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Abstract
Curated knowledge bases (CKBs) play a fundamental role in both academia and industry. They require
significant human involvement to pre-define the ontology and cannot quickly adapt to new domains
and new data. To solve this problem, open information extraction (OIE) methods are leveraged to
automatically extract structure in the form of non-canonicalized triples <noun phrase, relation phrase,
noun phrase> from unstructured text. OIE can be used to create large open knowledge bases (OKBs).
However, noun phrases and relation phrases in such OKBs are not canonicalized, which results in
scattered and redundant facts. In order to disambiguate and eliminate redundancy in such OKBs, the
task of OKB canonicalization is proposed to cluster synonymous noun phrases and relation phrases into
the same group and assign them unique identifiers. Nevertheless, this task is challenging due to the high
sparsity and limited information of OKBs. In this paper, we provide an overview and analysis of the
techniques used by the main frameworks and discuss the challenges in this topic.
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1. Introduction
Motivation. The exponential growth of web data has become an indispensable source of
knowledge for artificial intelligence. Mining and utilizing the knowledge of web data has been
one of the key tasks of artificial intelligence in the past two decades. Pragmatically constructed
from web resources, Curated Knowledge Bases (CKBs) like YAGO [1], Freebase [2], DBpedia
[3], and Wikidata [4] have drawn significant attention from academia and industry [5]. Due to
their effectiveness in storing and representing factual knowledge, they have been successfully
applied in many real knowledge-driven applications, including knowledge reasoning [6, 7, 8, 9],
question answering [10, 11, 12, 13], and recommendation systems [14, 15, 16, 17]. Early in the
study of this discipline, researchers were mostly focusing on ontology design and fact expansion
based on crowd-sourcing strategies. Large-scale CKBs, such as YAGO [1] and Wikidata [4],
usually contain millions of entities and hundreds of millions of relational facts about them,
which are stored in the form of triples (i.e., <head entity, relation, tail entity>). For example, in the
triple <Albert Einstein, lived in, Princeton>, Albert Einstein and Princeton are real-world entities,
and lived in represents the relation between Albert Einstein and Princeton. CKB construction is
difficult to automate and therefore suffers from two inevitable defects: 1) human supervision,
the construction of CKBs usually requires significant human supervision to pre-define the
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ontology; 2) weak adaptability, this construction manner makes it unable to quickly adapt to
new domains and new data generated by rapidly growing web data.

In order to solve this problem, Open Information Extraction (OIE) techniques have been
utilized to improve the efficiency of knowledge base1 construction without any pre-defined
ontology. Given an unstructured text corpus, OIE methods can be used to automatically extract
non-canonicalized triples in the form <noun phrase, relation phrase, noun phrase> requiring
neither a pre-defined ontology schema nor any human supervision. This makes them highly
adaptable to the knowledge from rapidly growing web data. Several prominent instances
include TextRunner [18], Standford OIE [19], and MinIE [20]. Furthermore, the advent of the
OIE method directly promotes the development of large-scale Open Knowledge Bases (OKBs),
such as ReVerb [21], OLLIE [22, 23, 24], and OPIEC [25]. Without human supervision, this
automated OIE paradigm enables OKBs to easily grow to a very large scale, thus the coverage
and diversity of OKBs are much higher than CKBs.

A major shortcoming of OKBs is that, unlike CKBs, Noun Phrases (NPs) and Relation Phrases
(RPs) in OKBs are not canonicalized and lack unique identifiers. Intuitively, this leads to two
issues in such OKBs: 1) two NPs (or RPs) that have different surface forms but refer to the
same entity (or relation) will be treated differently; 2) two NPs (or RPs) with the same surface
form but referring to different entities (or relations) will be considered the same. Moreover,
this shortcoming results in the storage of scattered and redundant facts, which makes OKBs
extremely sparse and far from being directly used in downstream tasks.

