
Towards Standardizing AI Bias Exploration
Emmanouil Krasanakis∗, Symeon Papadopoulos

Centre for Research & Technology Hellas, 6th km Charilaou-Thermi, Thessaloniki, Greece, 57001

Abstract
Creating fair AI systems is a complex problem that involves the assessment of context-dependent bias
concerns. Existing research and programming libraries express specific concerns as measures of bias
that they aim to constrain or mitigate. In practice, one should explore a wide variety of (sometimes
incompatible) measures before deciding which ones warrant corrective action, but their narrow scope
means that most new situations can only be examined after devising new measures. In this work, we
present a mathematical framework that distils literature measures of bias into building blocks, hereby
facilitating new combinations to cover a wide range of fairness concerns, such as classification or
recommendation differences across multiple multi-value sensitive attributes (e.g., many genders and
races, and their intersections). We show how this framework generalizes existing concepts and present
frequently used blocks. We provide an open-source implementation of our framework as a Python
library, called FairBench, that facilitates systematic and extensible exploration of potential bias concerns.
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1. Introduction

Artificial Intelligence (AI) systems see widespread adoption across many applications that affect
people’s lives. Since they tend to pick up and exacerbate real-world biases or discrimination,
as well as spurious correlations between predicted values and sensitive attributes (e.g., gender,
race, age, financial status), making them fair is a subject of intensive research and regulatory
efforts. These include quantification of bias concerns through appropriate measures so that
unfair behavior can be detected and corrected. To this end, several measures of bias have been
proposed in research papers and implemented as reusable components within programming
libraries or toolkits (Section 2). Recognizing that bias and, more generally, fairness depends on
the social context and the particular settings in which AI systems are deployed, each created
measure is limited to assessing a different type of concern. In the end, research and development
focuses on mitigating or constraining measures when those reveal fairness issues, but not on
how a systematic exploration of many measures could be carried out to perform fairness audits.

Therefore, and despite the obvious value of presenting reusable algorithmic solutions to
specific problems, there is a need for methods that critically examine real-world systems across
a wide range of concerns and not just a few of them. The main barrier in pursuing such methods
is that measures of bias are designed in a monolithic manner and rarely consider how they
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could be generalized or ported to different settings. For example, differential fairness [1] was
only recently proposed as a means of generalizing disparate impact assessment to intersectional
fairness, which recognizes the cumulative effect of sensitive attributes (e.g., multiple genders
and races), despite disparate impact measures being around for decades [2].

In this work, we assist systematic exploration of fairness concerns by decomposing measures
of bias into simple building blocks. These can be recombined to create new measures covering
a wide range of contexts and concerns. For example, a block that aggregates classification bias
in multidimensional settings (e.g., with multiple races and genders) can be combined with a
block that another measure uses to assess recommendation bias between only two groups of
people (e.g., only whites vs non-whites) to create a new measure that assesses multidimensional
recommendation bias. We implement the proposed framework in a Python library, called
FairBench, that standardizes how measures of bias are defined by combining interoperable
blocks of each kind. The library’s functional interface sets up a fixed representation of existing
and new measures of bias, and can create bias reports while tracing prospective fairness issues
to the raw quantities computed over predictive outcomes. Our contribution is threefold:

a) We present a mathematical framework that systematically combines building blocks to
construct many existing and new measures of bias.

b) We express several building blocks of literature measures of bias within this framework.
c) We introduce the FairBench Python library that implements the above blocks and combina-

tion mechanisms to compute measures of bias in a wide range of computing environments.

This paper is structured as follows. After this section’s introduction, Section 2 presents
theoretical background and related work. Section 3 describes our proposed mathematical
framework. Section 4 extracts several bias building blocks from the AI fairness literature.
Section 5 introduces the programming interface provided by our FairBench Python library to
explore bias. Finally, Section 6 summarizes our work and points to future directions.

2. Background and Related Work

2.1. Fair AI

The problem of creating fair AI systems is the subject has attracted attention as part of the
broader theme of Trustworthy AI in worldwide regulation and ethical guidelines, like the EU’s
Assessment List for Trustworthy AI [3], and the NIST’s AI Risk Management Framework [4].
Evaluating system fairness is a complex problem that depends on the context being examined
and the systems being created. A part of answering this problem consists of mathematical or
algorithmic exploration that enables automated system assessment and oversight with practices
like TrustAIOps [5], which monitor the evolution of system bias in the deployment context.

