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Abstract
This paper explores Text-to-Knowledge Graph (T2KG) construction„ assessing Zero-Shot Prompting
(ZSP), Few-Shot Prompting (FSP), and Fine-Tuning (FT) methods with Large Language Models (LLMs).
Through comprehensive experimentation with Llama2, Mistral, and Starling, we highlight the strengths
of FT, emphasize dataset size’s role, and introduce nuanced evaluation metrics. Promising perspectives
include synonym-aware metric refinement, and data augmentation with LLMs. The study contributes
valuable insights to KG construction methodologies, setting the stage for further advancements.1
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1. Introduction

The term ”knowledge graph” has been around since 1972, but its current definition can be traced
back to Google in 2012. This was followed by similar announcements from companies such as
Airbnb, Amazon, eBay, Facebook, IBM, LinkedIn, Microsoft, and Uber, among others, leading
to an increase in the adoption of Knowledge graphs(KGs) by various industries. As a result,
academic research in this field has seen a surge in recent years, with an increasing number of
scientific publications on KGs [1]. These graphs utilize a graph-based data model to effectively
manage, integrate, and extract valuable insights from large and diverse datasets [2].

KGs serve as repositories for structured knowledge, organized into a collection of triples, de-
noted as 𝐾𝐺 = (ℎ, 𝑟, 𝑡) ⊆ 𝐸 ×𝑅× 𝐸, where E represents the set of entities, and R represents
the set of relations [1]. Within a graph, nodes represent various levels, entities, or concepts.
These nodes encompass diverse types, including person, book, or city, and are interconnected
by relationships such as located in, lives in, or works with. The essence of a KG emerges
when it incorporates multiple types of relationships rather than being confined to a single type.
The overarching structure of a KG constitutes a network of entities, featuring their semantic
types, properties, and interconnections. Thus, constructing a KG necessitates information about
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entities (along with their types and properties) and the semantic relationships that bind them.
For the extraction of entities and relationships, practitioners often turn to NLP tasks like Named
Entity Recognition (NER), Coreference Resolution (CR), and Relation Extraction (RE).

KGs play a crucial role in organizing complex information across diverse domains, such as
question answering, recommendations, semantic search, etc. However, the ongoing challenge
persists in constructing them, particularly as the primary sources of knowledge are embedded
in unstructured textual data such as press articles, emails, and scientific journals. This challenge
can be addressed by adopting an information extraction approach, sometimes implemented as a
pipeline. It involves taking textual inputs, processing them using Natural Language Processing
(NLP) techniques, and leveraging the acquired knowledge to construct or enhance the KG.

If we envision the Text-to-Knowledge Graph (T2KG) construction task as a black box, the
input is textual data, and the output is a knowledge graph. Achieving this can be approached
through methods that directly convert text into a graph or by implementing NLP tasks in
two ways: 1) through an information extraction pipeline incorporating the mentioned tasks
independently, or 2) by adopting an end-to-end approach, also known as joint prediction, using
Large Language Models (LLMs) for example. In the realm of LLMs and KGs, their mutual
enhancement is evident. LLMs can assist in the construction of KGs. Conversely, KGs can be
employed to validate outputs from LLMs or provide explanations for them [3]. LLMs can be
adapted to KG construction task (T2KG) through various approaches, such as fine-tuning [4]
(FT), zero-shot prompting [5] (ZSP), or few-shot prompting (FSP) [6] with a limited number of
examples. Each of these approaches has their pros and cons with respect to the performance,
computation resources, training time, domain adaption and training data required.

In-context learning, as discussed by [7], coupled with prompt design, involves telling a
model to execute a new task by presenting it with only a few demonstrations of input-output
pairs during inference. Instruction fine-tuning methods, exemplified by InstructGPT [8] and
Reinforcement Learning from Human Feedback (RLHF) [9], markedly enhance the model’s
ability to comprehend and follow a diverse range of written instructions. Numerous LLMs have
been introduced in the last year, as highlighted by [3], particularly within the ChatGPT [10] like
models, which includes GPT-3 [11], LLaMA [12], BLOOM [13], PaLM [14], Mistral [15], Starling
[16] and Zephyr [17]. These models can be readily repurposed for KG construction from text
by employing a prompt design that incorporates instructions and contextual information.