To address the crucial shortcoming, the task of OKB canonicalization [26] was proposed to
convert non-canonicalized triples in OKBs to their canonicalized form. In recent years, several
methods [26, 27, 28, 29, 30, 31, 32] have been proposed, by treating this problem as a clustering
task. More precisely, OKB canonicalization methods cluster synonymous NPs (or RPs) into
one group and then select one NP (or RP) to represent others in the group. This task helps
to disambiguate, eliminate redundancy, and integrate the highly diverse knowledge in OKBs,
which can benefit downstream applications.
Focus and Contributions. Many comprehensive surveys have provided an overview of CKBs,
in particular their construction [33, 34, 35, 36] and representation [5, 37, 38, 39, 40, 41]. Other
surveys summarize methods for refinement [42, 43], completeness [44] and quality management
[45]. Unlike other surveys that only focus on CKBs, we present the first overview of OKB
canonicalization. Moreover, we also present practical resources and discuss future challenges.
Hence, our contributions include:
• This is the first overview of OKB canonicalization, with an analysis of existing models and

their approaches.
• Challenges of existing technologies in the area of OKB canonicalization are indicated as

directions for future works.
Outline. We organize our overview as follows. Section 2 gives the background for OKB
canonicalization, including definitions and examples. In Section 3, the analysis of the different
OKB canonicalization techniques and challenges is discussed. Finally, the overview is concluded
in Section 4.

1Knowledge base (KB) and knowledge graph (KG) are alternative terms in this overview.



2. Background
In this section, we introduce some basic concepts and then define the task of OKB canonicaliza-
tion.

Definition 1 (Curated Knowledge Base). A Curated Knowledge Base (CKB) is defined as a
finite set of triples that are generated by human effort following the pre-defined ontology.

Entities and relations in CKBs are well canonicalized and defined with unique identifiers. For
example, the entity Albert Einstein (German-born theoretical physicist; developer of the theory
of relativity) has unique identifiers “/m/0jcx” and “Q937” in Freebase [2] and Wikidata [4]
respectively.

Definition 2 (Open Knowledge Base). An open knowledge base is a finite set of non-
canonicalized triples that are automatically extracted from unstructured text without any pre-
defined ontology via OIE methods.

It is noted that the definition of open knowledge base in this paper is different from [33]. In [33],
they classify knowledge bases into open knowledge bases and enterprise knowledge bases, based
on the organization or community. Specifically, open knowledge bases in [33] are published
online and their content is accessible for the public good, such as YAGO [1] and Wikidata [4].
In contrast, enterprise knowledge bases are typically internal to a company and applied for
commercial use-cases [46]. However, following our definitions of CKB and OKB, both open
knowledge bases and enterprise knowledge bases in [33] are under the concept of CKBs in
this paper, since they all require human effort to define the ontology but are not constructed
automatically from unstructured text. Following our definition, notable examples of OKBs
include ReVerb [21], OPIEC [25], and Open-CyKG [47].

To be more specific, we use Figure 1 (a) as an example. If we search an NP Albert Einstein in
a question-answering system which is built on top of the open knowledge base in Figure 1 (a),
we can only obtain answers related to Albert Einstein but other information hid behind Albert
is missed, because it is unknown for machines that both Albert Einstein and Albert refer to the
same entity. Moreover, it can be seen that the two non-canonicalized triples <Albert, was born
in, Ulm> and <Albert Einstein, was born at, Ulm> are redundant facts, only one of which needs
to be stored in practice.
Definition 3 (OKB Canonicalization). Given a set of non-canonicalized triples in an OKB,
the goal of OKB canonicalization is to cluster synonymous NPs referring to the same entity and
synonymous RPs having the same semantic meaning into a group, which converts these non-
canonicalized triples to their canonicalized forms. Then, one element is selected to represent all
others in the same group.

As shown in Figure 1 (b), the OKB canonicalization task can be divided into two subtasks: NP
canonicalization (shown in blue at the top) and RP canonicalization (shown in green at the
bottom). For NP canonicalization, the model should recognize that Michael Jordan1 and Michael
Jordan2 do not refer to the same entity, and assign Michael Jordan1 and Michael Jeffrey Jordan
to one cluster, and assign Michael Jordan2 to another cluster alone. Additionally, in each cluster,
one NP should be selected to represent others in this cluster, such as Michael Jeffrey Jordan and
Michael Jordan2. Similarly, for RP canonicalization, the model needs to assign was born in and
was born at into one cluster and select one (was born in) as the representative.