Mathematical definitions of fairness are often categorized into the following types [6, 7, 8, 9]:

i) Group fairness focuses on equal treatment between population groups or subgroups. This
is the subject of most research and covered extensively in the next subsection.

ii) Individual fairness [10] focuses on the fair treatment of individuals, for example by
obtaining similar predictions for those with similar features. This can be modelled as
group fairness too, by considering every person to belong to their own group.



iii) Counterfactual fairness [11, 12] learns causalmodels of predictivemechanisms that account
for discrimination and then makes predictions in a would-be fair reality. Although
originally coined as a variation of individual fairness, recent understanding [13] also
suggests that counterfactual fairness is a kind of group fairness.

Making (e.g., training) AI to be fair typically involves measures of bias that quantify numerical
deviation from exact definitions of fairness. Measures are either minimized or subjected to
constraints [14], but identifying which are important is not only a matter of applying scientific
principles. In particular, it is mathematically impossible to simultaneously satisfy all conceivable
definitions of fairness [15, 16], which means that systems should only address the fairness
concerns that matter to humans (e.g., stakeholders or policymakers) in the particular situation.
There are also trade-offs between satisfying fairness and maintaining predictive performance.
In this work we propose that many types of bias should be monitored simultaneously to reveal
concerning trends that require further context-dependent human evaluation.

In practice, AI systems employ fairness libraries or toolkits to compute popular measures of
bias and either constrain predictive tasks to achieve the accepted measure values or carry out
trade-offs of the latter with predictive performance. Some popular software projects for fair
AI are AIF360 [17], FairLearn [18], What if [19], and Aequitas [20]. Each of these focuses on
supporting different computational backends and data structures. AIF360 and FairLearn are
programming libraries and provide bias mitigation algorithms. What If and Aequitas focus on
assessment of fairness, and specialize in assessing counterfactual and group fairness respectively.
All libraries and toolkits implement ad-hoc measures of bias that capture fairness concerns
well-studied in the literature, where the latter typically account for very restricted types of
evaluation that do not model complex concerns.

2.2. Measures of bias

We now present common measures of bias, starting from ones that quantify group fairness
concerns for classifiers [21]. We organize people with the same sensitive attribute values
into population groups. All presented measures assume values in the range [0, 1] and, when
necessary, we show the complements of measures of fairness with respect to 1 to let them assess
bias instead, i.e., a value of 0 indicates perfect fairness. For example, below we use 1 − prule as
a measure of bias, instead of prule, which is a measure of fairness.

Measures of classification bias. The measures of 1−prule [2] and Calders-Verwer disparity
cv [22] quantify disparate impact concerns, i.e., prediction rate inequality between two groups of
samples 𝒮 and 𝒮 ′ = 𝒮𝑎𝑙𝑙⧵𝒮, where the latter complements the former within the population 𝒮𝑎𝑙𝑙.
This models one binary sensitive attribute indicating membership to the group. Mathematically:

prule = min { P(𝑐(𝑥)=1|𝑥∈𝒮 )
P(𝑐(𝑥)=1|𝑥∈𝒮 ′) ,

P(𝑐(𝑥)=1|𝑥∈𝒮 ′)
P(𝑐(𝑥)=1|𝑥∈𝒮 ) } , cv = | P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮 ) − P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮 ′)|

where P(⋅|⋅) denotes conditional probability and 𝑐(𝑥) ∈ {0, 1} is the binary outcome of classifying
data sample 𝑥. Disparate impact is eliminated when 1 − prule = cv = 0. Another concern is
disparate mistreatment [23], which captures misclassification differences between groups per:

|Δ𝑚| = |𝑚(𝒮 ) − 𝑚(𝒮 ′)|



where 𝑚(⋅) denotes a misclassification measure over groups of samples, such as their false
positive rate (fpr) or their false negative rate (fnr). The same formula can express cv or ac-
commodate error measures for other predictive tasks, and therefore constitutes a building
block of generalized fairness evaluation frameworks [24] (also see Subsection 4.3). An exam-
ple of difference-based bias for probabilistic measures of predictive performance is equalized
opportunity difference [25, 26]:

|Δ𝑒𝑜| = | P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮 , 𝑌 (𝑥) = 𝑦) − P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮 ′, 𝑌 (𝑥) = 𝑦)|

where 𝑦 ∈ {0, 1} and 𝑌 (𝑥) is the true test/validation data label corresponding to sample 𝑥.

