenging to discern from visual inspection alone. 

One of the key strengths of our approach lies in its robustness to rotational variations. 
By employing time-invariant features, such as the Power Spectral Density (PSD), our 
algorithm becomes insensitive to the orientation of the scratches. 

Furthermore, our approach is remarkably adaptable and hardware-agnostic. Unlike AI-
based techniques that often necessitate large datasets and specialized hardware, our 
method is inherently ML-based and relies on classical algorithms that have been refined 
over decades. This not only reduces the risk of overfitting but also ensures that our 
algorithm can be readily integrated into existing microscopy systems without extensive 
modifications. 

However, it should be noted that while our current research has shown promising 
results, further investigation is required to establish the method's generalizability across 
diverse datasets and different types of materials. Nonetheless, given its efficiency, 
simplicity, and versatility, we believe that our proposed technique represents a promising 
avenue for future developments in the field of nanotechnology and material science. 

 
 



Conclusions 

In this paper, we present a novel approach for the classification of microscopic images 
of surface scratches through exploratory data analysis (EDA), focusing specifically on 
point-estimates-based signal analysis instead of traditional image analysis techniques 
commonly employed in modern digital microscopy systems, since contour detection is 
already an integral part of it. Our method provides several advantages over conventional 
approaches, namely requiring smaller datasets during model training, enabling more 
straightforward modeling processes, and potentially identifying previously undiscovered 
informative features relating to scratch shape. 

To achieve these goals, we have implemented a series of preprocessing stages followed 
by various mathematical operations aimed at extracting relevant information about the 
scratches from the input images. These stages include converting color images into 
grayscale representations, applying Gaussian filters to reduce noise levels, normalizing 
pixel values, thresholding, removing isolated regions, performing morphological closing, 
filling empty gaps, calculating centroids, finding their respective boundaries, measuring 
distances from those locations to adjacent edges, and finally computing power spectral 
densities (PSDs). We then employ EDA techniques to analyze these PSD values to identify 
patterns and relationships among them, ultimately leading to potentially improved scratch 
classification capabilities. 

Additionally, let us show the distances (minimum, median, maximum) between 
centroid coordinates of clusters in the first three principal component analysis (PCA) 
components: minimum 0.0028, median 0.019, maximum 0.0281. These measures provide 
further insight into the distribution of the dataset in the reduced dimensional space 
obtained via PCA transformation. 

In future research, we plan to further develop the concept of treating scratch contours 
as signals. This entails exploring additional time-domain and spectral-domain features, 
such as Root Mean Square (RMS) Energy, Peak Amplitude, Crest Factor, Silence Ratio, 
Temporal Centroid, Log Attack Time, Spectral Centroid, Spectral Roll-off, Spectral Flux, 
Chroma Features, Harmonics-to-Noise Ratio, and Entropy of Energy. By incorporating 
these features, we aim to enhance the discriminatory power of our classification system 
and improve its ability to handle a diverse range of scratch patterns and complexities. 

Furthermore, we will continue to investigate the potential of signal analysis for scratch 
characterization, including the development of novel algorithms tailored to this unique 
perspective. We believe that by treating scratches as signals, we can not only improve 
classification accuracy but also gain deeper insights into the nature and behavior of 
surface imperfections. This knowledge will have far-reaching implications for material 
science, manufacturing, and quality assurance, ultimately leading to the development of 
more durable and reliable materials. 
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