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Abstract 
In this work, various combinations of artificial neural networks (CNN, LSTM, CNN-LSTM) are 
investigated for the analysis of outgoing traffic from IoT devices for the purpose of traffic 
classification and real-time attack detection. The focus is on the effectiveness of various 
combined approaches to data processing and analysis in IoT networks. The work uses 
KDDCup99, NSL-KDD, UNSW-NB15, WSN-DS and CICIoT2023 datasets for training and testing 
networks. To assess the reliability of the work of various algorithms, calculations of accuracy, 
specificity, sensitivity and other metric indicators determining the effectiveness of the proposed 
solutions were carried out. 
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1. Introduction 

The Internet of Things (IoT) has a wide variety of applications, which makes it unique 

among other types of computer networks. IoT networks can be built from devices of 

different types, characterized by different hardware, functionality and topology. 

Communication protocols can also vary from one implementation to another. Widespread 

use of IoT includes smart homes, intelligent transportation, and other areas of modern life. 

However, the incompatibility of security measures can create vulnerabilities that require 

special solutions to protect IoT networks from attacks. Intrusion detection can be an 

effective defense, but needs continuous improvement to ensure reliability. Innovations in 

IoT technologies are driving data management strategies, but also increasing the need for 
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security. One of the key challenges is the heterogeneity of the IoT network, which makes it 

difficult to deploy comprehensive security systems. Topology, communication protocols, 

and hardware can vary even within the same network, which increases the attack surface. 

The ever-changing nature of IoT networks requires the creation of intrusion detection 

systems that are effective in real-time and robust to changes in the network. 

In [1], an intrusion detection model is considered, which combines the advantages of 

spiking neural network (SNN) and convolutional neural networks (CNN) with the help of 

rational algorithm design. This model allows efficient use of resources, which ensures 

adaptability to limited computing capabilities. 

In [2], the authors propose the use of a multi-scale convolutional feature fusion 

network augmented with a Convolutional Block Attention Module (MCF-CBAM) for IoT 

traffic classification. Their approach includes the following features: parallel convolution 

obtains spatial characteristics from traffic data; the attention module mutes less 

informative features while boosting the most discriminative ones to provide focused 

learning on key features. 

The authors of [3] propose a sequential approach to feature selection using an 

optimized extreme learning machine (ELM) with a support vector machine (SVM) 

classifier, where a genetic algorithm (GA) is used to optimize the ELM weights. The 

optimized data set is used to classify traffic for intrusion detection in an IoT environment. 

In [4], the authors demonstrate the synthesis of Decisive Red Fox (DRF) optimization 

with a machine learning algorithm. Based on the optimized characteristics, the DBRF 

classification process is used to identify and classify intrusion types. 

The authors of [5] propose an intrusion detection system and configuration of dynamic 

rules SecureFlow for IoT environments. This implementation is based on knowledge and 

data, forming a two-level system. An environment with Software-defined Networking 

(SDN) support allows you to configure rules according to detected incidents. 

In [6], a hybrid deep learning model is proposed for detecting botnet attacks in IoT 

networks. The two-stage hybrid model analyzes the network traffic data obtained from 

three parallel sensors and detects the simultaneous characteristics of the attack traffic. 

Features are extracted using the long-term memory-based autoencoder (LSTM-AE) using 

the NCC-2 Simultaneous Botnet Dataset. LSTM-AE is trained on data from multiple sensors 

to model temporal characteristics. The type of attack is identified using multi-class 

classification using an ensemble learning algorithm with extreme gradient boosting 

(XGBoost). 

G. Parimala and R. Kayalvizhi [7] proposed a hybrid deep learning model (HDLM) based 

on IoT device intrusion detection and prevention, where important features are taken 

from the KDDCup99 and NSL-KDD datasets using a forward feature selection algorithm 

(FFSA). . The features are then fed into the HDLM classifier. The proposed HDLM is a 

combination of Ellman Recurrent Neural Network (ERNN) and Subtraction Based 

Optimizer (SABO). 

The authors of [8] analyzed three different models for intrusion detection in the 

Industrial Internet of Things (IIoT) network using deep learning architectures: CNN, long-

short-term memory (LSTM), and a combination of CNN-LSTM, which were created based 

on their hybrid combination. According to the obtained results, the CNN-LSTM model 



demonstrated higher accuracy for the binary and multi-class classification processes in 

the UNSW-NB15 and X-IIoTID datasets compared to the other two models used in this 

study, namely CNN and LSTM. 

