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Abstract  
In this article proposed and investigated a new algorithm for solving monotone variational 

inequalities in Hilbert spaces. Variational inequalities provide a universal instrument of 

formulating many problems of mathematical physics, machine learning, data analysis, optimal 

control, and operations research. The proposed iterative algorithm is a regularized (by applying 

the Halpern scheme) variant of the operator extrapolation method. In terms of the number of 

calculations required to perform an iterative step, this algorithm has an advantage over the 

extragradient method and the method of extrapolation from the past. For variational 

inequalities with monotone Lipschitz continuous operators, acting in Hilbert space, the strong 

convergence theorem of the method is proved.  
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1. Introduction 

This article continues the series of articles [1–3] devoted to the development of computationally 

efficient and adaptive algorithms for solving variational inequalities and equilibrium problems. 

Variational inequalities provide a universal instrument of formulating many topical problems of 

mathematical physics, machine learning,  data analysis, optimal control, and operations research [4, 5]. 

The development of algorithms for solving variational inequalities and related problems (equilibrium 

problems, game problems) is an extremely popular field of research in computational mathematics [6–

35]. Some problems of non-smooth optimization can be effectively solved if they are formulated as 

saddle problems. This approach allows to apply algorithms for solving variational inequalities in order 

to get a solution of the optimization problem [11]. Recently, such a variant of building fast algorithms 

for convex programming problems was developed: by using a duality theory, was made a transition to 

some convex-concave saddle problem (Fenchel game) and then applied extragradient algorithms for 

solving variational inequalities [12]. Note that the increased use of generative adversarial neural 

networks (GANs) and other adversarial or robust learning models has led to interest among machine 

learning specialists in algorithms for solving saddle problems and variational inequalities [13]. 

The simplest method for solving variational inequalities is an analogue of the gradient descent 

method, which in the case of the saddle point problem is known as the gradient descent-ascent method 

[6]. But this method may not converge for variational inequalities with a monotone operator.  

A well-known modification of the gradient descent method with projection for variational 

inequalities is the Korpelevich extragradient method [14–17], the iteration of which requires two 

calculations of the value of the operator of the problem and two metric projections onto the admissible 

set. Computationally cheap variants of the extragradient algorithm with one metric projection on an 

admissible set were proposed in the articles [18, 19]. Variants of the Korpelevich extragradient method, 

including adaptive ones, are proposed in the articles [20–22]. In the Popov article [23] was proposed a 

modification of the gradient descent-ascent method different from the extragradient algorithm for 

finding saddle points of convex-concave functions. The iteration of this algorithm is cheaper than the 
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iteration of the extragradient algorithm in terms of the number of operator value calculations: one 

instead of two. Popov's algorithm for variational inequalities became known among Machine Learning 

specialists as Extrapolation from the Past [13]. Important results related to this algorithm are obtained 

in papers [1, 2, 13, 23–25]. In particular, it’s adaptive modifications are proposed in the papers [1, 2]. 

Further development of these ideas and attempts to reduce the complexity of iteration while 

preserving the nature of convergence led to the inventing of a new Forward-Reflected-Backward 

Algorithm for solving operator inclusions [26, 27]. The algorithm has an advantage over the 

Korpelevich extragradient method and the method of Extrapolation from the Past in terms of the number 

of calculations required for the iterative step. This scheme is known as Optimistic Gradient Descent 

Ascent [13] and Operator Extrapolation Algorithm [3]. For the present day, the task of developing a 

strongly convergent variant of the operator extrapolation algorithm for variational inequalities in Hilbert 

space is relevant. Strongly convergent modifications for the extragradient algorithm are proposed in [2, 

7]. Recently, many results have been obtained for algorithms for solving variational problems in Banach 

spaces [3, 9, 28–30]. In particular, analogs of the Korpelevich, Tseng, and Popov algorithms for 

problems in uniformly convex Banach spaces are constructed and theoretically studied. In [3] was 

proposed an adaptive version of the Forward-Reflected-Backward Algorithm for monotone variational 

inequalities in a 2-uniformly convex and uniformly smooth Banach space.  