This study does not entail a comparison with traditional methods of constructing KGs; rather,
it delves into the developments and challenges associated with KG construction methodologies,
and aiming at providing formal evaluation of T2KG task. Specifically, we focus on the utilization
of LLMs, and explore the three approaches mentioned before, Zero-shot, Few-shot and Fine-
tuning (Fig. 1). Each of these approaches addresses specific challenges, contributing significantly
to the evolution of T2KG construction techniques.

The present study is organized as follows, Section 2 presents a comprehensive overview of
the current state-of-the-art approaches for Text to KG (T2KG) Construction. In the Section 3,
we present the general architecture of our proposed implementation (method), with datasets,
metrics, and experiments. Section 4 then encapsulates the findings and discussions, presenting
the culmination of results. Finally, Section 5 critically examines the strengths and limitations of
these techniques.



2. Background

The current state of research on knowledge graph construction using LLMs is discussed. Three
main approaches are identified: Zero-Shot, Few-Shot, and Fine-Tuning. Each approach has its
own challenges, such as maintaining accuracy without specific training data or ensuring the
robustness of models in diverse real-world scenarios. Evaluation metrics used to assess the
quality of constructed KGs are also discussed, including semantic consistency and linguistic
coherence. This section highlight methods and metrics to construct KGs and evaluate the result.

The figure 1 illustrates the black box joint prediction of the T2KG construction process using
LLMs. It demonstrates how two French examples on the left are converted into an expected
result (KG) on the right using ZSP, FSP or FT approaches with LLMs.

Figure 1: T2KG Task

2.1. Zero Shot

Zero Shot methods enable KG construction without task-specific training data, leveraging the
inherent capabilities of large language models. [18] introduce an innovative approach using
large language models (LLMs) for knowledge graph construction, employing iterative zero-
shot prompting for scalable and flexible KG construction. [19] evaluate the performance of
LLMs, specifically GPT-4 and ChatGPT, in KG construction and reasoning tasks, introducing
the Virtual Knowledge Extraction task and the VINE dataset, but they do not take into account
open sourced LLMs as LLaMA [12]. [20] assess ChatGPT’s abilities in information extraction
tasks, identifying overconfidence as an issue and releasing annotated datasets. [21] tackle
zero-shot information extraction using ChatGPT, achieving impressive results in entity relation
triple extraction. [22] propose a method for Knowledge Graph Construction (KGC) using an
analogy-based approach, demonstrating superior performance on Wikidata. [23] address the
limitations of existing generative knowledge graph construction methods by leveraging large
generative language models trained on structured data. The most of these approaches having
the same limitation, which is the use of closed and huge LLMs as ChatGPT or GPT4 for this



task. Challenges in this area include maintaining accuracy without specific training data and
addressing nuanced relationships between entities in untrained domains.

2.2. Few Shot

Few Shot methods focus on constructing KGs with limited training examples, aiming to achieve
accurate knowledge representation with minimal data. [6] introduce PiVe, a framework enhanc-
ing the graph-based generative capabilities of LLMs, and the authors create a verifier which is
responsable to verifie the results of LLMs with multi-iteration type. [24] explore the potential
of LLMs for knowledge graph completion, treating triples as text sequences and utilizing LLM
responses for predictions. [25] automate the process of generating structured knowledge graphs
from natural language text using foundation models. [26] present OpenBG, an open business
knowledge graph derived from Alibaba Group, containing 2.6 billion triples with over 88 million
entities. [27] explore the integration of LLMs with semantic technologies for reasoning and
inference. [28] investigate LLMs’ application in relation labeling for e-commerce Knowledge
Graphs (KGs). As ZSP approaches, FSP approaches use closed and huge LLMs as ChatGPT or
GPT4 [10] for this task. Challenges in this area include achieving high accuracy with minimal
training data and ensuring the robustness of models in diverse real-world scenarios.