[9] presents an IDS architecture based on CNN and LSTM algorithms. The research 

result of CNN-LSTM compared to CNN and machine learning models for both balanced and 

unbalanced data showed better performance in detecting IoT security attacks using the 

UNSW-NB15 dataset. 

Shreeya Jain et al. [10] demonstrate a hybrid IoT intrusion detection model by 

combining Deep Learning (DL), CNN, and LSTM techniques to achieve better attack 

detection accuracy. The model is trained and evaluated using two different datasets, 

namely UNSW-NB15 1 and NSL-Botnet 2. 

[11] proposed a DL model for detecting anomalies in IoT networks using a recurrent 

neural network (RNN). LSTM, Bidirectional LSTM and Gated Recurrent Unit (GRU) 

methods are used to implement the proposed model. A hybrid DL model using CNN and 

RNN networks was proposed. A DL model for binary classification using LSTM, BiLSTM 

and GRU based approaches was also proposed. The described deep learning models are 

tested using NSLKDD, BoT-IoT, IoT-NI, IoT-23, MQTT, MQTTset and IoT-DS2 datasets. 

[12] presents a hybrid intrusion detection model (HIDM) that uses Optimized CNN-

LSTM (OCNN-LSTM) and Transfer learning (TL) for IIoT networks. The proposed model 

uses an optimized CNN using advanced CNN parameters using the Gray wolf optimizer 

(GWO) method, which tunes the CNN parameters and helps to improve the prediction 

accuracy of the model. The transfer learning model helps train the model and transfers the 

knowledge to the OCNN-LSTM model. The TL method improves the learning process by 

obtaining the necessary knowledge from the OCNN-LSTM model. Classification analysis 

was performed on several classes of different datasets (ToN-IoT and UNW-NB15). 

[13] proposes an intrusion detection system (IDS), namely SafetyMed, which combines 

CNN and LSTM to defend against intrusion from sequential and grid data. SafetyMed is an 

IDS that protects Internet of Medical Things devices from malicious data and persistent 

network traffic. 

In [14], the DL model for detecting intrusions into the IoT network is described. To 

obtain the sequence properties of the data stream through CNN, it combines a control 

mechanism with an LSTM network. The paper used a feature selection strategy to train the 

classifiers on the most significant correlation features while avoiding lost results during 

training to obtain the best results. The proposed strategy focuses on binary classification 

using DL methods. 

In the considered works, machine learning methods are used, which mostly give a good 

result, but they are aimed at the analysis of incoming traffic to the network (Fig.1). When 

changing the type of attack, the class of attacked devices, the level of detection of attacks 

decreases significantly [15,16]. 



 
Figure 1: Classic traffic analyzer 

 

One of the reasons for attacks on IoT systems is to create a network of bots or third-

party controlled devices to carry out large-scale attacks on government and commercial 

systems. 

In order to prevent the spread of an attack from the network, we will represent the 

internal network as a black box and analyze the outgoing traffic in order to detect attacks 

from the system (Fig.2). 

 
Figure 2: Proposed traffic analyzer 

 

The analysis carried out in [1-14] shows that CNN, LSTM and a combination of the 

specified neural networks show the best result for investigating traffic and detecting 

malicious actions related to IoT. Works [15,16] show the expediency of analyzing the 

outgoing traffic. 

Therefore, it is advisable to conduct a study on the use of CNN, LSTM and their 

combinations on different data sets to detect malicious actions from IoT devices. 



2. Data sets for training neural networks 

The standard datasets KDDCup99, NSL-KDD, UNSW-NB15, WSN-DS and CICIoT2023 were 

used in this study. These sets make it possible to evaluate the effectiveness of the 

developed model for detecting malicious traffic in the network. 

The KDDCup99 dataset contains recordings from real network traffic, including normal 

traffic and various types of attacks. It is one of the most widely used datasets for 

evaluating anomaly detection techniques. Since 1999, KDDCup99 has been the most 

widely used dataset for evaluating anomaly detection methods. Based on data collected by 

the DARPA program, which is based on approximately 4 gigabytes of tcpdump data from 

seven weeks of network traffic and approximately 5 million connections. The test data for 

a two-week period is about 2 million connection records. The dataset consists of 4,94,021 

data points and 42 features labeled as normal or attacks, with only one specific attack 

type. It is categorized as a type of attack. Attacks are classified into one of the following 

four categories: Denial of Service(DoS)attacks, User-to-Roo (U2R), Remote tolocal(R2L) 

attacks, Probingattacks. 