Measures of scoring and recommendation bias. The same underlying principles can be
ported to other predictive tasks [5, 14] such as recommendation and scoring. In recommendation,
the base measure 𝑚(⋅) in |Δ𝑚| may be replaced by some form of exposure of items to group
members or the fraction of top-𝑘 recommendations that are members of the group. In scoring
tasks, 𝑚(⋅) may represent the fraction of score mass concentrated on groups, which can be
compared to a desired fraction or between groups to satisfy concerns similar to disparate impact
[27]. Aggregate statistics, like the area under the roc (auc) or score means, may also be compared
between groups [28]. A definition that we use later for receiver operating characteristic (roc)
curves of groups 𝒮𝑖 accounts for all pairs of false positive rate (fpr) and true positive rate (tpr)
values obtained for the groups over different thresholds 𝜃 of whether scores are interpreted as
positive predictions or not (we use the maplet arrow to express rocs as maps from fpr to tpr):

roc(𝒮𝑖) = {fpr(𝒮𝑖, 𝜃) ↦ tpr(𝒮𝑖, 𝜃) ∶ 𝜃 ∈ (−∞,∞)} (1)

More fine-grained approaches summarize the differences between curves or distributions (a
mathematical expression for this appears in Subsection 4.3). For example, viable measures of
bias are the absolute betweenness area between roc curves (abroca) [29] and the Kullback-Leibler
divergence between distributions of system outcomes for each group [30].

2.3. Frameworks to assess multidimensional bias

Fairness concerns may span several sensitive groups and their intersections [31]. This set-
ting is known as multidimensional fairness. For example, there may be multiple protected
demographics (e.g., genders, races, and their intersections). Two frameworks for expressing
several measures of bias in the multidimensional setting are a) what we later call groups vs
all comparison [24] and b) worst-case bias [30]. In this work, we generalize these frameworks
under a more expressive one. Our analysis also accounts for c) individual fairness by treating it
under a multidimensional framework where each individual is a separate group of one element.

Groups vs all. This sets up the following generic framework for measures of bias:

𝐹𝑏𝑖𝑎𝑠(𝕊) = ⊙𝒮𝑖∈𝕊 𝐹𝑏𝑎𝑠𝑒(𝒮𝑖) (2)

where 𝕊 are all groups, 𝐹𝑏𝑎𝑠𝑒(𝒮𝑖) is a measure of bias for one group 𝒮𝑖 ∈ 𝕊 (this corresponds
to treating that group as having only one binary sensitive attribute), and ⊙ is a reduction



mechanism, such as the minimum or maximum. Groups may be overlapping when examining
each sensitive attribute value independently without considering their intersections [32, 33,
34, 35]. It has been proposed that group intersections may also replace the groups within this
analysis, therefore creating subgroups in their place [1, 31, 30].

In Equation 2, the base measure of bias compares one group against the total population.
Example measures that employ this scheme are statistical parity subgroup fairness (spsf) and
false positive subgroup fairness (fpsf) [31]. For these, each subgroup is compared to the total
population to create multidimensional variations of Δ𝑒𝑜 and Δfpr respectively. Both employ a
reduction mechanism that weighs comparisons by group size.

Worst-case bias. This framework starts from pairwise group or subgroup comparisons and
keeps the worst case. We compute worst-case bias (wcb) for any probabilistic measure 𝐹(𝒮𝑖),
such as of accurate or erroneous predictions over groups or subgroups 𝒮𝑖 ∈ 𝕊, per:

wcb(𝕊) = 1 − min
(𝒮𝑖,𝒮𝑗)∈𝕊2

𝐹(𝒮𝑖)
𝐹 (𝒮𝑗)

(3)

For example, differential fairness [1] states that prule should reside in the range [𝑒−𝜖, 𝑒𝜖] for some
𝜖 ≥ 0 when it compares all subgroups pairwise. A viable measure of bias for this definition,
which we call differential bias (db), is given for subgroups 𝕊 when 𝐹(𝒮𝑖) = P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖),
for which differential fairness is equivalent to satisfying wcb(𝕊) ≤ 1 − 𝑒−𝜖.

Individual fairness Multidimensional discrimination can also model individual fairness
[10, 36] by setting each individual as a separate group. In this case, and given that individual
fairness is formally defined to satisfy 𝑑𝑦(𝑐(𝑥𝑖), 𝑐(𝑥𝑗)) ≤ 𝑑𝑥(𝑥𝑖, 𝑥𝑗) across all pairs of individuals
(𝑥𝑖, 𝑥𝑗), where 𝑐 is a predictive mechanism and 𝑑𝑦, 𝑑𝑥 are some distance metrics, a viable measure
of individual bias (ib) that satisfies individual fairness when ib ≤ 1 is:

ib = max
𝑥𝑖,𝑥𝑗

𝑑𝑦(𝑐(𝑥𝑖),𝑐(𝑥𝑗))
𝑑𝑥(𝑥𝑖,𝑥𝑗)

(4)

3. A General Bias Measurement Framework

In this section we present a framework for defining measures of bias from fundamental building
blocks. This lets us decompose existing measures into blocks, introduce variations, and create
novel combinations. We recognize four types of blocks, which correspond to successive compu-
tational steps: a) selecting which pairs of population (sub)groups to compare, b) base measures
that assess some system property on each group, c) comparisons between group assessments,
and d) reductions that convert multiple pairwise comparisons to one value.

