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Abstract
Developing a battery ontology to represent battery management knowledge is crucial in the new
sustainable and green energy era. As battery production revenue is projected to exceed 300 billion
US dollars annually by 2030, researchers are exploring new battery materials, models, standards, and
manufacturing processes. AI and ML methods are being employed to manage battery manufacturing
and enhance performance. Data representation techniques and formats are important for enhancing
the expressiveness of battery data and improving battery quality. This paper presents an ontology for
creating a battery knowledge graph to address data interoperability challenges and share battery data
among different actors. The battery ontology includes various types of knowledge, such as domain
knowledge, battery applications, and core battery-specific knowledge. The ontology was evaluated
through competency questions and usability tests. It aims to enhance battery production and design
by facilitating efficient communication and data exchange between battery management systems and
applications. This research has significant societal, economic, and environmental impacts as it contributes
to developing more efficient and sustainable batteries.
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1. Introduction

Batteries are essential resources in the new era of sustainable and green energy. Designers,
engineers & industries need cheaper, safer and more energy-efficient batteries [1]. According
to the World Economic Forum battery production revenue will grow to more than 300 billion
US dollars annually by 2030 [2]. In the past few years, a lot of research has been conducted
in battery cell failures of materials including electrodes [3, 4, 5, 6, 7, 8, 9, 10, 11]. Some of the
methods for live delamination detection in battery cell material include the electrical resistance
methods [12, 13], electrical potential methods [14, 15], electromagnetic damage detectionmethod
[16, 17], hybrid electromagnetic method [18, 19], self-sensing electrical resistance-based damage
detection method [20, 21, 22]. Today, more research topics are being pursued to develop and
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produce large, high-performance, sustainable batteries. Battery data can play a key role in
developing new battery materials, models, battery standards, manufacturing processes and
battery ecosystem [23]. Lithium-ion batteries are the most advanced technology in the battery
ecosystem [24].
Advances in AI and ML methods are used to manage battery manufacturing and improve

insights into anatomy to improve performance and to target measures of errors and safety
parameters in the production and designing of green batteries [25]. With the help of AI and
ML methods, we can manage battery production, improve performance, and minimize errors
and safety concerns. The utilization of these technologies in the production and designing of
green batteries has enabled us to create batteries that are not only environment-friendly but
also efficient in their performance [26].

Data representation techniques and formats play a crucial role in enhancing the expressiveness
of data. With the help of various data representation techniques, we can transform the raw data
into a more structured and meaningful format that can be easily processed and analyzed [27].
These techniques include but are not limited to data modelling, data visualization, and data
compression. By implementing these techniques, we can gain valuable insights into battery
production and performance, which can help us in improving the overall quality of batteries [28].
One of the challenges in battery manufacturing is the integration of data from different sources.
Various laboratories and factories are producing batteries online and locally, generating large
amounts of battery data. As diverse sources generate and handle data in distinct ways, datasets
may differ in terms of their formats, metadata, or terminologies and be handled differently [1].
Therefore, integrating data from various sources becomes a significant challenge. This is where
the concept of data interoperability comes into play.
Data interoperability refers to the ability of different systems, devices, and applications to

communicate, exchange data, and use information effectively. This can be achieved by using
common data-sharing standards and paradigms [29]. A variety of data representation techniques
and formats can be entertained to enhance the expressiveness of the data. This characteristic
helps to improve the data interoperability challenges from various data sources with com-
mon data-sharing standards and paradigms in different contexts of Battery ecosystems. This
knowledge-sharing phenomenon helps to build common vocabulary or taxonomies that help to
facilitate the end users, knowledge workers, domain users and potential customers to retrieve
relevant information according to their needs and demands in a specific context. Collaborative
knowledge-sharing plays a crucial role in addressing data interoperability challenges. We can
facilitate information retrieval for end users, knowledge workers, domain users, and potential
customers by sharing knowledge and building a shared vocabulary or taxonomy.
The utilization of AI and ML methods, data representation techniques, and collaborative

knowledge-sharing approaches can significantly improve battery production and design. By
addressing the challenges of data interoperability, we can enable effective communication and
exchange of data between different systems, devices, and applications. The standardization
of terminologies and the use of common data-sharing standards can improve the efficiency of
battery manufacturing and design [29]. The battery research generates more data which needs
to be managed and utilised in a better way for sustainable batteries and large-scale production.
Data interoperability refers to integrating different source data to ensure that different systems
and applications create and exchange a clear meaning of data. Implementing reliable approaches



for the interoperability of battery data is essential to fully exploit advanced techniques in battery
research and development [1].