The NSL-KDD dataset is an improved version of the original KDDCup99 dataset. It was 

designed to address some of the limitations and shortcomings of the KDDCup99 dataset in 

the field of intrusion detection. The dataset was specifically designed to evaluate intrusion 

detection systems, particularly in the context of network security. 

The UNSW-NB15 dataset consists of raw network packets. The dataset contains nine 

types of attacks, including phaser, analysis, backdoor, DoS, exploit, general purpose, 

reconnaissance, shellcode, and worm. The dataset consists of 2,540,044 records stored in 

four CSV files, and the training set and test set contain 175,341 and 82,332 records, 

respectively. This dataset is used for a variety of research activities related to intrusion 

detection, network forensics, privacy protection, and threat analysis in various systems such 

as networked systems, Internet of Things (IoT), SCADA, Industrial IoT, and Industry 4.0. 

WSN-DS is a data set specially created for detecting attacks in wireless sensor networks 

(Wireless Sensor Networks, WSN). The ns-2 simulation environment was used for data 

collection. The dataset includes 23 features obtained using the LEACH routing protocol 

that describe the state of each sensor node in the wireless network. The WSN-DS dataset 

consists of 374,661 tests divided into four attack types. The tests are divided into five 

different classes: Blackhole, Grayhole, Flooding, TDMA and Typical, with four of them 

dealing with different types of DoS attacks. The dataset tests are divided into five different 

classes, four of which are related to different types of DoS attacks. 

The CIC IoT 2023 dataset is a real-world testbed for large-scale Internet of Things (IoT) 

attacks. Its primary goal is to provide an expanded and novel IoT attack dataset to support 

the development of security analytics applications in real-world IoT environments. To 

achieve this goal, 33 attacks were performed on an IoT topology consisting of 105 devices. 

These attacks were divided into seven categories, including DDoS, DoS, Recon, Web 

Attacks, Brute Force, Spoofing and Mirai. All attacks were performed by malicious IoT 

devices that target other IoT devices. 

Preparing datasets for ML involves several important steps to ensure that the data is 

appropriate for effectively training a model to detect malicious network traffic (Fig.3). In 



the first step, a raw data set was loaded into the system. The data set then underwent a 

coding step, which was necessary to convert the categorical variables into a format 

understandable by the model. The data were then normalized to ensure that the 

dimensionality of the input data did not negatively affect the learning process. The next 

step was to select features. At the end, the dataset is split into training and testing sets. 

 
Figure 3: Preparing datasets 

The KDDCup99 dataset includes 5209460 records. For training neural networks, 80% 

of the records from the total data set, namely 4167568 records, were selected. There are 

20% of records left for testing, namely 1041892 records. 

The NSL-KDD dataset consists of 5209458 records. 4,898,431 records are used for 

training, of which 3,925,650 records are marked as malicious and 972,781 records are 

marked as normal, reflecting real-world scenarios where malicious traffic often exceeds 

normal traffic. The test set consisted of 311027 records, where 250436 records represent 

attacks and 60591 records represent normal interactions, creating a realistic challenge for 

ML. 

The UNSW-NB15 data set is smaller compared to previous ones, consisting of 257,673 

records. 175341 records from the dataset were used for training. The test set contained 

82332 records in total, where the majority of interactions, namely 78832 records, are 

malicious and 3500 records of normal traffic. It should be noted that the data sets are not 

balanced in terms of the number of records of normal and malicious traffic, so the 

accuracy parameter estimate is not informative. 

The WSN-DS dataset, which is designed for wireless sensor networks, contains 374,661 

records. They were divided by 60% for training, resulting in 224,796 records, of which 

204,039 were identified as normal traffic. For testing, 40% was used, namely 149865 

records in total, of which 136027 were identified as normal traffic. It should be noted that 

the data sets are not balanced in terms of the number of records of normal and malicious 

traffic, so the accuracy parameter estimate is not informative. 

The CICIoT2023 dataset focuses on malicious activities and contains a total of 

45588384 malicious entries, while 1098195 entries are identified as normal traffic. 

36470707 malicious records and 878556 normal traffic records were selected for training, 

which is 80% of the total number of malicious records. 9117677 malicious records and 

219639 records of normal traffic were used for testing. 

3. Neural networks for analyzing outgoing traffic from IoT 

The CNN network is effective in analyzing network traffic because it excels at 

automatically detecting and learning complex data patterns. The working principle of CNN 

for network traffic analysis: 

1. Removal of functions. 

2. Activation functions. 



After each convolution operation, an activation function is applied to introduce 

nonlinearity. The ReLU (Rectified Linear Unit) activation function for ML was used due to 

its efficiency and computational simplicity. 

