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Abstract
Recent advancements in artificial intelligence, particularly in large language models (LLMs), have sparked
interest in their application to knowledge engineering (KE) tasks. While existing research has primarily
explored the utilisation of LLMs for constructing and completing semantic resources such as ontologies
and knowledge graphs, the evaluation of these resources- addressing quality issues- has not yet been
thoroughly investigated. To address this gap, we propose an LLM-driven approach for the verification
of ontology restrictions. We replicate our previously conducted human-in-the-loop experiment using
ChatGPT-4 instead of human contributors to assess whether comparable ontology verification results
can be obtained. We find that (1) ChatGPT-4 achieves intermediate-to-expert scores on an ontology
modelling qualification test; (2) the model performs ontology restriction verification with accuracy of
92.22%; (3) combining model answers on the same ontology axiom represented in different formalisms
improves the accuracy to 96.67%; and (4) higher accuracy is observed in identifying defects related to the
incompleteness of ontology axioms compared to errors due to restrictions misuse. Our results highlight
the potential of LLMs in supporting knowledge engineering tasks and outline future research directions
in the area.
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1. Introduction

Knowledge graphs (KGs) conceptualise real-world knowledge and act as a foundational com-
ponent in many advanced intelligent application harnessing human knowledge [1]. With the
emergence of the 3rd wave of AI [2], KGs and other semantic resources such as taxonomies and
ontologies have been explored for their potential benefit to machine learning models [3, 4, 5].
Nevertheless, ensuring the quality of the knowledge corpus is crucial for preventing incorrect
outputs, bias and potential harm caused by the enabled systems.

The evaluation of semantic resources plays a key role in ensuring the quality of these
resources, yet it is a time and cost intensive task [6, 7]. While automated approaches can detect
some quality issues, such as logical inconsistencies, there is also a family of errors that require
a human-centric judgement to be detected (e.g, concepts not aligned with human cognition,
inaccurately represented domain facts) [6]. While the traditional approach of involving a domain
expert for the evaluation has been complemented by human computation & crowdsourcing
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approaches, which leverage the wisdom of the crowds at a reduced cost, the evaluation of large
semantic resources remains a challenge.

Large language models (LLMs) have shown performance similar to humans on a number of
natural language tasks, typically requiring commonsense or domain knowledge thus reducing
the needed human intervention [8]. With recent advances of LLMs and their application in a
broad range of tasks, an interest into the synergy between LLMs and knowledge engineering
(KE) has emerged: in [9] a road map of current and future research directions combining
LLMs and KGs is proposed; LLM-based support for knowledge engineering tasks, part of
the CommonKADS [10] knowledge engineering methodology is discussed in [11]; ontology
engineer’s role changes and potential benefits from LLM-advancements are presented in [12].

While LLM-enabled KG construction and completion have gained considerable research
attention (e.g., [13, 14, 15, 16]), other knowledge engineering tasks such as the quality assessment
of semantic resources with LLMs have not yet been sufficiently explored. In this paper, we
address this gap by performing an experimental investigation of the capabilities of LLMs in
identifying quality issues of semantic resources.

Since ontologies serve as a basis for KGs and capturemore complex structures than taxonomies
we focus on them in this paper. Building on our prior work on human-in-the-loop (HiL) ontology
evaluation [17], we perform a differentiated replication, substituting semi-experts through
ChatGPT-4, for one particular ontology evaluation task - the verification of ontology restrictions.
We explore to what extent LLMs’ capabilities to verify ontology axioms are comparable to the
judgements obtained from human contributors.

We experimentwith several settings varying the representational formalism inwhich ontology
axioms are included in the prompt and show that ChatGPT-4 reaches verification accuracy of up
to 96.67%, nearly matching the benchmark of 100% accuracy attained through human majority
votes. Our investigation further reveals that: (1) the ontology axiom representation used in the
prompts influence the verification scores; (2) a majority-voting strategy combining responses
from differently designed prompts can yield recall improvements; and (3) incomplete axioms
are easily detected by the model while axioms containing improperly used restrictions are more
challenging to identify.

