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Abstract  
We have found the constructive necessary and sufficient conditions for solvability and the 

scheme for constructing solutions of a nonlinear autonomous boundary value problem for a 

nondegenerate differential-algebraic system. The nonlinear boundary value problem for the 

autonomous system significantly differs from similar autonomous boundary value problems 

by its dependence on an arbitrary continuous vector function. We have also constructed a 

convergent iterative scheme for finding approximate solutions of the nonlinear autonomous 

boundary value problem for the nondegenerate differential-algebraic system in critical and 

noncritical cases. Proposed in this paper scheme for studying the nonlinear autonomous 

boundary value problem for the nondegenerate system of differential-algebraic equations can 

be transferred to degenerate systems of differential-algebraic equations in the same way. 
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1. Statement of the problem 

Let 𝐴 and 𝐵 are (𝑚 × 𝑛) dimensional matrices and 𝑍(𝑧, 𝜀) is a 𝑛 dimensional vector function. We 
will call a weakly nonlinear autonomous periodic differential-algebraic boundary value problem the 

problem of finding solution [1]  

 𝑧(𝑡, 𝜀): 𝑧(⋅, 𝜀) ∈ 𝐶1[𝑎, 𝑏(𝜀)],   𝑧(𝑡,⋅) ∈ 𝐶[0, 𝜀0],   𝑏(0): = 𝑏∗ 

of a differential-algebraic system  

 𝐴𝑧′ = 𝐵𝑧 + 𝜀𝑍(𝑧, 𝜀), (1) 
which satisfy the boundary condition  

 ℓ𝑧(⋅, 𝜀) = 𝛼. (2) 

Here, ℓ𝑧(⋅, 𝜀) is a linear bounded vector functional:  

 ℓ𝑧(⋅, 𝜀): 𝐶[𝑎, 𝑏(𝜀)] → 𝑅𝑞 . 

The solution of the problem (1), (2) is found in a small neighbourhood of the solution 𝑧0(𝑡) ∈
𝐶1[𝑎, 𝑏∗] of the Noether (𝑞 ≠ 𝑛) differential-algebraic generating boundary value problem  

 0 0 0 ( ) qA B z z Rz        (3) 

The vector function 𝑍(𝑧, 𝜀) we assume to be continuously differentiable with respect to the unknown 

𝑧(𝑡, 𝜀) in a small neighbourhood of the solution of the generating problem and continuously 

differentiable with respect to a small parameter 𝜀 in a small positive neighbourhood of zero. The 
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matrix 𝐴 we assume, in general, to be rectangular: 𝑚 ≠ 𝑛, or square, but degenerate [2, 3, 4]. Under 
the condition  

 𝑃𝐴∗ = 0 (4) 

the generating system (3) is reduced to the traditional system of ordinary differential equations [5]  

 𝑧′0 = 𝐴+𝐵𝑧0 + 𝑃𝐴𝜌0
𝜈0(𝑡); (5) 

here  

 rank 𝐴: = 𝑚 < 𝑛. 
In addition, 𝐴+ is a pseudo-inverse (by Moore-Penrose) matrix, 𝑃𝐴∗ is a matrix-orthoprojector:  

 𝑃𝐴∗: 𝑅𝑚 → 𝑁(𝐴∗), 

𝑃𝐴𝜌0
 is a (𝑛 × 𝜌0) matrix formed from 𝜌0 linearly independent columns of (𝑛 × 𝑛) matrix-

orthoprojector  

 𝑃𝐴: 𝑅𝑛 → 𝑁(𝐴), 
𝜈0(𝑡) ∈ 𝑅𝜌0 is an arbitrary continuous vector function. Under the condition (4) the system (1) we will 
call nondegenerate. In the critical case  

 𝑃𝑄∗ ≠ 0,    𝑄: = ℓ𝑋0(⋅) 

for a fixed vector function 𝜈0(𝑡) ∈ 𝐶[𝑎, 𝑏∗] under the condition  

 𝑃𝑄𝑑
∗ {𝛼 − ℓ𝐾[𝑃𝐴𝜌0

𝜈0(𝑠)](⋅)} = 0 (6) 

the generating problem (3) has 𝑟 parametric family of solutions [5]  

 𝑧0(𝑡, 𝑐𝑟) = 𝑋𝑟(𝑡) 𝑐𝑟 + 𝐺[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡), 𝑐𝑟 ∈ 𝑅𝑟 . 