Michael Jeffrey Jordan

Michael Jordan1

Brooklyn

Dream Team

was born in

was a member of

< Albert, was born in, Ulm >

< Albert Einstein, lived in, Princeton >

< Albert Einstein, was born at, Ulm >

< Michael Jeffrey Jordan, was born in, Brooklyn >

< Michael Jordan1 , was a member of, Dream Team >

< Michael Jordan2 , received his PhD from, UCSD >

(c) Canonicalized Open Knowledge Base

< Albert Einstein, was born in, Ulm >

< Albert Einstein, lived in, Princeton >

< Michael Jeffrey Jordan, was a member of, Dream Team >

< Michael Jordan2 , received his PhD from, UCSD >

Albert Einstein

Albert

lived in

was born at

Ulm

Princeton

Noun Phrases Canonicalization

Relation Phrases Canonicalization

(a) Open Knowledge Base

(b) Open Knowledge Base Canonicalization

UCSD

Michael Jordan2

received his PhD from

< Michael Jeffrey Jordan, was born in, Brooklyn >

Figure 1: An illustration of the OKB Canonicalization task. (a) shows an open knowledge base in which
neither NPs nor RPs are canonicalized, thus storing ambiguous and redundant knowledge. (b) illustrates
the process of open knowledge base canonicalization, assigning NPs (or RPs) that refer to the same
entity (or relation) into the same cluster, and selecting one (bold) to represent other elements in the
cluster. (c) demonstrates a canonicalized open knowledge base without ambiguity and redundancy.

3. OKB Canonicalization Frameworks
In this study, the investigated OKB canonicalization models are divided into the following
different categories based on the techniques utilized: (i) Side Information [48] 2, (ii) Pre-trained
Word Embedding, (iii) Knowledge Base Embedding, (iv) Context Information, and (v) Supervised
Manner. This section consists of an analysis of the techniques in each framework, with a
discussion of their challenges. Table 1 summarizes OKB canonicalization models according to
our proposed taxonomy.

3.1. Side Information
NPs and RPs in OKBs often have relevant side information in the documents from which the
non-canonicalized triples were extracted or in other related CKBs, thus we need to use third-
party tools to mine and utilize it. Furthermore, side information can be divided into two types:
NP side information and RP side information.

3.1.1. NP Side Information
So far, previous studies have mined 14 tools to generate NP’s side information. Due to space
reasons, we focus here on the 3 most commonly used ones.
• IDF Token Overlap. Proposed by [26], this side information is also commonly leveraged

by [28, 29, 49, 31, 30]. Inspired by the Inverse Document Frequency (IDF) algorithm, [26] believe
that if two NPs share a word, they are more likely to be similar, but not if many other mentions

2It is also known as Signals in [30] and Seed Pairs in [32].



share that word. Therefore, they introduce a weighted word overlap, in which a word is given
more importance if it appears in fewer mentions. It should be noted that IDF Token Overlap can
not only be used for NP canonicalization but is also often used for RP canonicalization [29, 30].
• Entity Linking. [30] proves that OKB canonicalization and OKB linking are tightly coupled,

and one task can benefit significantly from the other. Therefore, entity linking is one of the
most commonly used tools for the OKB canonicalization task. For example, [26] uses FACC1
[50]; [28, 49, 31] utilize Stanford CoreNLP Entity Linker [51]; [29] leverage Wikidata Integrator
[52]; and [30, 32] use Entity Popularity [53].
• PPDB. PPDB 2.0 [54] is a large collection of English paraphrases. All equivalent phrases

will be assigned to one cluster and each cluster will randomly select a representative. Therefore,
two NPs are considered equivalent if they have the same cluster representative according to the
index. Similar to IDF Token Overlap, PPDB is also used for both NP canonicalization and RP
canonicalization.