The rest of the paper is structured as follows: In Sect. 2 we discuss related work. We give
an overview of the performed replication study and how each component from the original
experiment was adopted in Sect. 3. In Sect. 4 we describe our LLM-based ontology verification
approach and discuss results in Sect. 5. Limitations, lessons learned and future work are
summarised in Sect. 6.

2. Related Work

Our study intersects with two main research areas: First, we discuss the application of (L)LMs
within knowledge engineering tasks, incorporating an evaluation component. Second, we
present studies approaching human-centric evaluation tasks using LLMs or exploring the extent
of knowledge that LLMs possess.



(L)LM-augmented knowledge engineering tasks. The support of LLMs for KG construc-
tion and completion has attracted much research interest in recent years (e.g., the LM-KBC
challenge1). However other knowledge engineering tasks such as the evaluation of semantic
resources have not yet received much attention or have been included as secondary tasks.

The identification of incorrect KG triples has been briefly addressed in [8] as part of a
KG generation process. However, no concrete quantitative results or comparison with other
automatic/ manual approaches is provided. As part of a KG link prediction approach, PKGC [18]
includes an LM-binary classification of predicted triples as correct or incorrect where triples
are represented in natural language sentences. The triple classification model reaches up to
86.2% accuracy, suggesting the potential of (L)LM-assisted KG evaluation.

In this paper we focus on the LLM-based evaluation of ontology restrictions and the detection
of concrete defect types - a KE task, to the best of our knowledge, not yet explored with LLMs. In
addition, we investigate the effects of different ontology representations (i.e., when axioms are
presented in a machine-readable format versus as natural language sentences) on the verification
performance.

Human-in-the-loop vs LLM-in-the-loop. Recently, the authors of [19] compared the per-
formance of LLMs and human contributors when presented with the task of evaluating the
quality of (automatically) generated text and found that models such as ChatGPT provided
ratings similar to the experts’ judgements. Additionally, the authors identified that LLMs bring
some additional benefits: (1) compared to human judgements which may vary across groups and
time points LLMs provided more reproducible results; (2) each text sample was independently
evaluated by the models while human contributors tend to draw comparisons between different
samples; and (3) LLMs offer a cheaper and faster task completion. Nevertheless, the paper also
outlines current LLM challenges such as potentially presenting incorrect factual knowledge or
biased perspectives.

Additionally, several approaches have been taken to assess LLMs using qualification exams.
For instance, in [20] a comparison between the scores of LLMs and post-graduate students
is presented on multiple-choice questions in the clinical chemistry domain. They show that
ChatGPT-4’ scores match the best student scores while ChatGPT-3.5, Bing and Bard scored
above average.

Inspired by the results in other domains, in this work, we performed a comparison between
ChatGPT-4 and human contributors’ skills in verifying ontology axioms - a task requiring
logical reasoning, which LLMs have been previously shown to mostly lack [12].

3. Method

We investigate an LLM-enhanced ontology restrictions verification approach by performing
a differentiated replication [21] of our prior experiment [17] where we tackle the verification
problem from a human-in-the-loop perspective. In this sectionwe summarise themain objectives

1Knowledge Base Construction from Pre-trained Language Models (LM-KBC): https://lm-kbc.github.io/chal-
lenge2023/



of the original HiL experiment and how each experiment component was adopted to fit an LLM
solution utilising ChatGPT-4 in place of human intelligence.

3.1. Human-in-the-loop ontology verification experiment

In [17] we performed an experimental investigation of a human-in-the-loop ontology restriction
verification approach. On one hand, the study aimed at understanding the effect of prior
background knowledge on the verification results. On the other hand, we explored the influence
of the ontology axiom representation on the quality of the collected judgements. In particular,
we investigated the textual formalisms proposed by Rector [22] and Warren [23] and the visual
notation VOWL [24]. The HiL experiment contained three main components- a pre-study, the
experiment itself and a post-study, which we briefly describe next.

Pre-study. The pre-study consisted in the assessment of human contributors’ background
knowledge both subjectively (self-assessment test) and objectively through a qualification test2.
Based on the test scores participants were classified in four skill groups having no/little/some/ex-
pert knowledge. The self-assessment test contained several background areas: English, formal
logics, general modelling skills, ontology modelling skills, and crowdsourcing experience.