Here 𝑋0(𝑡) is a normal (𝑋0(𝑎) = 𝐼𝑛) fundamental matrix of the homogeneous part of the differential 

system (5), and 𝐺[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡) is the generalized Green’s operator [3, 5] of the generating periodic 

differential-algebraic boundary value problem (3), 𝐾[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡) is the generalised Green’s 

operator [3, 5] of the Cauchy problem 𝑧(𝑎) = 0 for the differential-algebraic system (3). The matrix 

𝑃𝑄𝑑
∗  is formed from 𝑑 linearly independent rows of the matrix-orthoprojector 𝑃𝑄∗ , and the matrix 𝑃𝑄𝑟

 

is formed from 𝑟 linearly independent columns of the matrix-orthoprojector 𝑃𝑄 . Under the condition 

(4) the system (1) leads to the traditional system of ordinary differential equations  

 𝑧′ = 𝐴+𝐵 𝑧 + 𝑃𝐴𝜌0
𝜈0(𝑡) + 𝜀 𝐴+𝑍(𝑧, 𝜀); (7) 

The periodic boundary value problem for an autonomous system (6) significantly differs [1, 6] from 

similar autonomous boundary value problems by its dependence on an arbitrary vector function 

𝜈0(𝑡) ∈ 𝐶[𝑎, 𝑏∗]. In addition, only in exceptional cases, the autonomous boundary value problem (1), 
(2) is solvable on a segment of fixed length.  

Example 1. Let us find a solution to the autonomous nonlinear differential-algebraic boundary 

value problem for equation 

 𝐴𝑧′ = 𝐵𝑧 + 𝜀 𝑍(𝑧, 𝜀),     𝑡 ∈ [0, 𝑇],    ℓ𝑧(⋅, 𝜀) = 0; (8) 

here,  

 𝐴: = (
1 0 0
0 0 1

) ,    𝐵: = (
0 0 1

−1 0 0
) ,   𝛺: = (

0 0 0
0 0 1

), 

and  

 𝑍(𝑧(𝑡, 𝜀), 𝜀): = 𝛺 𝑧(𝑡, 𝜀)(1 − 𝑧∗(𝑡, 𝜀) 𝑧(𝑡, 𝜀)),     ℓ𝑧(⋅, 𝜀): = 𝑧(0, 𝜀) − 𝑧(𝑇, 𝜀). 
 

The condition (4) is satisfied, so the system (8) is nondegenerate. In this case, the matrix 𝐴 is 

rectangular, and  

 𝜌0 = 1 ≠ 0,   𝑃𝐴𝜌0
= (

0
1
0

), 

therefore, the homogeneous part of the system (8) has a solution that depends on an arbitrary 

continuous function; we put 𝜈0(𝑡): = 0:  

 𝑧0(𝑡, 𝑐) = 𝑋0(𝑡)𝑐 + 𝐾[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡),    𝑐 ∈ 𝑅3 , 

where 
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 𝑋0(𝑡) = (
𝑐𝑜𝑠 𝑡 0 𝑠𝑖𝑛 𝑡

0 1 0
− 𝑠𝑖𝑛 𝑡 0 𝑐𝑜𝑠 𝑡

) ,   𝐾[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡) = (

0
0
0

). 

The generating solution  

 𝑧0(𝑡, 𝑐𝑟) = 𝑧(𝑡, 0),   𝑐𝑟: = (
0
𝑐2

0
) ,   𝑐2 ∈ 𝑅1 

determines the partial solution  

 𝑧(𝑡, 𝜀) = 𝑧0(𝑡, 𝑐𝑟) = 𝑐𝑟  

of nonlinear autonomous differential-algebraic boundary value problem (8) on the segment [0, 𝑇] of 

fixed length.  