Ontologies can play an important role in semantic interoperability between enterprise appli-
cations to exchange information. An ontology is an explicit specification of a conceptualization
and can be used to build conceptual models to represent the specific domains semantically
[30]. Semantic interoperability is the ability to exchange data with unambiguous and shared
meaning. Ontologies ensure that exchanged information between different systems and applica-
tions is understandable [31]. Ontologies can be used to address data interoperability problems
by providing a common vocabulary or a set of agreed-upon terms and concepts for different
data sources to use. This facilitates the exchange of information between different systems
and enables data to be shared more easily and effectively. Ontologies can be used to define
relationships between concepts, establish taxonomies and classifications, and provide semantic
annotations for data.

In this paper, we present an ontology which has been developed to represent battery data. This
ontology has been developed to incorporate battery knowledge to use in practical applications
and create a knowledge graph for the battery management system. This ontology is a first step
towards developing an ontology-based framework to utilize battery data and share knowledge
between battery actors to solve the data interoperability issue. The primary data was given in
textual format and knowledge extraction was done manually and validated by battery domain
experts.

The rest of the paper is organised as follows. Section 2 discusses the previous work about the
field. Section 3 presents the ontology development method. Section 4 describes the battology
developed to represent the battery knowledge. Section 5 presents the results and evaluation of
the ontology. The discussion is concluded with future work in section 6.

2. Related Work

This section presents principles and methods for data integration, data integration techniques,
and data representation and integration with ontologies in battery space and its landscape. This
section presents principles and methods for data integration, data integration techniques, and
data representation and integration with ontologies in battery space and its landscape.

2.1. Principles and Methods of Data Integration

Designing a data integration system is a trivial task combining data residing at different sources
and providing the user with a unified view of these data [32]. From a data integration perspective,
the sources contain real data, while the global schema provides a reconciled, integrated, and
virtual view of the underlying sources. Two basic approaches have been proposed. The first
approach, called global-as-view, requires that the global schema is expressed in terms of the
data sources. The second approach, called local-as-view, requires the global schema to be
specified independently from the sources and the relationship between the global schema
[32]. The phenomenon of data integration can be achieved by deploying various methods
such as manual integration, middleware integration, application-based integration, uniform
access user interface, and creating a common database at different levels of abstraction. Manual



data integration is the extensive process of integrating all different data sources without any
automation. Middleware data integration is an abstraction layer used to integrate different
applications and transfer data through this layer to different data sources. Application-based
integration is a method where software applications are responsible for locating, retrieving and
integrating data from different sources and interlinked systems [33, 34]. A uniform access user
interface relates to the ability to integrate data from multiple dispersed sources and present
it uniformly. Creation of the common database approach requires all data of interest to be
manually migrated to the new data repository [35]. Developing uniform data access does
not require manual data integration, migration of data, or additional storage space. Semantic
heterogeneity of the source data repository itself is a trivial task and a difficult job to develop
uniform data access. So in this study, we present an ontological framework as a solution to
address data heterogeneity solution for battery data management using semantic web techniques
such as ontologies and knowledge graph techniques [36, 37].

