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Abstract  
Report is devoted to obtaining the conditions of the input-to-state stability for the discrete linear 

systems in the Banach and Hilbert spaces. For the nonlinear boundary-value problem we found 

a necessary condition for the existence of bounded solutions. Such condition was obtained with 

using of the system of operator equations for generating elements. Moreover, conditions of the 

controllability and reachability were obtained with using of the operator matrix equation. 

Estimates on the norms of solutions were obtained under assumption that the corresponding 

linear interconnected system admits a discrete dichotomy. For the boundary-value problem 

conditions of solvability were obtained and examples of boundary conditions were represented. 

Controllability conditions were obtained in the case when the corresponding set of controls are 

constant. We consider the so-called resonance ill-posed problem when the uniqueness can be 

disturbed, and corresponding linear interconnected system can have solutions not for any right-

hand sides. 
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1. Introduction 

Weakly nonlinear boundary-value problems for the discrete equations plays an important role in 

the qualitative theory of dynamical systems. We consider conditions of the solvability for such 

interconnected systems with linear boundary conditions. Interconnected systems use as a model for 

investigations in applied sciences (see [1]). Moreover, the notion of input-to-state stability with 

corresponding estimates for such system is a very popular direction in the last years (see [2]). That’s 

why we obtain input-to-state stability estimates and corresponding controllability conditions. It should 

be noted that this work is additional. We formulate general statement of the problem in nonlinear case 

but represent and prove the main results only in linear case. In the future works we use these results for 

investigating of nonlinear case and try to formulate chaotic conditions (in the weaklier sense than in 

[4]- [10]).  It should be noted the papers [11], [12]. 

1.1. Statement of the problem 

Consider the following interconnected system of nonlinear equations  

𝑥𝑖(𝑛 + 1, 𝜀) = 𝐴𝑖(𝑛)𝑥𝑖(𝑛, 𝜀) + 𝐵𝑖(𝑛)𝑢𝑖(𝑛) + ℎ𝑖(𝑛) +  

                        +  𝜀𝑅𝑖 (𝑥1(𝑛, 𝜀), … , 𝑥𝑖−1(𝑛, 𝜀), 𝑥𝑖+1(𝑛, 𝜀), … , 𝑥𝑝(𝑛, 𝜀)) , 𝑛𝜖𝑍, 𝑖 = 1, 𝑝̅̅ ̅̅̅                        (1) 

with boundary conditions 
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                                                                           𝑙𝑖𝑥𝑖(∙, 𝜀) = 𝛼𝑖 ,                                                                           (2) 

where 𝐴𝑖(𝑛), 𝐵𝑖(𝑛) ∶ 𝐵 → 𝐵 - are a set of bounded operators, from the Banach space B into itself.  

Assume that 

                                𝐴𝑖 = (𝐴𝑖(𝑛))𝑛∈𝑍 ∈ 𝑙∞(𝑍, 𝐿
(𝐵)),  𝐵𝑖 = (𝐵𝑖(𝑛))𝑛∈𝑍 ∈ 𝑙∞(𝑍, 𝐿

(𝐵)),  

ℎ𝑖 = (ℎ𝑖(𝑛))𝑛∈𝑍 ∈ 𝑙∞
(𝑍, 𝐵).  

It means that: 

                  |||𝐴𝑖||| =  𝑠𝑢𝑝𝑛∈𝑍||𝐴𝑖(𝑛)|| <  + ∞, |||ℎ𝑖||| =  𝑠𝑢𝑝𝑛∈𝑍||ℎ𝑖(𝑛)|| <  +∞, 

                                                                              𝑙𝑖: 𝑙∞(𝑍, 𝐵) → 𝐵𝑆 

are the linear and bounded operators which translates bounded solutions of (1) into the Banach space 

BS, αi are the elements of Banach space BS. We find conditions of the existence of bounded solutions 

(1), (2) which turn (ε = 0) in one of the bounded solutions of generating boundary-value problem 

                                        𝑥𝑖
0(𝑛 + 1) =  𝐴𝑖(𝑛)𝑥𝑖

0(𝑛) + 𝐵𝑖(𝑛)𝑢𝑖(𝑛) + ℎ𝑖(𝑛),𝑛 ∈ 𝑍, 𝑖 =  1, 𝑝̅̅ ̅̅ ̅       (3) 