In this article a new algorithm for solving variational inequalities in Hilbert spaces is proposed. This 

particular algorithm is a variant of the Operator Extrapolation Method (the Forward-Reflected-

Backward Algorithm from [26]), regularized by using Halpern schemes [31, 32]. For variational 

inequalities with monotone Lipschitz continuous operators, acting in Hilbert space, the strong 

convergence theorem of the method is proved. 

2. Preliminaries and problem statement 

Let’s consider the variational inequality: 

find x C :   , 0Ax y x    y C  ,                                              (1) 

where C  is a nonempty subset of a Hilbert space H , A  is an operator, which is acting from H in H
.  

We denote the set of solutions (1) as S . 

Assume that the following conditions are met: 

 C H  is a convex and closed set;  

 operator :A H H  is a monotone on C , which means  

, 0Ax Ay x y     ,x y C  , 

and Lipshitz operator on C  (with constant 0L  ), which means 

Ax Ay L x y     ,x y C  ; 

 S  is a nonempty set. 

Let’s consider the dual variational inequality: 

find x C :   , 0Ay x y    y C  .                                            (2) 

We denote the set of solutions (2) as dS . It is common known, that dS  is a convex and closed set 

[4]. Inequality (2) is called a weak or dual formulation of the variational inequality (1) (or Minty type 

inequality), and the solutions of the inequality (2) – weak solutions of the variational inequality (1). For 

the monotone operators A  we always have dS S . In our particular conditions (when the operator is 

also continuous), we have dS S  [4].  

Let K  is a nonempty closed and convex subset of a Hilbert space H . We know that for each x H  

there exists unique element z K  such that  

inf
y K

z x y x


   . 
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This element z K  denote as 
KP x , and the corresponding operator :KP H K  is called 

projection operator from H  to K  (metric projection) [4]. For this operator the following statements 

are equivalent:  

, , 0Kz P x z K z x y z y K        . 

The last inequality is equivalent to the next one [4]: 

2 2 2

K Ky P x y x P x x y K       . 

The variational inequality (1) can be formulated as the problem of finding a fixed point [4]: 

 Cx P x Ax  ,                                                           (3) 

where 0  . Formulation (3) is useful because it leads to an iterative scheme 

 1n C n nx P x Ax   ,                                                         (4) 

which is weakly convergent for inverse strongly monotone (also known as co-coercive) operators 

:A H H  [10]. However, in general this scheme (4) does not convergent for Lipschitz continuous 

monotone operators. The most famous modification of scheme (4) is the Korpelevich extragradient 

method [14]: 

  1n C n C n nx P x AP x Ax     , 

the iteration of which requires two calculations of the value of the operator of the problem and two 

metric projections onto the admissible set. Computationally cheap variants of the extragradient 

algorithm with one metric projection on an admissible set were proposed in the articles [18, 19]. Further 

development of these ideas and attempts to reduce the complexity of iteration while preserving the 

nature of convergence led to the inventing of a new Forward-Reflected-Backward Algorithm [26]  

 1 12n C n n nx P x Ax Ax     .                                            (5) 

This scheme is known as Optimistic Gradient Descent Ascent [13] and Operator Extrapolation 

Algorithm [3]. The weak convergence of algorithm (5) is proved in [26]. 

The task of this article is to obtain a strongly convergent variant of the Operator Extrapolation 

Algorithm. In order to do this, we regularize algorithm (5) using the well-known Halpern scheme [31] 

 1 1n n n ny y Ty     ,                                                    (6) 

where :T H H  is a nonexpansive operator, y H .  

If the set of fixed points    :F T x H x Tx    is nonempty and  0,1n  , lim 0n
n




 , 

1 nn





  , then scheme (6) is strongly convergent:  lim 0n F T

n
y P y


  . 

Remark 1. Halpern's iterative scheme (6) coincides with Bakushinskii's iterative regularization 

scheme [7] for the method of successive approximations 1n nx Tx   for approximation of fixed points 

of the operator :T H H . 