3.1.2. RP Side Information

RP side information is obtained from relation mining and relation matching tools to improve
RP canonicalization. Here, we introduce the most commonly used one, AMIE.
• AMIE. AMIE algorithm [55] can determine whether two RPs represent the same semantics

by learning Horn rules. Previous studies [26, 28, 49, 31, 30, 32] usually take morphologically
normalized triples as input to AMIE, and the output of AMIE is a set of implication rules between
two RPs 𝑝𝑖 and 𝑝𝑗 (e.g. 𝑝𝑖 ⇒ 𝑝𝑗 ) based on statistical rule mining. If both 𝑝𝑖 ⇒ 𝑝𝑗 and 𝑝𝑖 ⇐ 𝑝𝑗
satisfy the support and confidence thresholds, it means that two RPs (i.e., 𝑝𝑖 and 𝑝𝑗) have the
same semantics and should be grouped into one cluster.

Challenge 1 (Side Information). One important challenge is to find more effective and ef-
ficient tools to boost the performance of this task. On the other hand, these third-party
tools are not perfect, and the accuracy of them is usually lower than 90%. Previous meth-
ods [26, 28, 49, 31, 30, 32] usually leverage a combination of multiple side information to
improve their performance. This brings a new challenge: how to evaluate the confidence of
different third-party tools and use them in combination. More strategies to combine multiple
tools and improve their quality should be encouraged.

3.2. Knowledge Base Embedding
Knowledge base embedding (KBE) [37, 38] is an increasingly popular technique that aims to
represent entities and relations of knowledge bases into low-dimensional semantic spaces. To
capture the relational structural information of non-canonicalized triples in an OKB, the KBE
model is first exploited by CESI [28], and then it is widely used in this task. For example, HoIE
[57] is used by CESI [28] and CUVA [31], and TransE [58] is utilized by CMVC [32]. Additionally,
a Meta-Graph Neural Network is used in MGNN [49].

Challenge 2 (Knowledge Base Embedding). The main challenge in leveraging KBE on
OKBs is the high sparsity of OKBs. This is because KBE can only work well on dense KBs but
OKBs are usually extremely sparse. Therefore, developing tools to alleviate the sparsity of OKB
and KBE methods specifically for sparse OKB could obtain improved performance. Furthermore,
developing a new architecture that learns OKB embeddings while canonicalizing OKB may also



Table 1
Summary of OKB canonicalization models according to our proposed taxonomy. “KBE” refers to the
knowledge base embedding model, “NN” refers to the Neural Network, “PWE” refers to the pre-trained
word embeddings, and “CI” refers to the context information.

Model
Side Information

KBE PWE CI Supervised Manner
NP RP

Galárraga et al. (CIKM2014)[26]

Attribute Overlap,
String Similarity,
String Identity,

IDF Token Overlap,
Word Overlap,
Entity Overlap,
Type Overlap

AMIE - - - Semi-supervised

CESI (WWW2018) [28]

Entity Linking,
PPDB, WordNet,

IDF Token Overlap,
Morph Normalization

AMIE, KBP HoIE GloVe - Semi-supervised

SIST (ICDE2019) [29]
Jaro-Winkler Similarity,
IDF Token Overlap,

Entity Linking

PATTY,
IDF Token Overlap - - Domain Vector Unsupervised

MULCE (WISE 2020) [56] - - - GloVe, BERT - Semi-supervised

MGNN (arXiv 2020) [49]
Entity Linking, PPDB,

WordNet, IDF Token Overlap,
Morph Normalization

AMIE, KBP Meta-Graph NN GloVe, BERT - Semi-supervised

CUVA (EMNLP 2021) [31]
Entity Linking, PPDB,
IDF Token Overlap,

Morph Normalization
AMIE, KBP HoIE GloVe - Semi-supervised

JOCL (SIGMOD2021) [30]
IDF token overlap,

PPDB, Entity Linking

IDF token overlap,
PPDB, AMIE, KBP,
Relation Linking

- FastText - Semi-supervised

CMVC (KDD2022) [32] Entity Linking, Web Url AMIE, Web Url TransE FastText BERT Unsupervised

be a solution, so that high-quality embeddings could be learned during the gradual densification
of OKB.