2.3. Fine-Tuning

Fine-Tuning methods involve adapting pre-trained language models to specific knowledge
domains, enhancing their capabilities for constructing KGs tailored to particular contexts. [4]
present a case study automating KG construction for compliance using BERT-based models.
This study emphasizes the importance of machine learning models in interpreting rules for
compliance automation. [29] propose an approach for knowledge extraction and analysis from
biomedical clinical notes, utilizing the BERT model and a Conditional Random Field layer,
showcasing the effectiveness of leveraging BERT models for structured biomedical knowledge
graphs. [30] propose Knowledge Graph-Enhanced Large Language Models (KGLLMs), enhancing
LLMs with KGs for improved factual reasoning capabilities. These approaches that applied FT,
they do not use new generations of LLMs, specially, decoder only LLMs as Llama, and Mistral.
Challenges in this domain include ensuring the scalability, interpretability, and robustness of
fine-tuned models across diverse knowledge domains.

2.4. Evaluation metrics

As we employ LLMs to construct KGs, and given that LLMs function as Natural Language
Generation (NLG) models, it becomes imperative to discuss NLG criteria. In NLG, two criteria
[31] are used to assess the quality of the produced answers (triples in our context).

The first criterion is semantic consistency or Semantic Fidelity which quantifies the fidelity
of the data produced against the input data. The most common indicators are :

• Hallucination: It is manifested by the Presence of information (facts) in the generated
text that is absent in the input data. In our scenario, hallucination exists if the generated
triples (GT) contain triples not present in the ground truth triples (ET) (T in GT and not



in ET);

• Omission: It is manifested by the omission of one of the pieces of information (facts)
in the generated text. In our case, omission occurs if a triple is present in ET but not in GT;

• Redundancy: This is manifested by the repetition of information in the generated text.
In our case, the redundancy exists if a triple appears more than once in GT;

• Accuracy: The lack of accuracy is manifested by the modification of information such
as the inversion of the subject and the direct object complement in the generated text.
Accuracy increases if there is an exact match between ET and GT. ;

• Ordering: It occurs when the sequence of information is different from the input data.
In our case, the ordering of GT is not considered.

The second criterion is linguistic coherence or Output Fluency to evaluate the fluidity of the
text and the linguistic constructions of the generated text, the segmentation of the text into
different sentences, the use of anaphoric pronouns to reference entities and to have linguistically
correct sentences. However, in our evaluation, we do not take into account the second criterion.

In their experiments, [3] calculated three hallucination metrics - subject hallucination, relation
hallucination, and object hallucination - using certain preprocessing steps such as stemming.
They used the ground truth ontology alongside the ground truth test sentence to determine if
an entity or relation is present in the text. However, a limitation could arise when there is a
disparity in entities or relations between the ground truth ontology and the ground truth test
sentence. If the generated triples contain entities or relations not present in the ground truth
text, even if they exist in the ground truth ontology, it will be considered a hallucination.

The authors of [6] evaluate their experiments using several evaluation metrics, including
Triple Match F1 (T-F1), Graph Match F1 (G-F1), G-BERTScore (G-BS) from [32] which extends
BertScore [33] for graph matching, and Graph Edit Distance (GED) from [34]. The GED metric
measures the distance between the predicted graph and the ground-truth graph, which is
equivalent to computing the number of edit operations (addition, deletion, or replacement of
nodes and edges) needed to transform the predicted graph into a graph that is identical to the
ground-truth graph, but it does not provide a specific path for these operations to calculate the
exact number of operations. To adhere with semantic consistency criterion, we use the terms
"omission" and "hallucination" in place of "addition" and "deletion," respectively.

