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Abstract 
Despite persistent efforts to reveal the temporal patterns of citation dynamics, little is known 
about its spatial patterns in knowledge space, owing to the unquantifiability of citation diffusion 
in the virtual high-dimensional space. Here, drawing on millions of papers in the Physics field, we 
consider individual papers’ citation sequences as a mobility process and track trajectories with 
embedding methods learning the semantic proximity. We first quantify the spatial scale of 
citation mobility and find Gaussian-distributed citation scope and exponentially-distributed 
citing embedding distance, indicating the constrained mobility of citations. Simulations with the 
Gravity model and Radiation model further confirm that epistemic distance and popularity are 
key push-and-pull factors, respectively, in citation mobility. It is then found that compared with 
high-cited papers, disruptive papers are more likely to receive distant recognition. As science 
evolves, papers nowadays make narrower citation mobility than those in earlier decades. These 
findings provide insights into understanding the diversified knowledge diffusion and scientific 
innovation efficiency. 
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1. Introduction

Citations encapsulate the dynamics of ideas 

circulation, unfolding both in temporal and spatial 

dimensions in the abstract knowledge space[1]. 

Extensive research has delved into citation patterns at 

levels from the paper[2], author[3], discipline[4], to 

nation[5]. For individual papers, despite the diversity 

of citation profiles[6], researchers attempt to 

quantify[2], model[7], and predict[8] citation 

dynamics. Key drivers of citation dynamics, including 

preferential attachment, aging, and fitness[2] have 

been identified. Universal patterns, such as scale laws 

in citation distributions[9], first mover effect[10], 

citation probability decreasing with papers’ age[11], 

and “jump-decay” patterns[12] have been 
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quantitatively revealed. Moreover, “sleeping beauties” 

whose atypical citation dynamics have been explored 

in terms of identification and awakening 

mechanism[13]. However, despite the fruitful efforts 

on the temporal aspects of the citation dynamics, our 

understanding of the spatial dimension remains 

limited. 

On collective level, citations signify collective 

attention. Albeit with the explosion of papers and 

citation inflation[14], we find that citations are 

increasingly concentrated on elite scientists[15] and 

top papers[16], leaving new publications less likely to 

be recognized[17]. Growing citation inequality 

indicates a narrowing and decaying scientific 

attention, exacerbating the stratification of the 

scientific system and entrenching science trapped in 
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existing norms[12,18]. This narrowing attention 

phenomenon warrants detailed investigation through 

the lens of a holistic knowledge landscape. 

Papers receive citations spanning different 

epistemic distances. On citation dynamics of 

individual papers in the knowledge space, similar 

studies focus on mapping structure and evolution of 

disciplines with citation flows[19], associations 

between interdisciplinary citations and novelty[20], 

and measuring the breadth and depth of impact by 

examining textual proximity between citing 

papers[21]. However, exsiting studies remains 

inadequate for quantifying the knowledge aspect of 

citation trajectories due to their abstract nature and 

high dimensionality. 

Major obstacles in large-scale quantitative 

investigations on individual papers’ citation dynamics 

in knowledge space are the inability to track 

trajectories and the lack of an appropriate 

quantitative metric for this dynamical progress. It is 

unclear how papers diffuse impact and ideas in the 

knowledge space over lifecycles.  

Here, we regard the sequential citation process of 

papers as mobility on a quantifiable epistemic 

landscape and use machine-learning techniques to 

trace the trajectories. In this manner, we introduce the 

theoretical and methodological framework of 

geospatial human mobility to characterize citation 

mobility. Some key research questions are 

quantitatively analyzed. First, we explore the spatial 

scale characteristics and collective-level mechanisms 

of citation mobility. Second, we probe whether 

different types of novel papers exhibit diversified 

spatial patterns. Third, evolutionary patterns of 

citation mobility over decades are checked. 

2. Data and methods 

2.1. Data 

This study focuses on the discipline of Physics. The 

dataset used is SciSciNet[22], a large-scale scientific 

dataset built on MAG[23], covering over 134 million 

scientific publications up to the year 2021.  

Using the “fields of study” classification, we 

extract 3,263,546 papers labeled "Physics". Then we 

select focal papers satisfying: (i) number of citations 

no less than 10, to ensure sufficient trajectory points 

for quantification; (ii) citation history spanning at 

least 10 years, to ensure sufficient timespans to 

capture spatiotemporal patterns; (iii) receiving at 

least one citation every five years, to exclude noisy 

data. Finally, we obtain 214,867 focal papers. 