Now let`s recall the well-known lemmas about recurrent numerical inequalities. 

Lemma 1. Let’s consider  n  is a sequence of nonnegative numbers, which satisfies the recurrence 

inequality 

 1 1n n n n n          for all 1n  , 

where sequences  n  and  n  have corresponding properties:  0,1n   and n  , where 

0  . Then 
1

1

1

n

kk

n e


  





  . 
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Lemma 2 ([7]). Let’s consider  n  is a sequence of nonnegative numbers, which satisfies the 

recurrence inequality  

 1 1n n n n n           for all 1n  , 

where sequences  n  and  n  have corresponding properties:  0,1n  , 
1 nn





  ,  and  

lim 0n
n




 . Then lim 0n
n




 . 

Lemma 3 ([33]). Let`s consider  na  is a numerical sequence, which has a subsequence  
kna  with 

property 1k kn na a   for all 1k  . Then there exists such a nondecreasing sequence  km  of natural 

numbers, that km   and 1k km ma a  , 1kk ma a   for all 
1k n . 

3. Regularized Operator Extrapolation Algorithm 

In article [26], the following Operator Extrapolation Algorithm was proposed to solve the 

variational inequality (1) (Forward-Reflected-Backward Algorithm) 

     1 1 1 1 1 1n C n n n n n n C n n n n n nx P x Ax Ax Ax P x Ax Ax                 ,        (7) 

where parameters n  satisfy the condition 0 inf sup 1/ 2n n n n L    .  

Remark 2. Modifications with the Bregman projection and the generalized Alber projection are 

proposed in [2, 3]. In terms of the number of calculations required to perform an iterative step, this 

algorithm has an advantage over the Korpelevich extragradient method  

 

 1

,

,

n C n n n

n C n n n

y P x Ax

x P x Ay





 


 
 

and the method of extrapolation from the past (Popov`s method) 

 

 

1

1

,

.

n C n n n

n C n n n

y P x Ay

x P x Ay









 


 
 

It is known that for variational inequalities (1) with monotone and Lipschitz operators acting in 

Hilbert space, algorithm (7) weakly convergent with  1O
 - estimate of the efficiency in terms of the 

gap function [3]. Based on the well-known Halpern method of approximation of fixed points of 

nonexpansive operators [31, 32], we will build such a regularized version of the algorithm (7). 

Algorithm 1. Regularized Operator Extrapolation Algorithm.  

Initialization. We set the elements y H , 0 1,x x С , a sequence of positive numbers  n  

and such a sequence  n , that  

 0,1n  , 

lim 0n
n




 , 
1 nn





  . 

Iterations. We generate a sequence  nx  using an iterative scheme 

      1 1 11 1n C n n n n n n n n nx P y x Ax Ax Ax             . 

For positive parameters 𝜆𝑛 assume that this condition is fulfilled: 

0 inf sup 1 2n n n n L    .                                                     (8) 
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In next sections, we will prove that the sequence  nx , generated by Algorithm 1, strongly converges 

to the projection of a point y  onto a set S . Therefore, to find a normal solution (a solution with the 

smallest norm) of the variational inequality (1), we can use the scheme 

      1 1 11 1n C n n n n n n n nx P x Ax Ax Ax           . 

Remark 3. For a smooth saddle point problem 

 min max ,
x C y D

L x y
 

 

Algorithm 1 has the form 

           

           

1 1 1 1 1 1 1

1 2 1 2 2 1 1

1 , 1 , , ,

1 , 1 , , .

n C n n n n n n n n n n n n

n D n n n n n n n n n n n n

x P x x L x y L x y L x y

y P y y L x y L x y L x y

    

    

   

   

         


        

 

Now let's prove the strong convergence of Algorithm 1.  