Mathematically, we annotate base measures as 𝐹(𝒮𝑖) and compute them over groups of data
samples 𝒮𝑖 ⊆ 𝒮𝑎𝑙𝑙 of some population 𝒮𝑎𝑙𝑙. We consider any information necessary for this
computation (e.g., predicted and ground truth labels) directly retrievable from the respective
samples. We also annotate the set of all these groups as 𝕊 = {𝒮𝑖 ∶ 𝑖 = 0, 1, … }. The base
measures could be error rates of predictions or unsupervised statistics, like positive rates. Then,
we consider a set of subgroup pairs to compare 𝐶(𝕊, 𝒮𝑎𝑙𝑙) ∈ (2𝒮𝑎𝑙𝑙)2, where 2𝒮𝑎𝑙𝑙 denotes the



powerset. The created set of subgroup pairs comprises any necessary detected comparisons
between groups or subgroups within 𝒮𝑎𝑙𝑙, even those that do not directly reside in 𝕊 but may be
derived from the latter, such as subgroups. Wewill make pairwise comparisons 𝑓𝑖𝑗 = 𝐹(𝒮𝑖)⊘𝐹(𝒮𝑗)
between (sub)groups (𝒮𝑖, 𝒮𝑗) ∈ 𝐶(𝕊, 𝒮𝑎𝑙𝑙). Finally, the reduction mechanism will be expressed as
⊙(𝑆𝑖,𝑆𝑗)𝑓𝑖𝑗 across all pairs (𝑆𝑖, 𝑆𝑗) and outcomes of comparing them 𝑓𝑖𝑗.

Putting the above in one formula yields our framework for expressing measures of bias:

𝐹𝑏𝑖𝑎𝑠 = ⊙(𝒮𝑖,𝒮𝑗)∈𝐶(𝕊,𝒮𝑎𝑙𝑙) (𝐹(𝒮𝑖) ⊘ 𝐹(𝒮𝑗)) (5)

This is a direct generalization of Equation 2 in that it supports more varied strategies for
expressing group comparisons. At the same time, it systematizes the comparison mechanisms
between groups of people through the operation ⊘. Our framework is also a generalization of
Equation 3 in that, in addition to the base measure (which we allow to also be non-probabilistic,
if so desired), it provides flexibility in the reduction and comparison mechanisms beyond the
choices of minimum and fractional comparison that characterize the worst case.

Each tuple of choices (𝐹 , 𝐶, ⊘, ⊙) creates a different measure of bias. In the next section, we
delve into how each building block type among the members of this tuple could vary between
contexts that comprise different fairness concerns and predictive tasks. For every building
block, a systematic exploration would consider all possible combinations with others of different
kinds so that eventually we not only reconstruct the original measures of bias, but also create
variations that address different settings. Table 1 exemplifies how the measures discussed in
Subsection 2.2 arise from specific choices. Creating a full taxonomy of existing measures under
our framework is not this work’s objective (we only aim to demonstrate its wide expressive
breadth) and is left to future work.

Measure 𝐹(𝒮𝑖) 𝐶(𝕊, 𝒮𝑎𝑙𝑙) 𝑓𝑖 ⊘ 𝑓𝑗 ⊙
Example measures

|Δfpr| [23] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖, 𝑌 (𝑥) = 0) {𝒮 , 𝒮𝑎𝑙𝑙 ⧵ 𝒮 }2 for 𝕊 = {𝒮 } 𝑓𝑖 − 𝑓𝑗 max
|Δfnr| [23] P(𝑐(𝑥) = 0|𝑥 ∈ 𝒮𝑖, 𝑌 (𝑥) = 1) {𝒮 , 𝒮𝑎𝑙𝑙 ⧵ 𝒮 }2 for 𝕊 = {𝒮 } 𝑓𝑖 − 𝑓𝑗 max
|Δ𝑒𝑜| [25] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖) {𝒮 , 𝒮𝑎𝑙𝑙 ⧵ 𝒮 }2 for 𝕊 = {𝒮 } 𝑓𝑖 − 𝑓𝑗 max
spsf [31] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖) 𝕊 × {𝒮𝑎𝑙𝑙} ∪ {𝒮𝑎𝑙𝑙} × 𝕊 |𝑓𝑖 − 𝑓𝑗| wmean
fpsf [31] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖, 𝑌 (𝑥) = 0) 𝕊 × {𝒮𝑎𝑙𝑙} ∪ {𝒮𝑎𝑙𝑙} × 𝕊 |𝑓𝑖 − 𝑓𝑗| wmean
cv [22] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖) {𝒮 , 𝒮𝑎𝑙𝑙 ⧵ 𝒮 }2 𝑓𝑖 − 𝑓𝑗 max
1 − prule [2] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖) {𝒮 , 𝒮𝑎𝑙𝑙 ⧵ 𝒮 }2 1 − 𝑓𝑖/𝑓𝑗 max
db [1] P(𝑐(𝑥) = 1|𝑥 ∈ 𝒮𝑖) 𝕊2 1 − 𝑓𝑖/𝑓𝑗 max