                                                                                𝑙𝑖𝑥𝑖
0(∙) = 𝛼𝑖 .                                                            (4) 

First, we formulate the conditions for the existence of bounded solutions of the equation (3) and    

boundary value problem (3), (4). The corresponding homogeneous system of difference equations has 

the following form:   

                                                 𝑥𝑖(𝑛 + 1) = 𝐴𝑖(𝑛)𝑥𝑖(𝑛).                                                             (5) 

It should be noted that an arbitrary solution of a homogeneous system can be represented as: 𝑥𝑖(𝑚) =
 Φ𝑖(𝑚, 𝑛)𝑥𝑖(𝑛),𝑚 ≥ 𝑛, where:  

Φ𝑖(𝑚, 𝑛) = {
𝐴𝑖(𝑚 − 1)𝐴𝑖(𝑚 − 2)…𝐴𝑖(𝑛), 𝑖𝑓 𝑚 > 𝑛 
𝐼,                                                        𝑖𝑓 𝑚 = 𝑛 

. 

It is clear, that  

Φ𝑖(𝑚, 0 ) =  𝐴𝑖(𝑚 − 1)𝐴𝑖(𝑚 − 2)…𝐴𝑖(0). 

Also, we denote  

𝑈𝑖(𝑚):= Φ𝑖(𝑚, 0) and 𝑈𝑖(0) = 𝐼. 

Traditionally [12], the mappings Φ𝑖(𝑚, 𝑛) are called the evolutionary operators of the problem 

(5). Suppose that the system (5) is exponentially dichotomous [4, 12] on the semiaxes 𝑍+ and 𝑍− with 

projectors 𝑃𝑖 and 𝑄𝑖 in the space B respectively, which means that there are projectors 

𝑃𝑖  (𝑃𝑖
2 = 𝑃𝑖) and 𝑄𝑖  (𝑄𝑖

2 = 𝑄𝑖), 

constants  

𝑘1,2
𝑖 ≥ 1, 0 <  𝜆1,2

(𝑖) < 1 

such that 

{
 

 ||𝑈𝑖(𝑛)𝑃𝑖𝑈𝑖
−1(𝑚)|| ≤ 𝑘1

𝑖 (𝜆1
(𝑖))

𝑛−𝑚

, 𝑛 ≥ 𝑚

||𝑈𝑖(𝑛)(𝐼 −  𝑃𝑖)𝑈𝑖
−1(𝑚)|| ≤ 𝑘1

𝑖 (𝜆1
(𝑖))

𝑚−𝑛
, 𝑚 ≥ 𝑛 

, 

for arbitrary 𝑚, 𝑛 ∈ 𝑍+ (dichotomy on 𝑍+).  

{
 

 ||𝑈𝑖(𝑛)𝑄𝑖𝑈𝑖
−1(𝑚)|| ≤ 𝑘2

𝑖 (𝜆2
(𝑖))

𝑛−𝑚

, 𝑛 ≥ 𝑚

||𝑈𝑖(𝑛)(𝐼 −  𝑄𝑖)𝑈𝑖
−1(𝑚)|| ≤ 𝑘2

𝑖 (𝜆2
(𝑖))

𝑚−𝑛
, 𝑚 ≥ 𝑛 

, 

for arbitrary 𝑚, 𝑛 ∈ 𝑍− (dichotomy on 𝑍−). 
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2. Main results. Linear case. Banach space case  

In this part we obtain the necessary and sufficient conditions of the existence of the sets of bounded 

solutions for the linear generating boundary-value problems (3), (4) and controllability conditions. 

2.1. Bounded solutions. Linear case 

We formulate an auxiliary lemma which we will use when obtaining the main results (first lemma 

directly follows from the well-known results of [4], [12]). 