4. Main inequalities 

First, we will prove two auxiliary inequalities that will allow us to use Lemmas 1 and 2 to prove the 

convergence of Algorithm 1 

Lemma 4. For the sequence  nx , generated by algorithm 1, the next inequality holds 

2 2

1 1 1 1

1
2 ,

2
n n n n n n nx z Ax Ax x z x x           

 
2 2

1 1 1

1
1 2 ,

2
n n n n n n n nx z Ax Ax x z x x    

 
         

 
 

2

n y z 
2

1n ny x    
 

2

1 1

1
1

2
n n n n nL x x    

 
      
 

 

  
2

1 1

1
1

2
n n n nL x x   

 
    

 
,          (9) 

where z S . 

Proof. Let z S . Then  

     1 1 1 11 1 , 0n n n n n n n n n n nx y x Ax Ax Ax z x                .                (10) 

The monotonicity of the operator A  and inclusion z S  gives us 

   1 1 11 ,n n n n n n nAx Ax Ax z x           

1 1,n n n nAx Ax z x         1 1 11 ,n n n n nAx Ax z x       
1 1

0

,n n nAx z x  



   

1 1,n n n nAx Ax z x       

   1 1 1 1 11 , 1 ,n n n n n n n n n n nAx Ax z x Ax Ax x x               .       (11) 

By using (11) in (10), we obtain 

 1 10 2 1 ,n n n n nx y x z x        1 12 ,n n n nAx Ax z x      

   1 1 1 1 12 1 , 2 1 ,n n n n n n n n n n nAx Ax z x Ax Ax x x               .     (12) 

Now let's estimate from above the application 1 1 12 ,n n n n nAx Ax x x      in (12). We obtain 

1 1 1 1 1 12 , 2n n n n n n n n n nAx Ax x x Ax Ax x x              
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2 2

1 1 1 1 1 1 12 n n n n n n n n n n nL x x x x L x x L x x                . 

Then we transform application  1 12 1 ,n n n n nx y x z x       in (12). We obtain 

 1 12 1 ,n n n n nx y x z x        

   
2 22

1 11 1n n n n n n n ny x z x z x y x              .                (13) 

In order to transform the difference    
2 2

11 1n n n n n n ny x z y x x            in (13) let`s 

use the following identity 

   
2 2

1u v w v w v u         
2 222 ,v w v w v u v u         

2 2 2 2 22v w v u v w u w v u             , 

where , ,u v w H , 0  . Then 

   
2 2

11 1n n n n n n ny x z y x x             

   
2 2 2 2

1 11 1n n n n n n n nx z x x y z y x              . 

Now we have this inequality 

   
2 2 2 2 2

1 1 10 1 1n n n n n n n n nx z x x y z y x x z                   

1 12 ,n n n nAx Ax z x        1 12 1 ,n n n n nAx Ax z x        

   
2 2

1 1 1 11 1n n n n n n n nL x x L x x            .                (14) 

We rearrange the terms in (14) and finally get 

2 2

1 1 1 1

1
2 ,

2
n n n n n n nx z Ax Ax x z x x           

 
2 2

1 1 1

1
1 2 ,

2
n n n n n n n nx z Ax Ax x z x x    

 
         

 
 

2

n y z 
2

1n ny x     
2

1 1

1
1

2
n n n n nL x x    

 
      
 

 

 
 

2

1 1

1
1

2
n n n nL x x   

 
    

 

, 

which had to be proved. ■ 

Lemma 5. For the sequence  nx , generated by Algorithm 1, the inequality holds 

2 2

1 1 1 1

1
2 ,

2
n n n n n n nx z Ax Ax x z x x           

 
2 2

1 1 1

1
1 2 ,

2
n n n n n n n nx z Ax Ax x z x x    

 
         

 
12 ,n ny z x z     

 
2

1 1

1
1

2
n n n n nL x x    

 
      
 

 
2

1 1

1
1

2
n n n nL x x   

 
   

 

,         (15) 

where z S . 

Proof. Let's apply an elementary inequality 
2 2

2 ,a b a b a b    . We obtain 

2 2 2

1 1 1 12 ,n n n ny z y x x z y x y z x z             .                  (16) 

By using (16) in (9), we get (15), which had to be proved. ■ 

5. Strong convergence 
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Now let`s prove that the sequence is bounded  nx . 