Multidimentional bias frameworks
𝐹𝑏𝑖𝑎𝑠 [24] any∗ 𝕊 × {𝒮𝑎𝑙𝑙} ∪ {𝒮𝑎𝑙𝑙} × 𝕊 any any
wcb [30] any 𝕊2 1 − 𝑓𝑖/𝑓𝑗 max
ib [10] 𝑐(𝑥) {{𝑥} ∶ 𝑥 ∈ 𝒮𝑎𝑙𝑙} 𝑑𝑦(𝑓𝑖, 𝑓𝑗)/𝑑𝑥(𝒮𝑖, 𝒮𝑗) max

Table 1
Expressing the measures of classification bias of Subsection 2.2 and multidimensional bias frameworks
of Subsection 2.3 under our bias measure definition framework. Interpretation of reductions can be
found in Subsection 4.4. Frameworks allow for any blocks of certain kinds. ∗𝐹𝑏𝑖𝑎𝑠 does not explicitly
acknowledge base measure building blocks.



4. Bias building blocks

Here we present building blocks that occur from decomposing popular measures of bias of
Sections 2.2 and 2.3. Combinations under our framework can create new measures.

4.1. Selecting groups or subgroups to compare

The group selection mechanisms we study include a) base selection, b) accounting for individual
fairness [10], and c) accounting for intersectionality. More blocks can be created in the future.

Base selection. Several fairness measures are defined by comparing each population group
or subgroup with the total population 𝒮𝑎𝑙𝑙. Given that the pairwise comparison mechanism is
not symmetric, i.e., it may hold that 𝑓𝑖 ⊘ 𝑓𝑗 ≠ 𝑓𝑗 ⊘ 𝑓𝑖, we account for both (𝒮𝑖, 𝒮𝑎𝑙𝑙) and (𝒮𝑎𝑙𝑙, 𝒮𝑖)
for subgroups 𝒮𝑖 ∈ 𝕊. Mathematically, we define a group vs any sample selection per:

vsany(𝕊, 𝒮𝑎𝑙𝑙) = 𝕊 × {𝒮𝑎𝑙𝑙} ∪ {𝒮𝑎𝑙𝑙} × 𝕊 (6)

Alternatively, one may consider all group pairs (we let reduction remove any self-comparisons):

pairs(𝕊, 𝒮𝑎𝑙𝑙) = 𝕊2 (7)

For one-dimensional fairness, i.e., only one sensitive attribute with only two potential values,
such as indicating which samples belong to a protected group of people and which do not,
each group 𝒮 is typically compared to its complement within the whole population 𝒮𝑎𝑙𝑙 ⧵ 𝒮𝑖.
In this case, 𝕊 = {𝒮 } and we write the pairwise selection between it and its complement per
compl(𝕊, 𝒮𝑎𝑙𝑙) = {𝒮 , 𝒮𝑎𝑙𝑙 ⧵ 𝒮 }2. One generalization to multidimensional settings would be to
consider 𝒮𝑎𝑙𝑙 ⧵ 𝒮 as a group and recreate Equation 7. However, an equally valid generalization
it to compare groups to their complements only:

compl(𝕊, 𝒮𝑎𝑙𝑙) = ⋃
𝒮𝑖∈𝕊

{𝒮𝑖, 𝒮𝑎𝑙𝑙 ⧵ 𝒮𝑖}2 (8)

Accounting for individual fairness. Individual fairness disregards the notion of population
groups or subgroups and instead compares all individuals pairwise. This is an instance of the
pairs mechanism, where each individual is assigned to their own group. Mathematically, this
would occur if we specified subgroups 𝕊 = {{𝑥} ∶ 𝑥 ∈ 𝒮𝑎𝑙𝑙}. We hereby extend all comparison
mechanisms 𝐶 to follow this schema when an empty set of groups ∅ is provided1 per:

𝐶(∅, 𝒮𝑎𝑙𝑙) = 𝐶({{𝑥} ∶ 𝑥 ∈ 𝒮𝑎𝑙𝑙}, 𝒮𝑎𝑙𝑙) (9)

Accounting for intersectionality. Measures of bias like db, spsf, and spsf account for
subgroups that form intersections of groups too. To model this scenario, we define intersectional
comparisons between groups while ignoring empty intersections (this conveniently ignores
intersections between mutually exclusive sensitive attribute values) per:

𝐶𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑐𝑡(𝕊, 𝒮𝑎𝑙𝑙) = 𝐶({𝒮 = 𝒮𝑖1 ∩ 𝒮𝑖2 ∩ ⋯ ∶ 𝒮𝑖𝑘 ∈ 𝕊, 𝒮 ≠ ∅}, 𝒮𝑎𝑙𝑙) (10)
1The empty set indicates no knowledge of a group, in which case our fallback becomes individual fairness.