Lemma 1. Suppose that a homogeneous system is dichotomous on the semi-axes 𝑍+ and 𝑍− with 

projectors  𝑃𝑖 and 𝑄𝑖 respectively, and the operators 

𝐷𝑖 = 𝑃𝑖 − (𝐼 − 𝑄𝑖): 𝐵 → 𝐵 

are generalized invertible [5].  The solutions of the equation (1) bounded on the entire axis 𝑍 exist if 

and only if the following conditions are satisfied: 

                                               ∑ 𝐻𝑖(𝑘 + 1)(ℎ𝑖(𝑘) + 𝐵𝑖(𝑘)𝑢𝑖(𝑘)) =  0.
+∞
𝑘= −∞                                           (6) 

If the conditions (6) hold, the set of bounded solutions has the following view: 

                                𝑥𝑖
0 (𝑛, 𝑐𝑖) =  𝑈𝑖(𝑛)𝑃𝑖𝑃𝑁(𝐷𝑖)𝑐𝑖 + (𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(𝑛),    𝑐𝑖  ∈ 𝐵                 (7) 

where 𝐺𝑖 are generalized inverse Green’s operators [12, 13] on 𝑍 with the following properties: 

(𝐿𝑖𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(𝑛) =  𝐵𝑖(𝑛)𝑢𝑖(𝑛) + ℎ𝑖(𝑛), 𝑛 ∈ 𝑍, 

where 

(𝐿𝑖𝑥𝑖)(𝑛) ≔ 𝑥𝑖(𝑛 + 1) − 𝐴𝑖(𝑛)𝑥𝑖(𝑛): 𝑙∞(𝑍, 𝐵) → 𝑙∞(𝑍, 𝐵), 

𝐻𝑖(𝑘 + 1) =  𝑃𝐵𝐷𝑄𝑖𝑈𝑖
−1(𝑘 + 1), 

 𝐷𝑖
−are generalized inverse to the operators 𝐷𝑖,  

projectors 𝑃𝑁(𝐷𝑖) = 𝐼 − 𝐷𝑖
−𝐷𝑖  and 𝑃𝐵𝐷𝑖

= 𝐼 − 𝐷𝑖𝐷𝑖
− (see [3], [13]), 

which project space B on the kernels 𝑁(𝐷𝑖) of the operators 𝐷𝑖 and the subspaces 𝐵𝐷𝑖 ≔ 𝐵 ⊝ 𝑅(𝐷𝑖) 

respectively (𝐵 = 𝐵𝐷𝑖⨁𝑅(𝐷𝑖) ). 

Remark 1. We have the following estimates for the norm of the solutions: 

||𝑥𝑖
0(𝑛, 𝑐𝑖)|| ≤ 𝑘1

𝑖 (𝜆1
𝑖 )
𝑛
||𝑃𝑁(𝐷𝑖)𝑐𝑖|| + 𝑘1

𝑖 (𝜆1
𝑖 )
𝑛
||𝐷𝑖

−|| (
𝑘1
𝑖 𝜆1
𝑖

1− 𝜆1
𝑖 + 

𝑘2
𝑖𝜆2
𝑖

1− 𝜆2
𝑖 ) (|||ℎ𝑖||| + |||𝐵𝑖||| |||𝑢𝑖|||) +

 𝑘1
𝑖
(1+ 𝜆1

𝑖 −(𝜆1
𝑖 )
𝑛
)

1− 𝜆1
𝑖 (|||ℎ𝑖||| + |||𝐵𝑖||| |||𝑢𝑖|||) , 𝑛 ≥ 0,                                                                             (8)                                                                  

||𝑥𝑖
0(𝑛, 𝑐𝑖)|| ≤ 𝑘2

𝑖 (𝜆2
𝑖 )
−𝑛
||𝑃𝑁(𝐷𝑖)𝑐𝑖|| +  𝑘2

𝑖 (𝜆2
𝑖 )
−𝑛
||𝐷𝑖

−|| (
𝑘1
𝑖 𝜆1
𝑖

1− 𝜆1
𝑖 + 

𝑘2
𝑖 𝜆2
𝑖

1− 𝜆2
𝑖 ) (|||ℎ𝑖||| +

  |||𝐵𝑖||| |||𝑢𝑖|||) + 𝑘2
𝑖
(1+ 𝜆2

𝑖 −(𝜆2
𝑖 )
−𝑛+1

)