2.2. Data Integration Techniques for Battery Data Management

The phenomenon of data integration can be achieved using different semantic techniques,
programming languages and standards with common exchange protocols and different data
formats to support data across several data sources [38]. These techniques provide a semantic
layer that serves to facilitate and allow machines to read, understand and interpret data which
comes from different data repositories [39]. This layer is responsible for sharing and reuse across
diverse applications and systems, converting structured and semi-structured web documents
and unstructured data in the form of tacit knowledge, especially competence models, into a
unified form of data that allows the expression of basic semantics in a way machines can process
and understand [39, 40]. The machine-readable data can be produced through the creation of a
schema comprising marked and interlinked characteristics such as defined terms, properties and
formal relationships of various sources [41]. Semantic techniques, especially ontologies, provide
definitions for the rules of representation and the establishment of relationship hierarchies,
and this allows for the contextualization of data points by linked data through the supply of
additional information on data [42]. A wide of semantic technologies and standards are used to
develop the integration layer using different data integration techniques such as Unicode and
URI Layer [43], RDF (Resource Description Framework) model [41], RDFS (Resource Description
Framework Schema) [40], Ontology Layer [44] and developed conceptual model using ontology-
driven language RDF, OWL [45], Cryptography layer and Unifying Logic Layer [43]. In this
study, we utilize some of the above-mentioned techniques to address the wicked challenge of
data integration and interoperability issues in battery management and its landscape.

2.3. Data Representation and Integration with Ontologies in Battery
Management

In data, the ecosystem comprises a wide array of complex heterogeneous data sources and their
semantic interoperability issues, such as Meaning, Granularity, Temporal, and Structural, can
be achieved by using ontologies and ontology standards, including RDF, OWL and SPARQL
[46], especially in battery management landscape [1]. Modern battery management targets



affordable, high-performance, and sustainable battery design; these endeavours are held back
by the lack of common battery and vocabulary standards, as well as machine-readable tools
to support interoperability. A battery ontology offers an effective means to unify battery-
related activities across different fields, accelerate the flow of knowledge in both human-and
machine-read-able formats, and support the integration of artificial intelligence (AI) in battery
development [1]. However, ontologies have been applied with great success in life science but
have already developed some ontologies in battery management which are real contributions in
battery and material science. These ontologies, such as EMMO (Elementary Multiperspective
Material Ontology) is, supported by European Materials Modelling Council (EMMC) [1] and
use RoMM vocabulary that is used as a basis for the model data (MODA) template and Li-Ion
battery Ontology [47] in battery management [48]. In developing domain-oriented ontologies
in the battery management space, a number of methods have been put forward for building
ontologies or models. Ontology 101 proposes a very simple but practical guide for building
an ontology using an ontology editing environment, such as Protege [49]. METHONTOLOGY
contributes with a general framework for ontology development, which defines the main
activities that people need to carry out when building an ontology, and outlines three different
processes: management, technical, and supporting [50]. Similarly, the OTK Methodology
is focused on application-driven ontology development [51, 52]. In this study, we utilize
collaborative methodology for the development of domain-oriented ontology and models using
ontology design patterns (ODPs) for battery management and resolving data integration and
interoperability issues [53].

3. The Battery Ontology and Development Method

In this section, we describe how our ontology was developed along with basic battery concepts
and battery domain knowledge.

3.1. Ontology Development

The field of Ontology Engineering (OE) develops ontologies that can be further refined, updated,
and extended by adding new knowledge [54]. The development of an ontology is a complex
process that includes different activities to define, develop, and maintain the ontology. Different
methods have been suggested to develop an ontology. However, we do not have one specific or
standard ontology development methodology in the field of OE. The ontology development
process depends on the purpose, domain, and application of ontologies to determine what
activities are to be involved in it.

Methontology [50] suggested the ontology lifecycle based on the experiences of the authors
of ontology development. The suggested framework consists of six phases: specification,
conceptualization, formalization, integration, implementation, and maintenance. These phases
are supported by the lifecycle suggested by planning, acquiring knowledge, documenting, and
evaluating.
Ontology Development 101 [49] provides guidelines and proposes the different steps to

develop an ontology: determining the domain and scope, reusing existing ontologies, enumerating
important terms, defining classes and class hierarchy, defining the properties, defining the facets,



and creating instances. [55] proposed a methodology for ontology development to support the
Semantic Web application which contains four phases: Requirements analysis, Development of
ontology, implementation and evaluation and maintenance of the ontology. An agile methodology
has also been proposed to develop ontology by adopting the specific agile principles and
practices from software engineering [56]. The agile methodology proposes four phases: pre-
game, development, post-game, and support activities.