4.2. Base measures

Our framework accepts any measure of predictive performance. In this subsection, we demon-
strate two concepts: a) computing aggregate assessments to feed as-are in comparison mecha-
nisms, and b) tracking underlying metadata that could be used by other building blocks without
altering Equation 5. Base measures can also be ported from fairness definitions that do not
specify measures of bias, such as equal group benefit [37]. Our framework can supply the rest of
building blocks to try all available options at defining bias, such as all comparison mechanisms.

Aggregate assessment. Here, we list base measures of aggregate system assessment often
used to define bias. Probabilistic definitions for them can be found in domain literature. When
working with classifiers, popular base measures are positive rates (pr), fpr, and fnr. Other
misclassification measures are also used in expressions of disparate mistreatment [23]. In
multiclass settings, each class can be treated as a different group of data samples with its
own target labels. Bias has been assessed for the top-𝑘 individual/item recommendations
by comparing the base measures of hit rate and skew [38, 39] across groups when checking
for proportional representation. Recommendation correctness measures may be similarly
accommodated, such as the click-through rate [39]. Recommendation is assessed across several
values of 𝑘, which leads to measures that keep track of metadata (see below).

Keeping track of metadata. An emerging concern is that measures of bias affirm the
presence of certain biases but not their absence. To verify the latter, one needs to look at
nuances of underlying distributions [30]. For example, it has been argued that statistical
tests should replace the prule to show non-discrimination in certain legal settings [40]. Thus,
our framework retains building block metadata to be used in subsequent computations. To
understand this, think of the abroca measure [29] that compares the area between the roc curves
of Equation 1 instead of comparing aucs through differences or fractions.

We model curve comparisons by tracking computational metadata and retrieving them
through an appropriate predicate curve(⋅) defined alongside base measures. For example, auc’s
definition as a building block should include the statement:

curve(auc(𝒮𝑖)) = roc(𝒮𝑖)

We do not directly return the metadata (e.g., the roc curves) in order to compare aggregate
assessments with as many mechanisms as possible. For instance, also computing |auc(𝒮𝑖) −
auc(𝒮𝑗)| and checking differences with abroca may create high-level insights (e.g., if these two
quantities are equal between two groups, the corresponding roc curves do not intersect).

We now present a second base measure used in recommendation systems to assess top
predictions and contains a curve, namely average representation (ar) within the top predictions:

ar𝐾 = 1
𝐾

𝐾
∑
𝑘=1

P(𝑥 ∈ 𝒮𝑖|𝑥 ∈ top𝑘)

To keep working with integratable curves with continuous horizontal axes, we use Dirac’s delta
function 𝛿(𝑘) = 0 for 𝑘 ≠ 0 and ∫∞−∞ 𝛿(𝑘)d𝑘 = 1 to define the injection:

curve(ar𝐾) = {𝑘 ↦ P(𝑥 ∈ 𝒮𝑖|𝑥 ∈ top𝑘)𝛿(0) if 𝑘 ∈ {1, 2, … , 𝐾}, 0 otherwise ∶ 𝑘 ∈ (−∞,∞)}



4.3. Comparison mechanisms

We examine three types of comparison to serve as building blocks in our framework: a) no
comparison, b) numeric errors (differences and fractions), and c) curve comparisons. The last
type encompasses mechanisms that compute weighed curve differences. Other mechanisms
can be readily created, and we demonstrate thresholded variations.

No comparison. This is a valid option when aiming to remove confounding bias, i.e., bias
that directly leads to erroneous system predictions. For example, the worst measure assessment
across groups or subgroups is maximized if all groups exhibit high predictive performance [41].
In this case, our framework just assesses AI performance for all groups. Mathematically:

𝑓𝑖 ⊘𝑛𝑜𝑛𝑒 𝑓𝑗 = 𝑓𝑖

Numeric errors. These compute some deviation between 𝑓𝑖 and 𝑓𝑗, such as absolute error
(abs), relative error (rel), and their signed values (sabs and srel respectively):