Lemma 6. Let the condition (8) be fulfilled. Then the sequence  nx , generated by Algorithm 1, is 

bounded. 

Proof. Since 
1

2
0 inf supn n n n L

     and lim 0n
n




 , there exists such number 0 1n  , that 

   1 1 1

1 1
1 1 0

2 2
n n n n n nL L L                 and     1

1
1 0

2
n n L  

 
   

 
.        (17) 

From (9) and (17) we obtain, that for 0n n  the next inequality holds 

1n   1 n n   
2

n y z  ,                                                     (18) 

where 
2 2

1 1 1

1
2 ,

2
n n n n n n n nx z Ax Ax x z x x           , z S . 

Let's get the lower bound of n . We obtain 

2 2

1 1 1

1
2 ,

2
n n n n n n n nx z Ax Ax x z x x             

2 2

1 1 1

1
2

2
n n n n n n nx z Ax Ax x z x x            

2 2

1 1 1

1
2

2
n n n n n n nx z L x x x z x x            

 
2 2

1 1 1

1
1 0

2
n n n n nL x z L x x   

 
       

 
.           (19)  

From inequalities (18), (19) and Lemma 1 follows the boundedness of the sequences  n  and  nx

, which had to be proved. Let's formulate the main result. 

Theorem 1. Let C  is a nonempty convex closed subset of Hilbert space H , :A H H  is a 

monotone and Lipschitz continuous operator on the set C , S  , y H , condition (8) is fulfilled. 

Then the sequence  nx , generated by Algorithm 1, strongly converges to Sz P y . 

Proof. Let Sz P y . Lemma 6 implies the existence of such a number 0M  , that 

1, ny z x z M     for all  1n  . 

Then from Lemma 5 the next inequality follows  

1n  n n n     
2

1 1

1
1

2
n n n n nL x x    

 
      
 

 

 
2

1 1

1
1 2

2
n n n n nL x x M   

 
     

 
,         (20)          

where 
2 2

1 1 1

1
2 ,

2
n n n n n n n nx z Ax Ax x z x x           . 

Consider a numerical sequence  n . Then two options are possible: 

1. there exists a number 1n   that 1n n    for all n n ; 

2. there exists an increasing sequence of numbers ( )kn  that 1k kn n    for all 1k  . 

First let`s consider the option 1. In this case there exists lim n
n




. Since 1 0n n    , 0n   and 

inequalities (20) are fulfilled, then for n we obtain  
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1 0n nx x   .                                                                   (21) 

Let`s show that all weak partial limits of the sequence  nx  belong to S . Consider a subsequence 

 
knx , which weakly converges to some point w H . It is obvious, that w C . Let`s show that w S

. We have 

     1 1 1 11 1 , 0
k k k k k k k k k k kn n n n n n n n n n nx y x Ax Ax Ax y x                  y С  . 

By using the monotonicity of the operator A , derive an estimate: 

1 1, , ,
k k k k k kn n n n n nAy y x Ax x x Ax y x        

    1

1 1 1 1

1
, 1 ,k

k k k k k k k k k

k k

n

n n n n n n n n n

n n

y x x x y x Ax Ax y x


 
 



           
  y С  . 

From lim 0n
n




 , constraint of the sequence  nx , (21) and Lipshitz property of operator A , we obtain  

lim , 0
kn

k

Ay y x


       y С  . 

On the other hand 

, lim , lim , 0
k kn n

k k

Ay y w Ay y x Ay y x
 

           y С  . 

Thus, w S . 

Let`s prove that 

1lim , 0n
n

y z x z


   .                                                           (22) 

Consider the following subsequence  
knx , that 

1lim , lim ,
kn n

k n
y z x z y z x z

 
     . 

Let`s consider that 
knx w S   weakly. Then we obtain 

lim , , , 0
kn S S

k
y z x z y z w z y P y w P y


         ,  

which is a proof for (22). 