3. Propositions

This section describes our approach to evaluate the quality of generated KGs. We explain how
we use evaluation metrics such as T-F1, G-F1, G-BS, GED, Bleu-F1 [35] and ROUGE-F1 [36]
to assess the quality of the generated KGs in comparison to ground-truth KGs. Additionally,
we discuss the use of Optimal Edit Paths (OEP) metric 1 to determine the precise number of
1NetworkX - optimal edit paths : https://networkx.org/documentation/stable/index.html

https://networkx.org/documentation/stable/index.html


operations required to transform the predicted graph into an identical representation of the
ground-truth graph. This metric serves as a basis for calculating omissions and hallucinations
in the generated graphs. We employ examples from the WebNLG+2020 dataset [37] for testing
with ZSP and FSP techniques. Additionally, we utilize the training dataset of WebNLG+2020 to
train LLMs using the FT technique. Subsequent subsections delve into a detailed discussion of
each phase.

Figure 2: Overall experimentation’s process

3.1. Overall experimentation’s process

We leverage the WebNLG+2020 dataset, specifically the version curated by [6]. Their preparation
of graphs in lists of triples proves beneficial for evaluation purposes. We utilize these lists and
employ NetworkX [38] to transform them back into graphs, facilitating evaluations on the
resultant graphs. This step is instrumental in performing ZSP, FSP, and FT LLMs on this dataset.

The figure 2 illustrates the different stages of our experimentation process, including data
preparation, model selection, training, validation, and evaluation. The process begins with data
preparation, where the WEBNLG dataset is preprocessed and split into training, validation,
and test sets. Next, the learning type is selected, and different models are trained using the
training set. The trained models are then evaluated on the validation set to evaluate their
performance. Finally, the best-performing model is selected and validated on the test set to
estimate its generalization ability.

3.2. Prompting learning

During this phase, we employ the ZSP and FSP techniques on LLMs to evaluate their proficiency
in extracting triples (e.g. construction of the KG). The application of these techniques involves
merging examples from the test dataset of WebNLG+2020 with our adapted prompt. Our prompt
is strategically modified to provide contextual guidance to the LLMs, facilitating the effective
extraction of triples, without the inclusion of a support ontology description, as demonstrated
in [3]. The specific prompts used for ZSP and FSP are illustrated in Fig 3(a) and Fig 3(b),

In our approach for ZSP, we began with the methodology outlined in [6], initiating our
prompt with the directive "Transform the text into a semantic graph." However, we enhanced



Figure 3: Prompting examples

this prompt by incorporating additional sentences tailored for our LLMs, as illustrated in Fig
3.(a).

For FSP, we executed 7-shots learning. The rationale behind employing 7-shots learning lies
in the fact that the maximum KG size in WebNLG+2020 is 7 triples. Consequently, we fed our
prompt with 7 examples of varying sizes; example 1 with size 1, example 2 with size 2, example
3 with size 3, and so forth. In Figure 3-b, we depict a prompt containing two examples.

To demonstrate the efficacy of our refined prompt (including additional sentences), we
conducted zero-shot experiments on ChatGPT [10], comparing the outcomes with those of
[6]. Our results consistently reveal that our prompt yields more coherent answers in terms of
structure.

3.3. Finetuning

If the initial results from the ZSP and FSP on LLMs prove reasonable, we proceed to the FT
phase. This phase aims to provide the LLMs with a more specific context and knowledge related
to the task of extracting triples within the domains covered by the WebNLG+2020 dataset. Using
the example "a)" illustrated in Fig 3, we passe in the FT prompt, at once for each line of the
training dataset, the input text and the corresponding KG (the list of triples). To do this phase
(FT), we employ QLoRA [39], a methodology that integrates quantization [40] and Low-Rank
Adapters (LoRA) [41]. The LLM is loaded with 4-bit precision using bitsandbytes [42], and the
training process incorporates LoRA through the PEFT library (Parameter-Efficient Fine-Tuning)
[43] provided by Hugging Face.