𝑓𝑖 ⊘𝑎𝑏𝑠 𝑓𝑗 = |𝑓𝑖 − 𝑓𝑗| , 𝑓𝑖 ⊘𝑟𝑒𝑙 𝑓𝑗 = |1 − 𝑓𝑖/𝑓𝑗| , 𝑓𝑖 ⊘𝑠𝑎𝑏𝑠 𝑓𝑗 = 𝑓𝑖 − 𝑓𝑗 , 𝑓𝑖 ⊘𝑠𝑟𝑒𝑙 𝑓𝑗 = 1 − 𝑓𝑖/𝑓𝑗

Curve comparisons. Let us consider that the curve predicate can extract from base measure
assessment curves 𝑐𝑟𝑣𝑖 = curve(𝑓𝑖), 𝑐𝑟𝑣𝑗 = curve(𝑓𝑗) with a known common domain 𝒟. We can
compare these given a weighting mechanism 𝐼 (𝑘) for the domain and comparison ⊘𝑐𝑟𝑣 as:

𝑓𝑖 ⊘ 𝑓𝑗 =
1

∫𝒟 𝐼 (𝑘)d𝜃 ∫𝒟
𝐼 (𝑘) ⋅ (𝑐𝑟𝑣𝑖(𝑘) ⊘𝑐𝑟𝑣 𝑐𝑟𝑣𝑗(𝑘)) d𝑘

Essentially, we are building curve comparisons from the simpler components (𝐼 , ⊘𝑐𝑟𝑣). As
an example, we reconstruct the abroca pairwise group comparison [29] based on the auc
base measure of Subsection 4.2 given the curve comparison defined by the pair of operations
⊘𝑎𝑏𝑟𝑜𝑐𝑎 = (𝐼𝑐𝑜𝑛𝑠𝑡(𝑘) = 1, ⊘𝑎𝑏𝑠). Measures that retain curves of top-𝑘 recommendations may also
consider NDCG-like weighting 𝐼𝐷𝐶𝐺(𝑘) = ( 1

log(1+𝑘) if 𝑘 > 0, 0 otherwise) [38, 39].

Thresholded variations. Oftentimes, small deviations from perfect fairness are accepted.
Settling for thresholds under which measures of bias output 0 can take place either at the end
of the assessment, or during intermediate steps. If the last option is chosen, comparisons 𝑓𝑖 ⊘ 𝑓𝑗
need to be replaced with the following variations of maximum acceptable threshold 𝜖 ≥ 0:

𝑓𝑖 ⊘𝜖 𝑓𝑗 = max{0, 𝑓𝑖 ⊘ 𝑓𝑗 − 𝜖}

4.4. Reduction mechanisms

The final step of our framework consists of reducing to one quantity all pairwise comparisons
𝑓𝑖𝑗 between groups or subgroups (𝒮𝑖, 𝒮𝑗) ∈ 𝐶(𝕊, 𝒮𝑎𝑙𝑙). Common reductions are the maximum,
minimum, or arithmetic mean of all values. Especially the maximum is a cornerstone of the
worst-case bias framework, although it does not differentiate between systems that have the



same worst case. Alternatively, reduction could adopt some formula that becomes the weighted
mean in the group vs all case [31]. Here, we demonstrate one feasible option, which obtains
weights 1− | P(𝑥 ∈ 𝑆𝑖) −P(𝑥 ∈ 𝑆𝑎𝑙𝑙) = 1− | P(𝑥 ∈ 𝑆𝑖) − 1| = P(𝑥 ∈ 𝑆𝑖) under vsany but also ignores
self-comparisons among groups under pairs(⋅, ⋅) or compl(⋅, ⋅):

wmean𝑖,𝑗𝑓𝑖𝑗 = ∑
𝑓𝑖𝑗∶𝒮𝑖≠𝒮𝑗

(1 − | P(𝑥 ∈ 𝑆𝑖) − P(𝑥 ∈ 𝑆𝑗)|)𝑓𝑖𝑗

5. The FairBench Library

We implement our bias measure definition framework within an open-source Python library
called FairBench.2 This focuses on ease-of-use, comprehensibility, and compatibility with
popular working environments. To achieve these, we adopted a forward-oriented paradigm [42]
to design the programming interfaces of code blocks as callable methods that can be combined
in reporting mechanisms. Block parameters are transferred through keyword arguments.

5.1. Forks of sensitive attribute values

Our design is centered around uniformly representing many groups of data samples. Previous
fairness libraries tend to parse lists of sensitive attribute names and match these with columns of
clearly understood programming datatypes, such as Pandas dataframes [43]. However, coupling
data loading and fairness assessment creates inflexible usage patterns and source code that is
harder to extend. For example, it needs new methods and classes to support graph or image AI.