2. Necessary condition of solvability 

An autonomous boundary value problem for the system (7) is significantly different from similar 

nonautonomous boundary value problems; in that the length of the interval [𝑎, 𝑏(𝜀)], on which we 
determined the solution of a nonlinear boundary value problem for the system (7), in general, is 

unknown. We will use the technique [1, 6], which consists in representing the unknown function  

 𝑏(𝜀) = 𝑏∗ + 𝜀 (𝑏∗ − 𝑎) 𝛽(𝜀) 

through a new unknown  

 𝛽(𝜀) ∈ 𝐶[0, 𝜀0],   𝛽(0): = 𝛽∗. 

Function 𝛽(𝜀) is to be determined in the process of finding a solution of the boundary value problem 

for the system (7). The technique consists in replacing the of the independent variable  

 𝑡 = 𝑎 + (𝜏 − 𝑎)(1 + 𝜀𝛽(𝜀)) 

and finding the solution of the nonlinear boundary value problem (2), (7) and the function 𝛽(𝜀), as a 

function of a small parameter. In the critical case, under the condition (6) for a fixed function 𝜈0(𝜏) 

the condition of solvability of the nonlinear boundary value problem (2), (7) takes the form  

 𝑃𝑄𝑑
∗ {(1 + 𝜀𝛽(𝜀)) 𝛼 − ℓ𝐾[𝛽(𝜀)(𝐴+𝐵𝑧(𝑠, 𝜀) + 𝑃𝐴𝜌0

𝜈0(𝑠) + (9) 

 +(1 + 𝜀 𝛽(𝜀)) 𝐴+𝑍(𝑧(𝑠, 𝜀), 𝜀)](⋅)} = 0. 

Using the continuity of the nonlinear vector function 𝑍(𝑧(𝑡, 𝜀), 𝜀), on 𝜀 in a small positive 

neighborhood of zero, we find the limit for 𝜀 → 0 in equality (9) and obtain the necessary condition  

 
0

0 0 0 0( ) { [ ( ( ) ( ) ( ( ) 0)]( )} 0
d

r A rQ
F P K A B z s c P s A Z z s cč


  

              (10) 

of existence of a solution to the boundary value problem (1), (2) in the critical case; here  

 
1

0
rrc

Rč


 
  
 
  
 

    

Thus, the following lemma is proved.  

Lemma.  Assume that the autonomous differential-algebraic boundary value problem (1), (2) for a 

fixed constant 𝜈0 ∈ 𝑅𝜌0 under the conditions (4) and (6) represents the critical case 𝑃𝑄∗ ≠ 0 and has 

the solution  

 𝑧(𝑡, 𝜀) = col(𝑧(1)(𝑡, 𝜀), . . . ,   𝑧(𝑛)(𝑡, 𝜀)),   𝑧(𝑖)(⋅, 𝜀) ∈ 𝐶1[𝑎, 𝑏(𝜀)], 

 𝑧(𝑖)(𝑡,⋅) ∈ 𝐶[0, 𝜀0],   𝑖 = 1, 2,   . . . , 𝑛, 

which for 𝜀 = 0 turns into the generating 𝑧(𝑡, 0) = 𝑧0(𝑡, 𝑐𝑟
∗). Then the vector 0č  satisfies equation 

(10).   

The first 𝑟 components of 𝑐𝑟
∗ ∈ 𝑅𝑟  of the root of the equation (10) determine the amplitude of the 

generating solution 𝑧0(𝑡, 𝑐𝑟
∗), in small neighborhood of which the desired solution of the initial 

problem (1), (2) can exist. In addition, from the equation (10) the value 𝛽∗, which determines the first 
approximation to the unknown function  

 𝑏1(𝜀) = 𝑏∗ + 𝜀(𝑏∗ − 𝑎)𝛽∗, 
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can be found. If the equation (10) has no real roots, then the initial differential algebraic problem (1), 
(2) has no desired solutions.  