1− 𝜆2
𝑖 (|||ℎ𝑖||| + |||𝐵𝑖||| |||𝑢𝑖|||) , 𝑛 ≤ 0.                                        (9)                               

From these inequalities follows the estimates 

|||𝑥𝑖
0||| ≤ 𝐾𝑖 ||𝑃𝑁(𝐷𝑖)𝑐𝑖|| + 𝐾𝑖||𝐷𝑖

−|| (
𝑘1
𝑖 𝜆1
𝑖

1− 𝜆1
𝑖 + 

𝑘2
𝑖 𝜆2
𝑖

1− 𝜆2
𝑖 ) (|||ℎ𝑖||| + |||𝐵𝑖||| |||𝑢𝑖|||) +   

+ 𝐾𝑖
1+ Λ1

𝑖

1− 𝛬2
𝑖 (|||ℎ𝑖||| + |||𝐵𝑖||| |||𝑢𝑖|||),                                                                                                (10)                                                                        

where 𝐾𝑖 = 𝑚𝑎𝑥{𝑘1
𝑖 , 𝑘2

𝑖 }, 𝛬1
𝑖 = 𝑚𝑎𝑥{𝜆1

𝑖 , 𝜆2
𝑖 }, 𝛬2

𝑖 = 𝑚𝑖𝑛{𝜆1
𝑖 , 𝜆2

𝑖 }. 

Remark 2. It should also be noted that if bounded solutions are united together at zero as follows: 

𝑥𝑖(0 + ) =  𝑥𝑖(0 − ) + 𝑐𝑖 , 
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where 𝑐𝑖 are the elements of Banach space, then we obtain a bounded solutions for the problem with a 

jump. 

Let us find the solvability condition of the generating boundary-value problem (3), (4). Suppose that 

condition (6) is satisfied. Substitute expression (7) in the boundary condition (2). Then we obtain the 

operator equations which can be represented in the following form: 

                                                                      𝑉𝑖𝑐𝑖 = 𝛼𝑖 − 𝑙𝑖(𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(∙),                                         (11) 

where 𝑉𝑖 = 𝑙𝑖𝑈𝑖(∙)𝑃𝑖𝑃(𝑁(𝐷𝑖)): 𝐵 → 𝐵𝑆.  If the operators 𝑉𝑖 are generalized invertible [6], then equation 

(11) is solvable [6] if and only if the following conditions are satisfied: 

                                                                𝑃
𝑉𝐵1
𝑖 (𝛼𝑖 − 𝑙𝑖(𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(∙)) = 0,                                       (12) 

where 𝑃
𝑉𝐵𝑆
𝑖 = 𝐼 − 𝑉𝑖𝑉𝑖

− (𝐵𝑆 = 𝑅(𝑉𝑖)⨁𝑉𝐵𝐵𝑆
𝑖 ). Under conditions (12) the sets of solutions of the system 

(11) have the following forms  

                                 𝑐𝑖 = 𝑉𝑖
−(𝛼𝑖 − 𝑙𝑖(𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(∙)) +  𝑃𝑁(𝑉𝑖)𝑐�̅� , 𝑐�̅�𝜖𝐵.    

Thus, we obtain the following theorem. 

Theorem 1. Under condition (6) boundary-value problem (3), (4) has bounded solutions if and  

only if the conditions (12) are satisfied.  The sets of bounded solutions have the following form: 

                              𝑥𝑖(𝑛, 𝑐�̅�) =  𝑈𝑖(𝑛)𝑃𝑖𝑃𝑁(𝐷𝑖)𝑃𝑁(𝑉𝑖)𝑐�̅� + (�̅�𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖 , 𝛼𝑖])(𝑛),                           (13) 

where (�̅�𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖 , 𝛼𝑖])(𝑛) are generalized Green’s operators in the form 

(�̅�𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖 , 𝛼𝑖])(𝑛) =  (𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(𝑛) + 

                                 + 𝑈𝑖(𝑛)𝑃𝑖𝑃𝑁(𝐷𝑖)𝑉𝑖
−(𝛼𝑖 − 𝑙𝑖(𝐺𝑖[ℎ𝑖 + 𝐵𝑖𝑢𝑖])(∙)).                                    (14) 