A variety of different ontology development methods and approaches such as Methontology
[50] and Ontology Development 101 [49] can be found in the literature related to Ontology
Engineering. Almost all methodologies focus on manual ontology development where On-
tology Engineers alone or along with domain experts are involved in creating ontology from
scratch or reusing existing ontologies in the ontology development process [57]. The ontology
development process can be categorized into four main phases: Pre-development, Development
and Implementation, Evaluation, Maintenance and Enrichment of an ontology. Each phase can
have different activities depending on requirements, domain, and application of the ontology.

• The pre-development phase specifies the requirement, purpose and scope of the ontology.
Generally, Ontology Engineers and Domain Experts are involved in the Pre-development
process for specification and acquisition of knowledge.

• The development and implementation phase identifies and defines ontology elements such
as concepts, properties, instances and axioms. This phase performs different activities,
including building the conceptual model of an ontology, and defining concepts, instances
and their relations in an ontology. Ontology Learning research mainly focuses on this
phase to automate the ontology development process.

• The Evaluation phase analyses and checks if the developed ontology fulfils the needs
and represents the required knowledge to achieve the defined purpose of the ontology.
Competency Questions (CQs) are mainly used to evaluate an ontology by finding answers
to predefined questions. Ontology Experts along with Domain Experts define CQs for
evaluating an ontology. Reasoners, such as Pellets and Fact++, are used to check the
consistency of an ontology in the evaluation.

• The Maintenance and Enrichment phase updates the developed ontology according to
the evaluation’s results and adds new knowledge to the ontology if it is necessary.

The general ontology development process has been applied to develop the battery ontology.
The ontology developers develop the initial draft of the ontology in the pre-development phase.
In this phase domain resources about the battery are explored for acquisition and specification of
the ontology. In the Development and implementation phase, ontology developers conceptualize
and implement the ontology. The development tool used was the Protégé. Pellet reasoner [58]
was used to check the consistency of the ontology. Ontology developers along with domain
engineers worked in pairs for the evaluation phase to improve and enhance the ontology. The
development and evaluation phases have been repeated several times. Figure 1 shows the
general process applied during the battery ontology development.



Figure 1: The Ontology Development Process

3.2. Batteries and their characteristics

There are different types of batteries such as Primary and secondary. Each battery has different
characteristics and can be used in many other applications. Each battery is made of material.
Different batteries have different characteristics. The most common characteristics of a battery
can be as follows:

• Voltage - The voltage of a battery is a measure of the potential difference between its
terminals and is expressed in volts (V). Different types of batteries have different nominal
voltages, and the voltage of a battery can vary during charge and discharge cycles.

• Cycle Life - The number of times a battery can be charged and discharged before its
performance deteriorates. Cycle life measures a battery’s durability and is an important
factor for applications where a battery will be used repeatedly over its lifetime, such as in
electric vehicles.

• Specific Energy - Specific energy is the amount of energy a battery can store per unit of
mass or volume. High specific energy allows for a longer driving range on a single charge
in applications where energy density is important, such as electric vehicles. A higher
specific energy indicates a more energy-dense battery in a smaller and lighter package.

• Specific Power - Specific power is a measure of a battery’s power output per unit mass
or volume. It is a key metric for applications where size and weight are important
considerations, such as in portable electronics and electric vehicles. A higher specific
power indicates a more powerful battery in a smaller and lighter package.

• Safety - How safe the battery is to handle, use, store and transport. Batteries can pose a
safety risk if they overheat, catch fire, leak, or explode and therefore are designed with
safety features such as overcharge and short-circuit protection.

• Performance - As a measure of battery performance, we refer to the voltage, capacity,
and energy output of the battery over its lifetime. Several factors can negatively impact
the performance of a device over time, such as ageing, repeated charging and discharging,
and exposure to extreme temperatures. A battery’s performance can vary according to
its operating conditions and usage pattern. Higher-performing batteries will provide a
more reliable and consistent output of power over time.