The qualification test aimed at assessing only ontology modelling skills and more concretely
the modelling of ontology restrictions. It included ontology axioms represented in each of the
three formalism (i.e., Rector, Warren, VOWL) in order not to bias the investigated influence of
the formalism on the final verification results.

As part of the pre-study stage, the experiment included a short tutorial in order to familiarise
the participants with the used crowdsourcing platform.

Experiment. The main study component consisted in the verification of 30 ontology axioms
from the well known Pizza Ontology3. Half of these axioms were correct while the other half
were either incomplete (i.e., missing universal or existential restriction) or included a misused
restriction (i.e, universal restriction incorrectly used in-place of an existential one). As part of
the verification, axioms are either classified as correct or a specific defect is selected from a set
of possible answers based on a defect taxonomy. Additional context is provided in the form of
a pizza menu item. Each axiom is verified independently from the rest- as a separate Human
Intelligence Task (HIT)4 and the order of axioms is randomised for each participant.

Post-Study. Once the study participants completed the ontology axiom verifications, they
were asked to complete a feedback questionnaire. The form included questions about their
experience and preferences towards an ontology representational formalism.

2The utilised self-assessment and qualification tests are available in [25].
3Pizza Ontology: https://protege.stanford.edu/ontologies/pizza/pizza.owl.
4The Human Intelligence Tasks designed for the original experiment are available in [25].



3.2. Differentiated replication experiment utilising ChatGPT

In this work, we replicate the pre-study and experiment stages of the HiL experiment, described
in Sect. 3.1 using ChatGPT-4 instead of human contributors. We aim at gathering insights of
whether LLMs have some ontologymodelling skills and the use of which ontology representation
leads to the best verification results.

During the experiment replication we encountered issues with ChatGPT-4’s functionality to
interpret the graphical ontology models represented in VOWL. Thus, we opted for Turtle5 as
an alternative for the replication. Given that the original experiment separately investigated
the different representational formalisms, we believe that this substitution does not impact the
outcomes of this replication study.

Figure 1 provides an overview of the conducted replication and the adaptation of the experi-
ment components, which we discuss next.
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Verification Prompt
Pizza Axiom 1

 [Rector formalism]

Rector Verification

Verification Prompt
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Figure 1: Overview of the main stages of the experiment replication: a pre-study and an experiment.

Pre-study. As a first step of the pre-study replication, we prompted ChatGPT to assess
its level of background knowledge using the same self-assessment test developed for human
contributors. An example question from the ontology modelling category is shown in Fig. 2. As
in the original experiment, for each assessed area additional context was provided describing
what each knowledge level entails (2 in Fig. 2).

Next, we conducted the qualification test in 4 different setups which varied by the axiom
representation in the test questions: 3 instances used a single formalism (Rector or Warren
or Turtle) while the last setup included all 3 alternative representations for each ontology
axiom. Figure 3 shows an example question from the qualification test. For each question,
instructions to follow are included (1 in Fig. 3), together with one or more ontology axioms (2)
and the question to be answered based on the provided axioms (3). Following the qualification
classification schema designed for the HiL experiment, we categorise ChatGPT’s ontology
modelling knowledge as no/little/some/expert according to the achieved test scores.

5Terse RDF Triple Language: https://www.w3.org/TR/turtle/
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Figure 2: An example question from the self-assessment test prompt showing: (1) the assessed area, (2)
skill level descriptions of the no/little/some/expert knowledge expertise on ontology modelling, and (3)
the assessment question.

Instructions

Ontology Axioms
(Rector formalism)

Qualification
Question
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2
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Figure 3: An example from the qualification test prompt on ontology modelling displaying (1) the
question instructions, (2) ontology axioms in the Rector formalism, and (3) the qualification question.

The pre-study replication omitted the tutorial-component since its main objective was to
familiarise human contributors with the used verification platform. Nevertheless, the examples
from the tutorial were used in the investigation of the prompting strategy for the experiment as
described next.

Experiment. For the replication experiment we used the same 30 pizza axioms as in the
original study. The verification of the axioms is performed in 3 settings (in 3 separate ChatGPT
conversations) where prompts utilise either the Rector, Warren or Turtle representational formal-



ism. The pizza axioms are sent in a randomised order and each axiom is verified independently
from the rest as a separate prompt.