3.4. Postprocessing

Given our focus on KG construction, our evaluation process involves assessing the generated
KGs against ground-truth KGs. To facilitate this evaluation, we take a cleaning process for the
LLMs output. This involves transforming the graphs generated by LLMs into organized lists of
triples, subsequently transferred to textual documents.

The transformation is executed through rule-based processing. This step is applied to remove
corrupted text (outside the lists of triples) from the whole text generated by LLMs in the
preceding step. The output is then presented in a list of lists of triples format, optimizing our
evaluation process. This approach proves especially effective when calculating metrics such as
G-F1, GED, and OEP, as we will see in more detail in 3.5

A potential problem arises when instructing LLMs to produce lists of triples (KGs), as there
may be instances where the generated text lacks the desired structure. In such cases, we
address this issue by substituting the generated text with an empty list of triples, represented
as ’[["","",""]]’, allowing us to effectively evaluate omissions. However, this approach tends to
underestimate hallucinations compared to the actual occurrences.

3.5. Experiment’s evaluation

For assessing the quality of the generated graphs in comparison to ground-truth graphs, we
adopt evaluation metrics as employed in [6]. These metrics encompass T-F1, G-F1, G-BS [32],
and GED [34]. Additionally, we incorporate the Optimal Edit Paths (OEP) metric, a tool aiding
in the calculation of omissions and hallucinations within the generated graphs.

Our evaluation procedure aligns with the methodology outlined in [6], particularly in the
computation of GED and G-F1. This involves constructing directed graphs from lists of triples,
referred to as linearized graphs, utilizing NetworkX [38].

In contrast to [3], our methodology diverges by not relying on the ground truth test sentence
of an ontology. As previously mentioned, we opt for a distinct approach wherein we assess
omissions and hallucinations in the generated graphs using the OEP metric. Unlike the global
edit distance provided by GED, OEP gives the precise path of the edit, enabling the exact
quantification of omissions and hallucinations, either in absolute terms or as a percentage across
the entire test dataset.

For example, in the illustrated nodes path labeled ’a)’ in Fig 4-(b), we observe 2 omissions,
while the edges path in Fig 4-(a) exhibits 1 hallucination. In our evaluation, the criterion for
incrementing the global hallucination metric for all graphs is set at finding >=1 hallucinations
or 1 omission in a generated graph. This approach ensures a comprehensive assessment of the
presence of omissions and hallucinations across the entirety of the generated graphs.

As mentioned earlier, the evaluation of the three methods is conducted using examples
sourced from the test dataset of WebNLG+2020. The primary goal is to enhance G-F1, T-F1,
G-BS, Bleu-F1, and ROUGE-F1 metrics, while reducing GED, Hallucination, and Omission.

3.6. Mathematical representation of the used metrics

We mathematically represent the used metrics as follows:



Graph Matching (𝐺-𝐹1 ). Let 𝑀𝑐ℎ be the number of matches between predicted and gold
graphs. And let 𝑇𝑜𝐺𝑟𝑎𝑝ℎ𝑠 be the total number of predicted graphs. Then, the accuracy for
entire graph matches 𝐴𝑐𝑐𝑔𝑟𝑎𝑝ℎ can be calculated as:

𝐴𝐶𝐶𝑔𝑟𝑎𝑝ℎ =
𝑀𝑐ℎ

𝑇𝑜𝐺𝑟𝑎𝑝ℎ𝑠

Triples Matcning (𝑇 -𝐹1). The 𝐹1 score for triple matches 𝑇 -𝐹1 is calculated in the follow-
ing:

𝑇 -𝐹1 =
2× 𝑇𝑃

2× 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Where

• TP is the number of true positive triple matches.
• FP is the number of false positive triple matches.
• FN is the number of false negative triple matches.