2.2. Construction of citation trajectories on 
the epistemic landscape  

We develop a framework, which combines 

representative learning algorithms and manifold 

learning algorithms, for the construction of the 

quantifiable disciplinary knowledge landscape based 

on semantics association. Unlike citation networks 

merely representing the topological connections of 

elements, this landscape provides a continuous 

distance scale, allowing for the tracking and 

quantifying of citation trajectories of individual 

papers.  

Here, we employ the Doc2Vec algorithm[24], 

capturing the semantics of content, and the popular 

UMAP algorithm[25] preserving the global and local 

topology in dimension reduction. The majority of 

architectures and hyperparameters we utilized were 

set to their default values throughout the model 

training process.  

Figure 1 illustrates the proposed framework for 

constructing the knowledge landscape. After building 

the corpus with the title and abstract, we train the 

Doc2vec model to obtain semantic vectors of papers. 

The UMAP algorithm is subsequently applied to 

project the semantic vectors into a two-dimensional 

space based on their cosine distance. Finally, we 

obtain the coordinates of each paper and the 

epistemic landscape. Thus, the citation trajectories of 

individual papers are traced by mapping their citation 

sequences onto this landscape. 

 

Figure 1: Illustration for constructing the epistemic 

landscape and citation trajectories based on the 

semantic proximity embedded in the textual content 

of papers  

2.3. Radius of gyration and jump lengths 

Two indicators are applied to characterize the spatial 

scale of citation mobility[26,27]. The radius of 

gyration (rg) refers to the typical distance from 

individual trajectories from their centroid of mass. 

The jump length (∆r) measures the epistemic distance 

between a citing-cited pair.  
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In the context of citation mobility, rg is applied to 

measure the degree to which one’s citations are 

concentrated or dispersed. ∆r quantifies the research 

proximity of the focal paper to its citing papers. 

𝑟𝑔 = √
1

𝑁
∑ (𝒓𝑖 − 𝒓𝑐𝑚)

2𝑁
𝑖=1 , 𝑟𝑐𝑚 = ∑ 𝒓𝑖/𝑁

𝑁
𝑖=1        (1) 

∆𝑟 = 𝒓𝑖 − 𝒓0                                (2) 

In formulas (1-2),  r0 is the coordinates of the focal 

paper; ri and ri-1 are the coordinates of its ith and (i-

1)th citing paper;  rcm is the centroid of the N citing 

papers.  

2.4. Gravity model and Radiation model 

The distance-based Gravity model, and the 

opportunity-based Radiation model, are introduced to 

characterize aggregated citation flows on the 

epistemic landscape. These two classical population-

level models depict distinct flow generation 

mechanisms and could reveal key drivers of citation 

flows in terms of research popularity, knowledge 

distance, and opportunities.  

In citation scenarios, Gravity models assume flows 

between two locations are proportional to research 

hotness and decay with knowledge distance[28].  

Radiation models assume movement probability of 

citations is proportional to destination opportunities 

and inversely proportional to intervening 

opportunities[29]. 

𝑇ⅈ𝑗 ∝ 𝑚ⅈ𝑚𝑗𝑓(𝑟ⅈ𝑗)                             (3) 

𝑇ⅈ𝑗 = 𝑂ⅈ
𝑚ⅈ𝑚𝑗

(𝑚ⅈ+𝑠ⅈ𝑗)(𝑚ⅈ+𝑚𝑗+𝑠ⅈ𝑗
)
                        (4) 

where Tⅈj is citation flows from tile i of the citing paper 

to tile j of the focal paper. mi and mj are the paper 

density in tile i and j;  f(rij) is the distance function 

modeled with power-law form. Oi represents flows 

from tile i; sij is the number of intervening 

opportunities (paper density) between tile i to j. 

Model performance is assessed with metrics: R2, 

RMSE, Spearman, and Pearson correlations.  

3. Results 

3.1.  The spatial characteristics of 
trajectories of citation mobility 

We start by visualizing the individual papers’ citation 

trajectories on the epistemic landscape. In Fig. 2c, 

paper points are clustered and semantically 

distributed, depicting the knowledge structure. After 

mapping citation dynamics (Fig. 2a) of papers onto 

the epistemic landscape, we find citations are not 

homogeneous, as they span different knowledge 

distances (Fig. 2b). However, the visualization in Fig. 

2d intuitively shows one’s trajectory is locally 

distributed. 