• Life Span - The lifespan of a battery refers to the number of cycles it can undergo before
it no longer functions effectively or reaches the end of its usable life. A battery’s lifespan is



determined by various factors, including its type, design, manufacturing quality, operating
conditions, and usage patterns.

• Charge Limit - The charge limit of a battery refers to the maximum amount of energy
that can be stored in the battery without causing damage. Overcharging a battery beyond
its charge limit can cause permanent damage to the battery, shorten its lifespan, and
reduce its performance.

• Self Charge or Discharge Rate - The rate at which a battery can be charged and
discharged safely without affecting its performance or lifespan.

4. Overview of Battery Ontology

Figure 2 shows a holistic view of the battery management ontology that contains different
entities involved in the process and the relations between them for making real-time synergy
and realization. The main objective of ontology is to represent the core knowledge about the
battery domain and its characteristics in terms of use in different applications. This ontology
includes three types of knowledge: 1) a meta-model of the battery domain and 2) the domain
knowledge of the battery applications, and 3) core battery-specific knowledge.

Figure 2: Holistic view of Ontology-based Implementation of the Battery management model

It describes different small taxonomies, including primary batteries, secondary batteries,
primary battery properties, secondary battery properties, and applications. Taxonomy is a
classification system used in knowledge management (KM) to organize and categorize infor-
mation. It involves creating a hierarchical structure that groups related concepts based on
their characteristics, attributes, or relationships. In KM, taxonomy can be used to maintain a
hierarchical information structure that is easy to navigate and understand, making it easier to
find the information needed.

It explains the working mechanism between different taxonomies and follows a triplet pattern
(e.g., subject, predicate, object). For instance, Battery is used in various applications such as
military combat, healthcare, automotive, transmitter and general applications. Similarly, the



Battery entity is made of the Material entity (e.g., Lithium Nickel Manganese Cobalt Oxide
(LiNiMnCoO2)). It also creates some association links with primary and secondary battery
properties such as primary-related load, primary voltage cut-off, primary-related capacity,
nominal-voltage, discharge-CRate, and battery type. It can also be applied to secondary battery
properties such as secondary battery toxicity, peak load current, safety requirements, overcharge
tolerance, operating temperature, maintenance requirements, in-use since (time), internal
resistance, fast-charge time, specific energy, cycle-life, cell-voltage, battery-cost, self-discharge.

The following success scenario in figure 3 explains the true demonstration of these properties,
which describes primary batteries’ properties’ associations with battery instance and their
instance values for better understanding and realization.

Success Scenario: In the context of battery management, the primary battery is a subclass
of battery and its instance, such as Alkaline-Manganese, which linked up with different entities
instances to make the personalized KGs. The instance Alkaline-Manganese and its association
with other entities. For example, the primary battery is assigned to Alkaline-Manganese and
creates an association with battery properties. Here, the semantic relational expression follows
a triplet structure (e.g., subject, predicate, object: Node →Node)

For instance, there is a relationship between the concept of ”Primary-Battery” and the concept
of ”Battery-Properties”, referring to ”hasPrimary_NominalVoltage”. Thus the ”Primary Battery”
is known as the domain, and the ”Battery-Properties” is known as a range with the model which
reflects the value of this triplet, such as “Nominal Voltage-9Volts”.

Figure 3: Knowledge graph (KGs) (Ontological Model) of Primary Battery



5. Evaluation of the Ontology

This section describes different evaluation and testing strategies in this research work. The
ontology evaluation aims to develop a battery ontology model (Battology) that depicts the
contextual knowledge of various batteries with different materials involved. It is used to manage
the diverse nature of the data representation and its manageability in battery management,
which is a challenging task, especially in the automotive industry. This Battology is served as a
basis for developing personalized KGs for specific focal group and their usages.
This section targets to evaluate the Battology on different levels; structural, semantic-

relational and lexical evaluation.

• Structure Evaluation In this phase, the hierarchical structure of the Battology has been
assessed concerning the correctness of the is_a relationship as to whether the given
concept A is a particular type of the given concept B. For instance, Alkaline-Manganese
is an instance of Primary Battery which is a subclass of Battery, and this classification of
the battery can be seen in Battology (see figure-3).