The equation (10) will be further called the equation for the generating constants of the 

autonomous nonlinear differential-algebraic boundary value problem (1), (2). The statement of the 

lemma generalizes the corresponding results of [1, 6, 7, 9] on the case of an autonomous nonlinear 

differential-algebraic boundary value problem (1), (2), namely, on the case 𝐴 ≠ 𝐼𝑛. Similarly to [1, 6, 

9] we demonstrate that the periodic problem for the system (7) is solvable provided that the roots of 

the equation for the generating constants (10) are simple.  

3. Sufficient condition of solvability 

Assume that the equation for the generating constants (10) has real roots. Fixing one of the 

solutions 0č ∈ 𝑅𝑟+1 of the equation (10), we come to the problem of finding solutions of the problem 

(1), (2)  

 𝑧(𝜏, 𝜀) = 𝑧0(𝜏, 𝑐𝑟
∗) + 𝑥(𝜏, 𝜀) 

in the neighbourhood of the generating solution  

 𝑧0(𝜏, 𝑐𝑟
∗) = 𝑋𝑟(𝜏)𝑐𝑟

∗ + 𝐺[𝑃𝐴𝜌0
𝜈0(𝑠)](𝜏). 

The deviation of 𝑥(𝑡, 𝜀) from the generating solution is determined by the boundary value problem  

 𝑥′ = 𝐴+𝐵𝑥 + 𝜀{𝛽𝐴+𝐵𝑧 + 𝛽𝑃𝐴𝜌0
𝜈0(𝑠) + (1 + 𝜀𝛽)𝐴+𝑍(𝑧, 𝜀)},   ℓ𝑥(⋅, 𝜀) = 0. (11) 

Using the continuous differentiability of the function 𝑍(𝑧, 𝜀) with respect to both the first and second 

arguments in the neighbourhood of the generating solution 𝑧0(𝜏, 𝑐𝑟
∗) and the point 𝜀 = 0, we get the 

expansion of this function  

 𝑍(𝑧0(𝜏, 𝑐𝑟
∗) + 𝑥(𝜏, 𝜀), 𝜀) = 𝑍(𝑧0(𝜏, 𝑐𝑟

∗),0) + 

 +𝐴1(𝜏)𝑥(𝜏, 𝜀) + 𝜀𝐴2(𝜏) + 𝑅(𝑧0(𝜏, 𝑐𝑟
∗) + 𝑥(𝜏, 𝜀), 𝜀), 

where 

A1(𝜏) =
𝜕𝑍(𝑧, 𝜀)

∂z
|

𝑧=𝑧0(𝜏,𝑐𝑟
∗),

𝜀=0,

,   A2(𝜏) =
𝜕𝑍(𝑧, 𝜀)

∂𝜀
|

𝑧=𝑧0(𝜏,𝑐𝑟
∗),

𝜀=0,

 

The residual 𝑅(𝑧(𝜏, 𝜀), 𝜀) of the expansion of the function 𝑍(𝑧(𝜏, 𝜀), 𝜀) of higher order of smallness 

on 𝑥 and 𝜀 in the neighbourhood of the points 𝑥 = 0 and 𝜀 = 0, than the first three terms of the 

expansion, so  

𝑅(𝑧, 𝜀)|
𝑧=𝑧0(𝜏,𝑐𝑟

∗),
𝜀=0,

≡ 0,   

𝜕𝑅(𝑧, 𝜀)

𝜕𝑧 |

𝑧=𝑧0(𝜏,𝑐𝑟
∗),

𝜀=0,

≡ 0,   

𝜕𝑅(𝑧, 𝜀)

𝜕𝜀 |

𝑧=𝑧0(𝜏,𝑐𝑟
∗),

𝜀=0,

≡ 0 

Let us denote by (𝑑 × (𝑟 + 1)) the dimensional matrix  

 𝐵0 = −𝑃𝑄𝑑
∗ ℓ𝐾{𝐴+[𝛽∗𝐵 + 𝐴1(𝑠)]𝑋𝑟(𝑠);  𝑃𝐴𝜌0

𝜈0(𝑠) + 𝐴+𝐵𝑧0(𝑠, 𝑐𝑟
∗)}(⋅). 