 

Figure 2: Visualization of individual papers’ citation 

mobility on the epistemic landscape 

We quantify spatiotemporal characteristics with 

two indicators. The citing epistemic distance ∆r is 

more approximated by an exponential function, than 

power-law (Fig. 3a). It indicates that papers are likely 

to receive massive short-distanced citations and a few 

longer-distanced ones. Then, the radius of gyration rg 

approximates lognormal distribution, suggesting the 

narrower impact of most papers and the broader 

impact of a few papers (Fig. 3b). These findings 

indicate that both citing distance and overall impact 

scope follow the typical scale variation in citation 

mobility, in contrast to the fat-tailed spatial scale 

displayed by human mobility in the biological 

world[26,27,30]. 

Furthermore, we note the more citations papers 

receive, the wider their impact scope (Fig. 3d). 

However, exponentially distributed citing distance 

and lognormal-distributed citation concentration are 

independent of the number of citations (Fig. 3c&d). In 

a word, we observe constrained mobility of citations 

in the knowledge space. 
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Figure 3: Empirical distribution of spatiotemporal 

characteristics of citation trajectories 

3.2. The Gravity and Radiation modeling in 
citation mobility 

To further delineate the observed narrow movements, 

we use the classic Gravity model and Radiation model 

to fit the aggregated flow of citation mobility. After 

discretizing the Physics epistemic landscape to a 

spatial tessellation, we aggregate individual 

trajectories into origin-destination citation flows. 

Most citation flows are intra-flows and only inter-

flows between two different grids are used to employ 

parameter fitting and flow generation. 

 
Figure 4: Actual and simulated citation flows 

generated by Gravity and Radiation models  

Fig. 4 shows the simulated results. It could be seen 

that the gravity model outperforms the radiation 

model, especially for long-distance flows. This 

suggests that epistemic distance and popularity are 

key factors in citation behavior, whereas the research 

gap representing potential research intersection area, 

is not significant in attracting citations. 

3.3. Comparisons of high-cited, sleeping 
beauties, and disruptive papers 

The further question is how citation mobility differs 

across papers with various types of novelty. We focus 

on three attributes of papers: popularity, delayed 

recognition, and disruptiveness, and measure them 

with the number of citations, sleeping beauty 

coefficient[13], and disruption index[31], respectively. 

The top 10% of papers by each metric are identified 

as highly cited, sleeping beauties, and disruptive 

papers (Fig. 5a). 

 
Figure 5: The rg and ∆r of citation trajectories of high-

cited papers, sleeping beauties, and disruptive papers.  

****p≤.0001, ***: p≤ .001, ns: p ≥ 0.05 

We observe that these three representative novel 

papers with a low degree of overlap (Fig. 5a), have 

above-average impact scopes, with disruptive papers 

standing out in particular (Fig. 5b). The finding that 

sleeping beauties with a broader impact is in line with 

their interdisciplinary nature [13].   

We further examine the citing distance in the first 

year post-publication. The consistent patterns 

observed in Fig. 5c reinforce our previous findings. It 

suggests that compared with the influential high-cited 

papers, sleeping beauties and high-disruptive papers 

promptly attract attention from more distant 

knowledge communities once published. 

3.4. Evolution of citation mobility 

Finally, we group focal papers into different decades 

according to their publication year to investigate how 

citation mobility evolved over decades.  

The first finding is that papers nowadays make 

more restricted mobility than those in the early years, 

as shown in Fig. 6a. To rule out the possibility that this 

result is due to semantic differences between papers 

from different decades, we analyze the citing distance 

of citing pairs with one year gap. In Fig. 6b, the 

observed decrease in the trend of citing distance over 

publication years indicates the narrowing of literature 

use. These two results suggest a possible shorter-
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sightedness for scientists’ information foraging 

nowadays. 

 
Figure 6: Spatial characteristics of citation 

trajectories in different decades  

4. Conclusion and discussion 

An empirically detailed investigation of the spatial 

pattern of papers’ citation mobility in knowledge 

space is indispensable for understanding knowledge 

diffusion. In this study, we trace and quantify 

individual papers’ citation sequences on the epistemic 

landscape based on semantic proximity.  

We primarily examine two spatial scale 

characteristics and observe the overall conserved 

citation mobility independent of citation counts, 

which is distinct from the fat-tail characteristics 

displayed in human mobility. By applying the Gravity 

model, epistemic distance and popularity are 

identified as two key divers. Next, compared with 

high-cited papers, disruptive and sleeping beauties 

present wider citation mobile scopes. Finally, current 

papers have narrower mobility than earlier papers, 

reflecting more myopic information foraging in 

current scientific practice. 

Several research extensions can be performed. 

Further with a whole picture of science, citation 

mobilities within and across disciplines could be 

explored, gaining more comprehensive insights. The 

framework could be applied to patents, open-source 

software, and online searching behavior. 
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