Remark 3. It should be noted that the operators 𝑙𝑖 in (2) can be for example represent two-point 

or multi-point boundary-value problems:  

𝑙𝑖𝑥𝑖(∙) =  𝐴1
𝑖 𝑥𝑖(𝑚) − 𝐴2

𝑖 𝑥𝑖(0),        𝑙𝑖𝑥𝑖(∙) =∑𝐶𝑖(𝑗)𝑥𝑖(𝑚𝑗),

𝑛

𝑗=1

 

where 𝑚,𝑚𝑗 ∈ 𝑍, 𝐶𝑖(𝑗) ∈ 𝐿(𝐵, 𝐵𝑆), 𝑗 = 1, 𝑛̅̅ ̅̅ ̅  are linear and bounded operators. Another example is 

conditions at the infinity: 

𝑙𝑖𝑥𝑖(∙) =  𝐴1
𝑖  𝑙𝑖𝑚
𝑛→−∞

𝑥𝑖(𝑛) + 𝐴2
𝑖 𝑙𝑖𝑚
𝑛 →+∞

𝑥𝑖(𝑛).  

Moreover, boundary-value problems (3), (4) in the represented form are the systems of independent 

boundary-value problems. We can consider more general linear boundary conditions (instead of (4)) 

in the forms:  

                                                              ∑ 𝑙𝑘𝑥𝑘
0(∙) = 𝜌,   𝜌 𝜖 𝐵𝑆.𝑝

𝑘=1                                                            (15) 

In such way we obtain boundary-value problem with components of system 𝑥𝑖
0 which can connect by 

the condition (15). 

2.2. Bounded solutions. Nonlinear case 

Using theorem 1 we can obtain necessary condition of the existence of the sets of bounded solutions 

for the nonlinear boundary-value problem (1), (2). Suppose that generating boundary-value problem 

(3), (4) is solvable. It means that the conditions (6), (12) are satisfied. In this case we can easily obtain 

the following theorem. 

Theorem 2. (Necessary condition). Suppose that conditions (6), (12) (the sets of solutions (3), (4) 

has the form (13)) are satisfied and nonlinear problem (1), (2) has bounded solutions. Then 𝑐�̅� from the 

Banach space B (see (13)) satisfy the following operator system for the generating elements: 
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𝐹𝑖
1(𝑐1̅, 𝑐2̅,… , 𝑐�̅�) ≔ ∑ 𝐻𝑖(𝑘 + 1)𝑅𝑖(𝑥1

0(𝑘, 𝑐1̅), … , 𝑥𝑖−1
0 (𝑘, 𝑐�̅�−1), 𝑥𝑖+1

0 (𝑘, 𝑐�̅�+1), … , 𝑥𝑝
0(𝑘, 𝑐�̅�) ) =  0

+∞

𝑘= −∞

 

𝐹𝑖
2(𝑐1̅, 𝑐2̅, … , 𝑐�̅�) ≔ 𝑃

𝑉𝐵1
𝑖  (𝑙𝑖(𝐺𝑖(𝑅𝑖(𝑥1

0(∙, 𝑐1̅), … , 𝑥𝑖−1
0 (∙, 𝑐�̅�−1), 𝑥𝑖+1

0 (∙, 𝑐�̅�+1), … , 𝑥𝑝
0(∙, 𝑐�̅�) ))(∙)) =  0. 

2.3. Controllability conditions 

Consider the case when the controllability sequences 𝑢𝑖(𝑛) =  𝑢𝑖 are fixed for any n. Then, 

conditions of reachability take the form of solvability of the following systems of operator equations: 

                                                                               𝑄𝑖𝑢𝑖 = 𝑔𝑖 ,                                                                      (16) 

                                                                      𝑅𝑖𝑢𝑖 = 𝑤𝑖 ,                                                                      (17) 

where the corresponding operators 𝑄𝑖 , 𝑅𝑖 and elements 𝑔𝑖 , 𝑤𝑖 have the following form  

                                       𝑄𝑖 = ∑ 𝐻𝑖(𝑘 + 1)𝐵𝑖(𝑘),     𝑔𝑖 = −∑ 𝐻𝑖(𝑘 + 1)ℎ𝑖(𝑘),
+∞
𝑘= −∞

+∞
𝑘= −∞         

                                       𝑅𝑖 =  𝑃𝑉𝐵1
𝑖 𝑙𝑖(𝐺𝑖[𝐵𝑖])(∙),                  𝑤𝑖 = 𝑃𝑉𝐵1

𝑖 (𝛼𝑖 − 𝑙𝑖(𝐺𝑖[ℎ𝑖])(∙)).        