To bypass this issue, FairBench parses vectors of predictions (e.g., scores), ground truth (e.g.,
classification labels), and binary membership to protected groups. Vectors can come from any
computational backend with a duck-type extension of Python’s Iterable interface; they could
be NumPy arrays [44], PyTorch tensors [45], TensorFlow tensors [46], JAX tensors [47], Pandas
columns [43], or Python lists. We support end-to-end integration with automatic differentiation
frameworks by extending their common functional interface provided by the EagerPy library
[48] and setting the internal computational backend per fairbench.backnend(name).

We simplify handling of multiple protected groups by organizing them into one data structure,
which we call a Fork of the sensitive attribute. This is a programming equivalent of 𝕊. All
interfaces accept a sensitive attribute fork, and base measures run for every group. Thus,
every group being analysed becomes a computational branch of the fork. We provide dynamic
constructor patterns to easily declare forks in common setups. One pattern is demonstrated
below, where a fork s lets us compute the accuracy fork acc that holds assessment outcomes
for both whites and blacks:

import fairbench as fb
race, predictions, labels = ... # arrays, tensors, etc
s = fb.Fork(white=..., black=...) # branches hold binary iterables
acc = fb.accuracy(predictions=..., labels=..., sensitive=s)
fb.visualize(acc) # visualize accuracy, which is also a fork

2The documentation of FairBench is available at: https://fairbench.readthedocs.io

https://fairbench.readthedocs.io


Forks may also be constructed from categorical iterables (e.g., Pandas dataframe columns or
native lists like cats=['man', 'woman', 'man', 'nonbinary']) with the constructor pattern
fb.Fork(fb.categories@cats). Forks of multidimensional sensitive attributes can be created
by adding all categorical parsing to the constructor as positional arguments. Intersections
between fork branches per Equation 10 can be achieved by calling a corresponding method:

races, genders = ... # categorical iterables
s = fb.Fork(fb.categories@races, fb.categories@genders)
s = s.intersectional()
print(s.sum()) # visualization is not very instructive for many branches

5.2. Fairness reports

Multidimensional fairness reports for several default popular measures, comparisons, and
reductions can be computed and displayed with the following snippet:

vsany = fb.unireport(predictions=..., labels=..., sensitive=s)
pairs = fb.multireport(predictions=..., labels=..., sensitive=s)
report = fb.combine(pairs, vsany)
fb.describe(report) # or print or fb.visualize

This combines the comparisons of Equation 6 (unireport) and Equation 7 (multireport). For more
report types or how to declare one specific measure of bias, refer to the library’s documentation.
The base measures to analyse are determined from keyword arguments. For example, the above
code snippet computes classification base measures, but if we added a scores=... arguments
(in addition to or instead of predictions) recommendation measures would be obtained too.
Reports can also parse a custom selection of base measures, including externally defined ones.

The outcome of running the above code is presented in Figure 1. Column names correspond to
the combination of reduction and comparison mechanisms, whereas rows to the base measures.
Familiarization with both the library and our mathematical framework is required to understand
FairBench reports, but these present -to our knowledge- the first systematic way of looking at
many bias assessments at once, regardless of the exact setting. For example, in the report below
it is easy to detect the small minimum ratio (minratio) of pr, which corresponds to prule, even
if there are generally balanced tpr and tnr (equivalent to balanced fnr and fpr).

Figure 1: Example of a combined FairBench report.

Finally, reports can be interactively explored through fb.interactive(report). This uses
the Bokeh library [49] to run in notebook outputs or new browser tabs and create visualization



similar to Figure 2. Through the visual interface, users can not only see report values but also
focus on columns or rows, and delve into explanations of which raw values contributed to
computations, as indicated via the .explain part of the exploration path on top. Explanations
correspond to tracking metadata values through predicates per Subsection 4.2. The same
exploration can be performed purely programmatically too.

Figure 2: Example steps during the interactive exploration of a FairBench report.

6. Conclusions

In this work we provided a mathematical framework that standardizes the definition of many
existing and new measures of bias by splitting them in base building blocks and compiling all
possible combinations. This framework systematically explores AI fairness through measures
that account for a wide range of settings and bias concerns, beyond the confines of ad-hoc
exploration. Implementation of popular building blocks are provided in the FairBench library
via interoperable Python interfaces. The library provides additional features, like visualization
and computation backtracking, that enable in-depth exploration of a wide range of bias concerns.
It can also be used alongside popular computational backends.

Future research and development could work towards identifying more bias building blocks
by decomposing more measures from the literature, as well as additional block types that
may arise in the future. FairBench is open source and we also encourage implementations of
such analysis from the community. We further plan to extend currently experimental features,
like creating fairness model cards that include caveats and recommendations obtained from
interdisciplinary collaborations with social scientists, and creating higher-level assessments.
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