• Semantic Relational Evaluation In this phase, the Battology is evaluated for holding
semantically correct relations between these concepts and these relations are associated
with Object Properties and Data Properties in the ontology-based editors (e.g., Protege, Top-
braid Composer, etc.). Here, the semantic relational expression follows a triplet structure
(subject, predicate, object: Node–>Node). For instance, there is a relationship between
the concept of Battery and the concept of ”Application”, referring to hasApplication. Thus,
the Battery is known as the domain, and the Application is known as a range within the
Battology.

• Lexical Evaluation The purpose of this section is to examine some attributes of the
Battology regarding its expressiveness, completeness, and clarity of the annotation of a
given Battology related to the battery and its manageability. Participants and domain
experts were asked whether the relationship is confirmed in the Battology in the second
information session using several competence questions (CQs).

5.1. Evaluation by CQs

We have used a DL Query Tab in Protege 5.0 to verify CQs. They help to confirm that the
knowledge repository is in the form of Battology or KGs and has enough information to answer
these questions, which are related to battery-related information. The following table-1 shows
an example of CQs with a DL query and presents the results of executing the DL query in the
Protege editor.

5.2. Modelling workshop/Information Session

During the modelling workshop, we presented a holistic view of the domain model design
artefact (Battology) that explains how domain experts with different assigned roles and com-
petencies initiate different processes and perform different activities to achieve the Battology
goals. The session also shows how the CQs can be used to retrieve information. We have also



Competence Questions DL Query Result
Which specific batteries are
used in what applications?

Battery and usedIn Value
pacemakers_for_heart_pa-
tients

• Alkaline-Manganese

What basic properties are
associated with in batteries
manufacturing?

Battery-Property and
propertyOf value Alkaline-
Manganese

• Primary-Batttery-Type-9V
• Primary-Batttery-Type-AA
• Primary-Nominal-Voltage-

1.5Volts
• Primary-Volage-cutt-off-

4.8Volts
• ...

What batteries are made of
what material?

uery:Battery and madeOf
value LiCoO2 • Lithium-Cobalt-Oxide

What type of batteries and
their nature?

Battery and hasBattery_Na-
ture value Non_recharge-
able

• Alkaline-Manganese

What batteries are used in
what applications or made
of material?

(Battery and usedIn value
Miltary_Combat) or (Bat-
tery and madeOf value Li-
CoO2)

• Alkaline-Manganese
• Lithium-Cobalt-Oxide

Table 1
Evaluation of Ontology through CQ and DL query. The result column shows the instances of the classes
used in the queries. A few of the results are shown in the second row where return results are a long list
of properties related to Alkaline-Manganese Primary Battery

exemplified Battology related to battery management and its data portability and its dissem-
ination among different components of batteries with standard formats to resolve the data
interoperability challenges to some extent. The data interoperability factor can be addressed
by using the data rendering options and its versatility of data representation in the form of
RDF/XML, OWL/XML and JASON-LD.

5.3. Evaluation of Usability

The evaluation of the usability of an ontology is important when the ontology is going to be
used by application and domain experts who are normally not ontology experts. The evaluation
of the usability of a product or system is something that goes back in time. In 1986, Brooke
developed a questionnaire, the System Usability Scale (SUS) [59]. During the years since then, it
has been demonstrated that the SUS applies to a wide range of systems and types of technology
and that it produces similar results as more extensive attitude scales that are intended to provide
deeper insights into a user’s attitudes to the usability of a system. SUS also has a good ability to
discriminate and identify systems with good and poor usability [60]. In this work we make use



of the version of SUS introduced in [61].