We can rewrite the systems of operator equations (16), (17) in the form of matrix operator equation 

                                       𝑢 = 𝐺,    𝐵0: 𝐵
𝑝 → (𝐵 × 𝐵1)

𝑝, 𝑢 ∈ 𝐵𝑝, 𝐺 ∈ (𝐵 × 𝐵1)
𝑝,                           (18) 

where  

𝐵0 =

(

 
 
 
 
 

  [
𝑄1
𝑅1
]       0           …         0   

0  [
𝑄2
𝑅2
]        …         0

…   

           0             0           …      [
𝑄𝑝
𝑅𝑝
]     

)

 
 
 
 
 

,                    𝑢 = (

𝑢1
𝑢2
…
𝑢𝑝

),                      𝐺 =  

(

 
 
 

[
𝑔1
𝑤1
]

[
𝑔2
𝑤2
]

…

[
𝑔𝑝
𝑤𝑝
]
)

 
 
 

. 

If the operator 𝐵0 is generalized invertible [6], then we can obtain the following theorem. 

Theorem 2. (Reachability conditions). Under condition 

                                                                         𝑃𝑁(𝐵0∗)𝐺 = 0,                                                     (19) 

the linear generating boundary-value problem (3), (4) is controllable. The sets of controls can be 

represented in the following form: 

               𝑢 =  𝐵0
−𝐺 + 𝑃𝑁(𝐵0)𝑣,     for any 𝑣 = (𝑣1

1 , 𝑣1
2 , 𝑣2

1, 𝑣2
2, … , 𝑣𝑝

1, 𝑣𝑝
2) ∈ (𝐵 × 𝐵1)

𝑝.       (20) 

Remark 4. Substituting solutions (20) in (13) we obtain the set of bounded solutions with 

corresponding set of controls u. 

Theorem 3. (Input-to-state stability conditions (see [1]-[3]). It is easy to show that under conditions 

of the existence of bounded solutions from the inequalities (8), (9) we have the following estimates for 

any bounded solution of (3), (4)  

||𝑥𝑖
0(𝑛, 𝑐�̅�)|| ≤ 𝑀𝑖(𝜆1

𝑖 )
𝑛
(||𝑃𝑁(𝐷𝑖)𝑃𝑁(𝑉𝑖)𝑐�̅�|| + ||𝛼𝑖||) +  𝛾𝑖 (|||ℎ𝑖|||) +  𝛾𝑖 (|||𝐵𝑖||| |||𝑢𝑖|||) , 𝑛 ≥ 0, 

||𝑥𝑖
0(𝑛, 𝑐�̅�)|| ≤ 𝑀𝑖(𝜆2

𝑖 )
−𝑛
(||𝑃𝑁(𝐷𝑖)𝑃𝑁(𝑉𝑖)𝑐�̅�|| + ||𝛼𝑖||) + 𝛾𝑖 (|||ℎ𝑖|||) + 𝛾𝑖 (|||𝐵𝑖||| |||𝑢𝑖|||) , 𝑛 ≤ 0, 

with corresponding constants 𝑀𝑖 and functions 𝛾𝑖. 

Remark 5. Presented theorem gives us conditions of the input-to-state stability and chaoticity (see 

also [1],[11]). 
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Remark 6. It should be noted that in more general case the linear and bounded operators 𝑙𝑖 can 

translate bounded solutions of (1) into different spaces (instead of BS we can use 𝐵𝑆𝑖, where 𝐵𝑆𝑖   are 

Banash spaces and 𝐵𝑆𝑖  ≠ 𝐵𝑆𝑗). 
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