We investigated different in-context learning prompt strategies prior to the verification of the
30 pizza axioms until promising results were obtained. For this purpose we used axiom examples
which were included in the HITs instructions and tutorial from the original experiment (assets
available in [25]).

We attempted a zero-shot approach for which the prompt included the instructions, the
ontology axiom, context and verification question from the HITs used in the HiL experiment.
Several prompt formulations were tested: e.g., adding “Think step by step” in the prompt, adding
additional theoretical explanations in the instructions, etc. Nevertheless this approach did not
deliver satisfactory results.

Human intelligence tasks typically provide human contributors not only with a set of rules to
follow but with a number of examples. Similarly, a few-shot approach provides the model with a
few annotated examples together with the instructions to use for completing the task [26]. There-
fore, we continued the investigation with a few-shot strategy providing additional examples
taken from the HIT instructions.

In Sect. 4 we provide an in-depth description of the LLM-driven approach utilising the
few-prompt strategy for the verification of ontology restrictions.

4. LLM-Enhanced Ontology Verification

We propose an LLM-based approach towards the verification of ontology restrictions through
the identification of concrete defects. Our approach builds on top of our prior work on HiL
ontology verification and consists of the following main steps visualised in Fig. 4:

Ontology Axioms
Extraction

Ontology Axioms
Formalisation

Ontology Verification

[Instructions][Examples]

Verify Axiom 1

Defect in Axiom 1

Verify Axiom n
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.

.

.
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Figure 4: Overview of the LLM-based approach for ontology restriction verification.



Step 1: Ontology axioms extraction. Modelling defects are typically not related to a single
triple but instead result from the incorrect modelling of a set of logical constrains describing
an ontology relation. Therefore, as a first step, ontology axioms, each describing a specific
ontology relation are extracted.

Step 2: Ontology axiom formalisation. In this step the extracted axioms are translated
into a formalism of choice in which the axioms will be used in the prompts. One possibility is to
use the original formalism of the axioms (e.g., Turtle). Two alternative textual representations
of ontology axioms are proposed by Rector [22] and Warren [23]. For Steps 1&2 we reuse our
implementations developed in the context of HiL ontology verification [7, 27].

Step 3: Ontology verification. A few-shot approach, using assets from [25], is employed
to verify the ontology axioms. An example prompt representing the ontology axioms in the
Warren formalism is shown in Fig. 5. The prompt includes the verification question (1 in Fig. 5)
and possible answer options (2) corresponding to a defect taxonomy. Additionally, as context a
real-world entity is included (3) together with four annotated examples with justification of
their correctness or an explanation of the included defect (4). In Fig. 5 two examples have been
omitted to allow for a better readability.

Afterwards, each axiom is sent for verification in a single prompt containing only (1) the
context, (2) the ontology axiom model and (3) the verification question as exemplified in Fig. 6.

5. ChatGPT-4 Replication Study Results

In this section, we describe the results of the differentiated experiment for which we used
ChatGPT-4 for the verification of ontology axioms. In Sect. 5.1 we present our findings from
the pre-study, while the verification scores are discussed in Sect. 5.2.

5.1. Background knowledge assessment

On all questions of the self-assessment test ChatGPT-4 rated its skills at the highest level
provided, that is expert knowledge. In Fig. 7 the response to the exemplary question from Fig. 2
is included with a short justification of the selection.

The qualification test classified ChatGPT-4 in the intermediate category in the setups where
axioms were provided in a single formalism while the combination test categorised ChatGPT-4
as an expert. The mistakes made vary among the different representations with the exception
of one question (shown in Fig. 3) which was answered incorrectly in every test instance. The
pre-requisite for answering this question correctly is to know that the universal restriction can
be trivially satisfied, that is: there can be a common instance of PetLoverTypeG & PetLoverTypeF
that has no pets at all, therefore the classes are not disjoint. ChatGPT-4’s response (Fig. 8)
indicates that the model relies on common-sense thinking rather than applying such knowledge
on ontology modelling.