𝑓(𝑥) = max(0, 𝑥) (1) 

ReLU is fast because it replaces all negative values with zero, thereby simply "turning 

off" some neurons, which helps create sparse networks and potentially speeds up 

computation. 

3. Combining layers. 

4. Fully connected layers. 

5. Initial level. 

The output layer uses a softmax activation function to classify incoming network traffic 

into categories such as normal and malicious. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑗
 

(2) 

In general, the algorithm for preparing the CNN-LSTM neural network is shown in the 

figure 4. The main steps are: data preparation and processing, training of the CNN-LSTM 

network model, and evaluation of the test results using the confusion matrix. 

 
Figure 4: Algorithm for preparing the CNN-LSTM neural network 

 

The figure 5 illustrates a neural network architecture that combines CNN and LSTM. 

Input values that have been preprocessed are received at the Input input. C1, C3 are 

convolutional layers that are responsible for feature extraction, highlight important 

characteristics in the data. S2 and S4 are pooling levels, specifically maximum size pooling 

levels that follow some convolution layers. Pooling layers reduce the spatial dimensions of 

the input volume for the next convolutional layer, which reduces the number of parameters 

and computations in the network, thereby controlling reconfiguration. GlobalMaxPool is a 

global maximum pool that further reduces each feature map to a single number by taking 

the maximum value of the feature map sizes while keeping the most significant feature 

response. This helps reduce the dimensionality of the data before passing it to the LSTM 

layer, allowing the network to efficiently process data sequences. Next, the data is passed to 

the LSTM layer. L6 is a fully connected layer, which means that every neuron in this layer is 

connected to all neurons in the previous layer. This layer combines the features obtained by 

CNN and LSTM to make a decision. Softmax output is the last output level with an activation 

function. 



 
Figure 5: A neural network architecture that combines CNN and LSTM 

4. Evaluation of the reliability of the use of neural networks 

To assess the reliability of the developed system, a confusion matrix was used (Fig.6). True 

Positive (TP) indicates the number of correctly identified malicious network traffic flows. 

True Negative (TN) indicates the number of correctly identified normal network traffic 

flows. False Positive (FP) is the number of times the system detects malicious traffic, even 

though the traffic is normal. False Negative (FN) the number of system triggers where the 

traffic flow was classified as normal even though it was malicious. The indicated results 

allow the calculation of the following performance evaluation indicators: accuracy, 

precision, recall, specificity and F-score. 

 
Figure 6: Confusion matrix 

 

Accuracy allows you to calculate the ratio of the total number of valid hits for the entire 

data set: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(3) 

Precision measures how accurately the system classifies objects or events as malicious 

when it detects them as such. This metric is calculated as the ratio of correctly identified 



malicious objects or events to all objects or events that the system identified as malicious: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4) 

Recall determines the system's ability to detect all existing malicious sessions without 

missing any of them. It indicates how effectively the system responds to real threats: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5) 

Specificity is a metric that measures the effectiveness of a system in correctly 

identifying benign objects or events. It is defined as the ratio of the number of correctly 

identified non-malicious objects or events to the total number of non-malicious objects or 

events: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(6) 

The F-score represents a weighted average of the true positive result and accuracy, 

where: 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

(7) 

The results of testing CNN, LSTM and CNN-LSTM networks with different data sets are 

shown in table (1-3). 

 

 

Table 1 

Quality metrics for the CNN network 

CNN TP TN FP FN 

KDDCup99 654812 258258 60769 68053 

NSL-KDD 235840 43835 15279 16073 

UNSW-NB15 3297 78035 497 503 

WSN-DS 12370 129344 3947 4194 

CICIoT2023 8251354 158392 439470 488087 

Table 2 

Quality metrics for LSTM networks 

LSTM TP TN FP FN 

KDDCup99 674142 264400 45675 57675 

NSL-KDD 239411 42935 13364 15317 

UNSW-NB15 3341 78192 364 435 

WSN-DS 12425 131976 2344 3120 

CICIoT2023 8292540 169734 457622 417420 



Table 3 

Quality metrics for CNN-LSTM networks 

CNN-LSTM TP TN FP FN 

KDDCup99 718514 234268 42756 46354 

NSL-KDD 244493 38721 13874 13939 

UNSW-NB15 3358 78542 197 235 

WSN-DS 13572 134280 935 1078 

CICIoT2023 8741953 203457 154384 237507 

Performance indicators for CNN, LSTM, and CNN-LSTM networks when training and 

testing using KDDCup99, NSL-KDD, UNSW-NB15, WSN-DS, and CICIoT2023 datasets are 

shown in Table 4. 