3.3. Pre-trained Word Embedding
Pre-trained word embeddings (PWE) have been shown to perform well in many tasks. CESI
[28] first introduces GloVe embeddings [59] into this task. Specifically, before training the
KBE model, all embeddings are initialized by GloVe embeddings. This is because the KBE
model can only capture structural knowledge but not semantic knowledge. However, PWE can
introduce semantic knowledge learned from a large corpus, thereby initializing semantically
similar NPs or RPs to similar positions in the low-dimensional embedding space. Following this
idea, knowledge base embeddings in CMVC [32] are initialized via FastText embeddings [60],
and MULCE [56] and MGNN [49] also leveraged BERT [61] for initialization.

Challenge 3 (Pre-trained Word Embedding). One significant challenge for static word em-
beddings (such as GloVe and FastText) is the out-of-vocabulary (OOV) problem. The scale of a
static word embedding dictionary is limited, but the number of words in web data is infinite (and
growing all the time), thus utilizing PWEwill always face the OOV problem. Besides, generating
higher-quality PWE can also become a challenge. On the other hand, without fine-tuning, the
performance of BERT embeddings is pretty limited but fine-tuning can be time-consuming in
this task.

3.4. Context Information
In OKBs, non-canonicalized triples can only carry limited structural knowledge which is not
enough to tackle the OKB canonicalization task, while valuable knowledge may be embedded in
the source context of these non-canonicalized triples. SIST [29] first leverages knowledge from



the original source text via generating domain vectors, to cluster NPs and RPs jointly using
an efficient clustering method. CMVC [32] proves that two views of knowledge (i.e., a fact
view based on the non-canonicalized triples and a context view based on the non-canonicalized
triple’s source context) provide complementary information that is vital to the task of OKB
canonicalization. Therefore, they exploit BERT [61] to convert source context into sentence
embeddings and combine them with the structural embeddings of the KBE model.
Challenge 4 (Context Information). The first challenge is to develop more efficient models
to capture the context information since only two frameworks (SIST [29] and CMVC [32]) so far
exploit context information. Another challenge is how to leverage more advanced NLP models
(such as generative large language models) to solve this problem.

3.5. Supervised Manner
For the task of OKB canonicalization, previous methods can be divided into two categories: semi-
supervised methods [26, 27, 28, 30, 31] and unsupervised methods [29, 32]. Semi-supervised
methods require using the validation data set to search optimal parameters. In contrast, unsu-
pervised methods can automatically search parameters only based on the test data set without
the requirement of any manually annotated label.

For example, as a clustering problem, the number of clusters (or clustering threshold) for
K-means (or Hierarchical Agglomerative Clustering) is an important parameter. Previous
semi-supervised methods [26, 27, 28, 30, 31] utilized the validation data set to find the optimal
clustering threshold. On the contrary, SIST [29] set the clustering threshold of different data
sets to the same fixed value in an unsupervised manner. To remedy this issue in a more flexible
and unsupervised manner, CMVC [32] proposed the Log-Jump algorithm to predict the number
of clusters, which only depends on the input embeddings of data without requiring any labels.
Challenge 5 (Supervised Manner). For this task, more unsupervised frameworks should be
developed in the future, because we cannot always find the validation data set in real-world
scenarios. In addition, for semi-supervised methods, there are differences and imbalances in
probability distributions between the validation data set and the test data set. Identifying and
resolving these differences and imbalances from them is also a problem. Finally, we should also
encourage the development of more effective algorithms for predicting cluster numbers.

4. Conclusion

Open knowledge base canonicalization has become a critical topic for constructing open knowl-
edge base from unstructured text, and this issue has not yet been fully explored. For future
research, the three most important challenges can be summarized as follows: 1) How to mine
and utilize more types of knowledge, such as more side information tools, knowledge from
different views and modalities; 2) For frameworks that leverage knowledge base embedding
models, how to alleviate the high sparsity of OKBs; 3) How to develop efficient end-to-end
unsupervised frameworks.
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