Statement of evaluate of the ontology AE DE OE
1 In my opinion, I could make a valuable contribution to this

ontology
4 5 3

2 I found the ontology unnecessarily complex 1 2 2
3 It is easy for me to understand the ontology model 5 4 5
4 I would need more theoretical support to understand this ontol-

ogy
1 4 3

5 In the ontology, I found that a variety of concepts were well
incorporated

4 4 4

6 There were too many inconsistencies in this ontology 1 1 3
7 I would imagine that most domain experts would understand

this ontology very quickly
5 4 5

8 I find the ontology very cumbersome to understand 1 2 2
9 It is my confidence that I understand the ontology conceptual-

ization
5 4 5

10 I needed to ask a lot of questions before I could understand the
conceptualisation of the ontology

1 1 2

Table 2
Ontology usability evaluation (AE: Application Engineer, DE: Domain Engineer, OE: Ontology Engineer,
score: 1=strongly disagree, 2=disagree, 3=no preference, 4=agree, 5=strongly agree

The ontology usability is important before its use in an application by domain experts and
application engineers. The developed ontology was evaluated by a domain expert in the battery
domain, and an application engineer who was involved in developing and using ontologies and
Knowledge graphs in different applications. An ontology expert who is actively involved in
ontology development and research in the semantic web. It is possible to get reliable results
with a sample of 8-12 users [62]. A more extensive evaluation is planned with the development
of an application using Battalogy.

In the table 2, questions are positioned as defined in SUS which are a combination of positive
and negative forms. The questions at odd positions are all in positive form and the even positions
are all in negative form to avoid biases. The goal is to have respondents read each statement
and try to reflect on whether they agree or disagree with it by alternating positive and negative
statements.
The SUS scores indicate that the usability results for the application Engineer were 95, the

Domain expert was 77.5 and the ontology engineer had a result of 75. The sus score is calculated
as described in [59]. This implies that the usability of the ontology from the application experts’
point of view was very positive while the usability of ontology from domain and ontology
experts’ point of view needs to be improved. Figure 4 shows the sus score with a percentile
rank based on interpretation given by [63].

The SUS score of 95 suggests that the ontology model is highly usable, with users finding it
easy to learn, efficient to use, and overall providing a good user experience. This is particularly
important for an ontology model, which is designed to help users navigate complex knowledge
structures and make sense of large amounts of information. The high percentile score of 99.8%



Figure 4: Percentile ranking of SUS scores [63]. (green line: AE evaluation, blue line: DE evaluation
result and red line: OE evaluation result

indicates that the ontology model performs exceptionally well compared, which is a positive
finding.

However, the SUS scores of 77.5 and 75 suggest that there are areas of the ontology model that
could be improved to better meet the needs and expectations of users. For example, users may
have encountered difficulties in navigating the ontology or in finding specific information. These
results indicate that usability issues need to be addressed to provide a better user experience.
Overall, these results suggest that the ontology model has some strong points in terms of

usability, but also some areas for improvement. By addressing the usability issues identified in
the study, the ontology model could be made even more user-friendly and effective in supporting
knowledge representation in the domain. The overall feedback was given that the ontology
model well integrated most concepts and no inconsistencies were found and the ontology
model can be improved by adding more knowledge about the domain by adding more instances
and relations between them. The ontology was the first version and authors have planned to
add more knowledge about the domain and linked with existing ontologies within the battery
domain.



6. Conclusion and Future Work

This research focuses on developing a battery ontology for representing battery data and
addressing data interoperability challenges in the battery domain. The ontology development
process follows different methodologies such as Methontology and Ontology Development
101. The battery ontology includes various concepts and properties related to batteries, their
characteristics, applications, and materials. The ontology is evaluated using structural, semantic
relational, and lexical evaluations, as well as through competence questions and usability
evaluation using the System Usability Scale (SUS). The ontology expects to facilitate better data
representation, knowledge sharing, and interoperability in the battery domain.
Future work in this area could involve further refinement of the battery ontology and ex-

panding it to include more specific concepts and properties related to different types of batteries
and their applications. Additionally, the ontology could be integrated into existing battery man-
agement systems to improve data exchange and interoperability. Further evaluation and testing
of the ontology’s usability with domain experts and application users could also be conducted
to ensure its effectiveness in real-world scenarios. Overall, the development of the battery
ontology has the potential to contribute to advancements in battery research, development, and
manufacturing for sustainable and green energy.
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