Now from (22), inequality 

1n    1 n n   12 ,n ny z x z   , 

which holds for sufficiently large n , and Lemma 2 we conclude that  

2 2

1 1 1

1
2 , 0

2
n n n n n n n nx z Ax Ax x z x x            . 

From (19) we obtain lim 0n
n

x z


  . 

Now let`s consider option 2. In this case there exists a nondecreasing sequence of numbers  km

with the following properties (Lemma 3): 

1. km  ; 

2. 1k km m    for all 
1k n ; 

3. 1km k    for all 
1k n . 

From the inequality of Lemma 5, (19) and second property we get 

 
2

1 1

1
1

2 k k k k km m m m mL x x    

 
     

 
 

2

1 1

1
1 2

2k k k k km m m m mL x x M   

 
    

 

. 

This leads us to  
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1 1lim lim 0
k k k km m m m

k k
x x x x 

 
    . 

By similar reasoning, we prove that the partial limits of the sequence are weak  
kmx  belong to S . From 

identity 

1 1, , ,
k k k km m m my z x z y z x z y z x x          

 we obtain 

1lim , lim ,
k km m

k k
y z x z y z x z

 
     . 

As in the previous part, we obtain the inequality  

1lim , 0
km

k
y z x z


   . 

Then we get 

1km    1
k km m   12 ,

k km my z x z      11
k km m    12 ,

k km my z x z   . 

With respect to the third property, we obtain  

1kk m   
12 ,

kmy z x z  . 

 As a result, we get 

lim k
k




 12lim , 0
km

k
y z x z


   . 

Thus, lim 0n
n




  and, consequently, lim 0n
n

x z


  , which had to be proved. ■ 

6. Conclusions  

In this article proposed and investigated a new algorithm for solving variational inequalities in 

Hilbert spaces. The proposed iterative algorithm is a regularized (by applying the Halpern scheme [32, 

33]) variant of the Operator Extrapolation Method (Forward-Reflected-Backward Algorithm from 

[26]). For variational inequalities with monotone Lipschitz continuous operators, acting in Hilbert 

space, the strong convergence theorem of the method is proved. 
An important issue is the study of the asymptotic behavior of Algorithm 1 in the situation C H :  

     1 1 11 1n n n n n n n n n nx y x Ax Ax Ax             . 

To be more precise, this issue is about the behavior of the norm nAx . In our opinion, the estimation 

should be  1nAx n . Note that in [34] was obtained an estimate for the extragradient method 

such as  1nAx n  , and in [35]  1nAx n  for the extragradient method with Halpern 

regularization 

 

 

0

1 0

1 1
,

2 8

1 1
.

2 8

n n n n

n n n n

y x x x Ax
n L

x x x x Ay
n L




    


    
 

 

The parameters n  of Algorithm 1 satisfy the condition 0 inf sup 1/ 2n n n n L    . This means 

that the information about the Lipschitz constants of the operator A  was used a priori. Algorithm 1 

and the scheme from articles [1–3] allow you to build such an algorithm with adaptive value selection 

n , that which does not require knowledge of Lipschitz constants of operators and linear search type 

procedures. 

Algorithm 2. Adaptive regularized operator extrapolation algorithm. 
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Initialization. Set y H , elements 0 1,x x С , numbers  

 1
2

0,  , 1 0, 0   , 

and such a sequence  n , which have properties  0,1n  ,  

lim 0n
n




 ,  
1 nn





  . 

Iterations. We generate a sequence  nx  by using an iterative scheme 

      1 1 11 1n C n n n n n n n n nx P y x Ax Ax Ax             , 

1

1

1 1 *

min , ,    if ,

,                       otherwise.

n n

n n n

n n n

n

x x
Ax Ax

Ax Ax
 









 

   
  

    



 

In addition, based on the results of work [3], it is possible to obtain an analogue of Algorithm 1 with 

a generalized Alber projection for solving variational inequalities in uniformly convex and uniformly 

smooth Banach spaces. 
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