In the critical case, under the condition (6) for a fixed function 𝜈0(𝜏) and the solution 0č  of equation 

(10) the solution of the nonlinear boundary value problem (11) has the form  

 𝑥(𝜏, 𝜀) = 𝑋𝑟(𝜏)𝑐𝑟(𝜀) + 𝑥(1)(𝜏, 𝜀); 

here,  

 𝑥(1)(𝜏, 𝜀): = 𝜀 𝐺[𝛽𝐴+𝐵𝑧 + 𝛽𝑃𝐴𝜌0
𝜈0(𝑠) + (1 + 𝜀𝛽) 𝐴+𝑍(𝑧, 𝜀)](𝜏). 

and  

 𝛽(𝜀): = 𝛽∗ + 𝛾(𝜀),    𝑐(𝜀): = col(𝑐𝑟(𝜀), 𝛽(𝜀)) ∈ 𝐶[0, 𝜀0], 

while the condition of solvability of the nonlinear boundary value problem (11) leads to the equation  

 𝐵0𝑐(𝜀) = −𝑃𝑄𝑑
∗ ℓ𝐾{𝛽∗𝐴 + 𝐵𝑥(1)(𝑠, 𝜀) + 𝐴+[𝜀𝐴2(𝑠) + 𝑅(𝑧(𝑠, 𝜀), 𝜀)]}(⋅), 

which solvable under the condition [1, 10, 11]  

 𝑃𝐵0
∗𝑃𝑄𝑑

∗ ℓ𝐾{𝛽∗𝐴 + 𝐵𝑥(1)(𝑠, 𝜀) + 𝐴+[𝜀𝐴2(𝑠) + 𝑅(𝑧(𝑠, 𝜀), 𝜀)]}(⋅) = 0. 
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In particular, the condition of solvability of the nonlinear boundary value problem (11) is satisfied in 
the case of  

 𝑃𝐵0
∗𝑃𝑄𝑑

∗ = 0. (12) 

Thus, under the condition (12) we get an operator system that is equivalent to the problem of finding 
solutions of the boundary value problem (1), (2)  

 𝑧(𝜏, 𝜀) = 𝑧0(𝜏, 𝑐𝑟
∗) + 𝑥(𝜏, 𝜀),   𝑥(𝜏, 𝜀) = 𝑋𝑟(𝜏)𝑐𝑟(𝜀) + 𝑥(1)(𝜏, 𝜀), 

 𝑥(1)(𝜏, 𝜀): = 𝜀𝐺[𝛽𝐴+𝐵𝑧 + 𝛽𝑃𝐴𝜌0
𝜈0(𝑠) + (1 + 𝜀𝛽)𝐴+𝑍(𝑧, 𝜀)](𝜏), 

 𝑐(𝜀) = −𝐵0
+𝑃𝑄𝑑

∗ ℓ𝐾{𝛽∗𝐴 + 𝐵𝑥(1)(𝑠, 𝜀) + 𝐴+[𝜀𝐴2(𝑠) + 𝑅(𝑧(𝑠, 𝜀), 𝜀)]}(⋅). (13) 

The operator system (13) belongs to the class of systems for which the method of simple iterations is 

applicable [1]. Thus, the following theorem is proved.  

Theorem.  Assume that the autonomous differential-algebraic boundary value problem (1), (2) for 

a fixed constant 𝜈0 ∈ 𝑅𝜌0  under the conditions (4) and (6) represents the critical case 𝑃𝑄∗ ≠ 0. 

Suppose also that the equation for the generating constants (10) has real roots. Under the conditions 

(4), (6) and (12) for the fixed function 𝜈0(𝜏) and for the solution 0č  of equation (10) the operator 

system (13) is equivalent to the problem of finding solutions of the boundary value problem (1), (2) 

and has at least one solution. To find the solution to the operator system (13) the method of simple 
iteration is applicable.   

For finding the solution of the autonomous boundary value problem (1), (2) in the neighbourhood 

of the generating solution, the Newton-Kantorovich method can also be used [8].  