Additionally, we apply a majority vote aggregation of the three single-formalism test answers
which lead to equivalent results as the combined qualification test and the classification of
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Figure 5: A part of the initial verification prompt including the (1) verification question, (2) possible
answer options corresponding to the defect taxonomy, (3) a context item and (4) examples of correct
and incorrect ontology axioms (Warren formalism).
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3 Verification Question
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Figure 6: Verification prompt of the ”Spicy Pizza” ontology axiom (Warren formalism).

the model as an expert. This findings indicate that alternative formulations can be added in
the same prompt or results from different prompts can be aggregated to overcome the prompt
character limit to improve the model’s performance. These insights could be applied to other
domains where different phrasing of the tasks can be generated to potentially achieve better



results on LLM-supported tasks.

Figure 7: ChatGPT-4’s self-assessment of its ontology modelling skills as a response to the self-
assessment question shown in Fig 2.

Figure 8: ChatGPT-4’s incorrect answer to Question 8 shown in Fig. 3

Based on the observations gathered in the pre-study, we argue that ChatGPT-4’s knowledge
of ontology modelling is comparable to that of the junior-experts who participated in our
original HiL experiment where most participants were classified in the intermediate and expert
categories (for more details see [17]).

5.2. Axiom verification performance

Overall results. We used ChatGPT-4 to verify a total of 90 axioms (30 axioms each represented
in 3 formalisms) and achieved a 92.22% accuracy of the verifications. In comparison, in the
human-in-the-loop approach we collected 2629 verifications (90 axioms, each verified by several
human contributors) with an overall accuracy of 92.58%. These findings show that ChatGPT-
4 performs as well as an average human evaluator. However, in the human computation
& crowdsourcing domain it is rather rare that tasks are performed by a single contributor.
Instead each task is sent to a number of participants (the crowd) and the collected answers
are aggregated, e.g., trough majority voting. After a majority vote aggregation of the human
judgements in the original HiL experiment a 100% accuracy of the verification was achieved.

Since the qualification test results showed that aggregating results of different formalisms for
each axioms leads to improved scores, we applied the majority vote strategy to ChatGPT-4’s
axiom verifications. For the 30 axioms the verification accuracy improves to 96.67%. Additionally,
this aggregated approach leads to a recall of 100% (see Table 1).

Formalism-based results. The verification accuracy of ChatGPT-4 varies across the used
representational formalisms. In Table 1 we present the achieved performance in each setting
with a comparison to the HiL approach.



While the qualification test scores did not indicate a difference among the textual representa-
tions Rector&Warren and the machine-readable format Turtle, the results from the Turtle-based
verification of the axioms are considerably lower (86.67%).

Highest accuracy scores were achieved when the prompt included the Warren ontology
representations- the accuracy is equivalent to the ChatGPT-majority aggregation approach
(96.67%), outperforming the correctness of the individual human judgements (91.74%). Moreover,
the precision of this setting reaches 100% and thus matching the crowd majority vote.

The results also indicate that the ChatGPT aggregated majority judgements reach 100% recall
while having a slightly lower precision. One possible future work direction would be to design
a Find-Verify workflow (e.g., as in the HiL approach from [28]) including (1) a defect detection
stage following a ChatGPT majority vote strategy and (2) a round of verification with the
Warren formalism (or a human-in-the-loop).

Table 1
Overview of the ontology verification scores achieved with ChatGPT-4 compared to the human-in-
the-loop approach from [17]: Overall performance across all verified axioms, results based on selected
formalism and scores from the ChatGPT formalism majority aggregation.

ChatGPT-4 Human Contributor

accuracy precision recall F1 individual
judgements

accuracy =precision=recall=F1
(majority vote)

overall 92.22% 93.18% 91.11% 92.13% 92.58% 100%
Rector 93.33% 93.33% 93.33% 93.33% 92.28% 100%
Warren 96.67% 100% 93.33% 96.55% 91.74% 100%
Turtle 86.67% 86.67% 86.67% 86.67% - -
VOWL - - - - 93.76% 100%

aggregated
(majority vote) 96.67% 93.33% 100% 96.55%

Defect-based results. ChatGPT-4 showed varying levels of performance in identifying
different types of defects in the ontology axioms. Correct axioms were identified as correct with
an accuracy of 93.33% while all (100% accuracy) incompleteness-related defects were correctly
detected. In contrast, the misuse of the restrictions was more challenging to detect and resulted
in only 73.33% correctly identified misuse-defects. In the inaccurate verifications the wrong
defect type was selected, nevertheless, the axioms were still identified as incorrect. This results
strengthen the idea of a Find-Verify workflow, where potential defect candidates could be selected
and sent for further verification.