 

Table 4 

Performance indicators 

Data set Network type Acccuracy Precision Recall Specificity F-score 

KDDCup99 

CNN 0,88 0,92 0,91 0,12 0,91 

LSTM 0,9 0,94 0,92 0,10 0,93 

CNN-LSTM 0,91 0,94 0,94 0,09 0,94 

NSL-KDD 

CNN 0,90 0,94 0,94 0,10 0,94 

LSTM 0,91 0,95 0,94 0,09 0,94 

CNN-LSTM 0,91 0,95 0,95 0,09 0,95 

UNSW-NB15 

CNN 0,99 0,87 0,87 0,01 0,87 

LSTM 0,99 0,90 0,88 0,01 0,89 

CNN-LSTM 0,99 0,94 0,93 0,01 0,94 

WSN-DS 

CNN 0,95 0,76 0,75 0,05 0,75 

LSTM 0,96 0,84 0,80 0,04 0,82 

CNN-LSTM 0,99 0,94 0,93 0,01 0,93 

CICIoT2023 

CNN 0,90 0,95 0,94 0,10 0,95 

LSTM 0,91 0,95 0,95 0,09 0,95 

CNN-LSTM 0,96 0,98 0,97 0,04 0,98 

The evaluation of the effectiveness of the test results is demonstrated in the form of 

charts with a division by data sets. 

The CNN-LSTM network on the KDDCup99 data set (Fig.7) demonstrated: accuracy, 

recall and F-score 3% higher than the CNN network; accuracy and F-score by 1% more 

than the LSTM network. 



 
Figure 7: Performance evaluation for the KDDCup99 dataset 

 

The CNN-LSTM network on the NSL-KDD data set (Fig.8) demonstrated: accuracy, 

precision, recall and F-score 1% more than the CNN network; recall and F-score is 1% 

higher than that of the LSTM network. 

 
Figure 8: Performance evaluation for the NSL-KDD dataset 

 

The CNN-LSTM network on the UNSW-NB15 data set (Fig.9) demonstrated: precision 

by 7%, recall by 6% and F-score by 7% more than the CNN network; precision by 4%, 

recall by 5% and F-score by 5% more than the LSTM network. 

 
Figure 9: Performance score for the UNSW-NB15 data set 
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The CNN-LSTM network on the UNSW-NB15 data set (Fig.10) demonstrated: accuracy 

by 4%, precision by 18%, recall by 18% and F-score by 18% more than the CNN network; 

accuracy by 3%, precision by 10%, recall by 13% and F-score by 11% more than in the 

LSTM network. 

 
Figure 10: Performance evaluation for the WSN-DS dataset 

 

The CNN-LSTM network on the CICIoT2023 data set (Fig.11) demonstrated: accuracy 

by 6%, precision by 3%, recall by 3% and F-score by 3% more than the CNN network; 

accuracy by 5%, precision by 3%, recall by 2% and F-score by 3% more than in the LSTM 

network. 

 
Figure 11: Performance evaluation for the CICIoT2023 dataset 

 

Specificity in the CNN-LSTM network when tested on the KDDCup99 dataset showed a 

3% better result compared to CNN and a 1% better result compared to LSTM. Specificity 

in the CNN-LSTM network when tested on the NSL-KDD dataset showed a 1% better result 

compared to CNN. The specificity of the CNN-LSTM network when tested on the UNSW-

NB15 dataset showed the same result compared to CNN and LSTM. The specificity of the 

CNN-LSTM network when tested on the WSN-DS dataset showed a 4% better result 

compared to CNN and a 3% better result compared to LSTM. Specificity in the CNN-LSTM 

network when tested on the CICIoT2023 dataset showed a 6% better result compared to 

CNN and a 5% better result compared to LSTM. 

The figure 12 shows the specificity parameter for all datasets and networks. 
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Figure 12: The specificity parameter for all datasets and networks 

Conclusion 

In view of the results of the conducted research, taking into account the types of 

attacks, the traffic from the implementation of which is present in the analyzed data sets, it 

can be concluded that the CNN-LSTM combination gives the highest reliability results and 

the lowest error results. Therefore, it is advisable to use CNN-LSTM and train it on the 

analyzed data sets for the detection system of the original malicious traffic. 
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