Example 2. Let’s find a solution to the autonomous nonlinear differential-algebraic boundary 
value problem for the equation  

 𝐴𝑧′ = 𝐵𝑧 + 𝜀 𝑍(𝑧, 𝜀),    𝑡 ∈ [0, 𝑇],   ℓ𝑧(⋅, 𝜀) = 0; (14) 

here  

 𝐴: = (1 0 0
0 0 1

) ,   𝐵: = ( 0 1 1
−1 0 0

) ,    𝛺: = (1 0 0
0 0 1

) ,   𝑧(𝑡, 𝜀): = (

𝑢(𝑡, 𝜀)
𝑣(𝑡, 𝜀)
𝑤(𝑡, 𝜀)

), 

and  

 𝑍(𝑧(𝑡, 𝜀), 𝜀): = (
𝑢(𝑡, 𝜀)𝑣(𝑡, 𝜀)

𝑢(𝑡, 𝜀)𝑣(𝑡, 𝜀)
) ,   ℓ𝑧(⋅, 𝜀): = 𝑧(0, 𝜀) − 𝑧(𝑇, 𝜀). 

Since the condition (4) is satisfied, the system (14) is nondegenerate. In this case, the matrix 𝐴 is 

rectangular, and  

 𝜌0 = 1 ≠ 0,    𝑃𝐴𝜌0
= (

0
1
0

), 

so the homogeneous part of the system (14) has a solution that depends on an arbitrary continuous 

function; we put 𝜈0(𝑡): = 𝑐𝑜𝑠 3 𝑡:  

 𝑧0(𝑡, 𝑐) = 𝑋0(𝑡) 𝑐 + 𝐾[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡),   𝑐 ∈ 𝑅3, 

where 

 𝑋0(𝑡) = (
𝑐𝑜𝑠 𝑡 𝑠𝑖𝑛 𝑡 𝑠𝑖𝑛 𝑡

0 1 0
− 𝑠𝑖𝑛 𝑡 −1 + 𝑐𝑜𝑠 𝑡 𝑐𝑜𝑠 𝑡

) ,   𝐾[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡) =

1

24
(

3 𝑐𝑜𝑠 𝑡 − 3 𝑐𝑜𝑠 3 𝑡
8 𝑠𝑖𝑛 3 𝑡

−3 𝑠𝑖𝑛 𝑡 + 𝑠𝑖𝑛 3 𝑡
). 

In this case, the condition (6) is satisfied, so the linear part of the problem (14) has a solution that 

depends on the continuous function 𝜈0(𝑡): = 𝑐𝑜𝑠 3 𝑡:  
 𝑧0(𝑡, 𝑐𝑟) = 𝑋𝑟(𝑡)𝑐 + 𝐺[𝑃𝐴𝜌0

𝜈0(𝑠)](𝑡),   𝑋𝑟(𝑡): = 𝑋0(𝑡); 

here  
 𝐺[𝑃𝐴𝜌0

𝜈0(𝑠)](𝑡) = 𝐾[𝑃𝐴𝜌0
𝜈0(𝑠)](𝑡),   𝑐𝑟 ∈ 𝑅3. 

The equation for the generating constants (10) has a real root  

 4 3
0

1

0 0

1

r

r

c
R c Rč 



 
   
 
  
 

 
 

        
 
 
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which corresponds to the full rank matrix  

 𝐵0 =
𝜋

8
 (

0 1 0 16
0 17 0 −16

), 

thus, the condition of solvability (12) of the nonlinear boundary value problem (14) is satisfied.  

Proposed in this paper scheme for studying a nonlinear autonomous boundary value problem for a 

nondegenerate system of differential-algebraic equations [12,13,14,15,16,17,18] can be, analogously 
[5], transferred to degenerate systems of differential-algebraic equations in the same way. For finding 

the solution of an autonomous boundary value problem for a nondegenerate system of differential-

algebraic equations (1), (2) the main requirement is the solvability requirement (12), which is 
equivalent to the condition of simplicity of the roots of the equation for the generating constants (10) 

[1, 6]. The scheme for studying a nonlinear autonomous boundary value problem for a nondegenerate 

system of differential-algebraic equations proposed in this paper can be similarly transferred to 
systems of differential-algebraic equations with a variable rank of derivative matrix.  
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