6. Conclusion

The evaluation of semantic resources such as knowledge graphs, ontologies and taxonomies is
traditionally a time-intensive and expensive task since it requires the involvement of domain
experts or crowd-workers. In this paper we explore the capabilities of LLMs, in particular
ChatGPT-4, for evaluating ontology restrictions by replicating our previously conducted human-
in-the-loop experiment [17].



We used our previously developed ontology modelling qualification test (available in [25]) and
report that ChatGPT achieved intermediate to expert scores. In particular when a single axiom
representation (either Rector [22], Warren [23], or Turtle) is provided in the prompts the results
were intermediate. However, when provided with a combination of the three representations
for each ontology axiom, the model was classified as an expert with 10/11 correctly answered
questions.

Additionally, ChatGPT-4 correctly verified 92,22% of the ontology axioms across the different
representation settings. We show that the answers on the same ontology model sent in different
representational formats can be combined and with a majority voting strategy the accuracy
could be improved up to 96.67%. This results are comparable to semi-experts’ responses which
provided 92,58% correct judgements and 100% majority vote accuracy.

Moreover, we observe a difference in ChatGPT-4’s performance based on the used ontology
representations and while the Warren textual representation delivers best results in terms of
precision (100%), when combining the model responses on different representations we could
improve the recall (100%). Lastly, we look at the accuracy in identifying different defect types
and find that the model correctly identified a missing restriction in the axiom every time. In
contrast, the misuse of the restrictions showed to be a more challenging task for ChatGPT-4
being achieved with 73.33% accuracy.

Study insights. We gained several interesting insights that can potentially be applied to
other knowledge engineering tasks where LLMs are included:

• Resource verbalisation. We achieved highest verification results when the ontology axioms
were represented in natural language. The concrete language used also played a role in
the performance. Therefore, the verbalisation of semantic resources in the LLM-supported
knowledge engineering tasks should be carefully considered.

• Turle as a complementary asset. The results obtained when using Tutle were considerably
lower, however, when combined with natural language they lead to improved results.

• HiL inspiration. Overall, there are many similarities between human intelligence tasks
and LLM prompts. Tasks designed following human computation & crowdsourcing
methodologies can be applied to LLM prompting with little to no modifications. As
such, the nascent field of LLM-based KE could benefit from earlier findings in the human
computation & crowdsourcing field.

Limitations and open research questions. While this paper presents first insights into the
verification of ontology restrictions with LLMs, the following limitations can lead to further
research:

• Pizza ontology. We used a very simple ontology where no particular domain knowledge
was required. Further investigations are needed to understandwhether comparable results
can be obtained when a less-known or more complex resource is verified. Nevertheless
by using the same ontology we utilised in our prior work, we could provide a clear
comparison between human contributors and ChatGPT-4.



• Extended experiments. While in this work we only focused on a single ontology and a
small set of defect types, further exploration is needed as to whether LLMs’ capability
could support other modelling verification tasks (e.g., identifying the incorrect use of
“some not” in place of “not some”) and domain-dependant assessments (e.g, detection of
incorrect domain knowledge). Moreover, a comparison of the performance of different
LLMs on the verification tasks could provide a better overview of the feasibility of the
tasks.

• Verification workflows. We identify that different prompting settings have certain benefits
to the overall performance scores. Further explorations are needed on how to best combine
different LLM settings when the number and types of verification tasks increases.

In this paper we present first insights into the strengths and weaknesses of large language
models for ontology evaluation tasks compared to human contributors. We plan to conduct a
number of follow-up studies to explore the generalizability of the findings to further verification
tasks and ontology domains and formalise a human-LLM evaluation workflow addressing the
scalability challenge of current HiL evaluation approaches.
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