Graph Edit Distance (GED). The following equation calculate GED between two given
graphs :

𝐺𝐸𝐷(𝑔1, 𝑔2) = min
𝑒1,...,𝑒𝑘∈𝛾(𝑔1,𝑔2)

𝑘∑︁
𝑖=1

𝑐(𝑒𝑖)

Where:

• GED(𝑔1, 𝑔2): This represents the graph edit distance between two graphs 𝑔1 and 𝑔2.
• min𝑒1,...,𝑒𝑘∈𝛾(𝑔1,𝑔2): This part denotes taking the minimum over all possible edit paths
𝑒1, . . . , 𝑒𝑘 in the set 𝛾(𝑔1, 𝑔2). The set 𝛾(𝑔1, 𝑔2) contains all possible edit paths that
transform 𝑔1 into 𝑔2.

•
∑︀𝑘

𝑖=1 𝑐(𝑒𝑖): This part calculates the sum of the costs of each individual edit operation 𝑒𝑖
in the selected edit path. The cost function 𝑐(𝑒𝑖) measures the cost or strength of each
edit operation. The objective is to find the edit path with the minimum total cost, which
represents the least amount of transformation required to convert 𝑔1 into 𝑔2.

In our experiments, we calculate the overall GED which is computed as follows:

overall_ged =
1

𝑁

𝑁∑︁
𝑖=1

GEDED𝑖

Where:

• 𝑁 is the total number of graphs.
• GEDED𝑖 is the graph edit distance for the 𝑖th graph.



Graph BERTScore (G-BS) . G-BS takes graphs as a set of edges and solve a matching problem
which finds the best alignment between the edges in predicted graph and those in ground-truth
graph. Each edge is considered as a sentence and BERTScore is used to calculate the score
between a pair of predicted and ground-truth edges, Based on the best alignment and the overall
matching score, the computed F1 score is used as the final G-BERTScore. Considering 𝑥𝑖 as
reference token (entity or relation) and 𝑥̂𝑖 as generated token (entity or relation), the complete
score matches each token in 𝑥 to a generated token in 𝑥̂ to compute recall, and each token in
𝑥̂ to a token in 𝑥 to compute precision. A greedy matching is used to maximize the matching
similarity score, where each token is matched to the most similar token in the other graph. Then
precision and recall are combined to compute an F1 measure. For a reference 𝑥 and candidate 𝑥̂,
the recall, precision, and F1 scores are:

𝑅BERT =
1

|𝑥|
∑︁
𝑥𝑖∈𝑥

max
𝑥̂𝑗∈𝑥̂

𝑥𝑇𝑖 𝑥̂𝑗 ,

𝑃BERT =
1

|𝑥̂|
∑︁
𝑥̂𝑗∈𝑥̂

max
𝑥𝑖∈𝑥

𝑥𝑇𝑖 𝑥̂𝑗 ,

𝐹1BERT =
2 · 𝑃BERT ·𝑅BERT

𝑃BERT +𝑅BERT
.

Bleu-F1 Score (𝐹1𝐵𝑙𝑒𝑢). Let 𝐶𝑔𝑒𝑛 be the count of 4-grams in the generated graph ,
Let 𝐶𝑟𝑒𝑓 be the count of 4-grams in the reference graph, and
Let 𝐶𝑚𝑎𝑡𝑐ℎ be the count of matching 4-grams in both texts

𝑃𝐵𝑙𝑒𝑢 =
𝐶𝑚𝑎𝑡𝑐ℎ

𝐶𝑔𝑒𝑛

𝑅𝐵𝑙𝑒𝑢 =
𝐶𝑚𝑎𝑡𝑐ℎ

𝐶𝑟𝑒𝑓

𝐹1𝐵𝑙𝑒𝑢 =
2× 𝑃𝐵𝑙𝑒𝑢 ×𝑅𝐵𝑙𝑒𝑢

𝑃𝐵𝑙𝑒𝑢 +𝑅𝐵𝑙𝑒𝑢

ROUGE-F1 Score (𝐹1𝑅𝑂𝑈𝐺𝐸). In our experiments, we calculate F1-score for Rouge-2 (bi-
gram), which is presented in the following equation:

𝑃𝑅𝑂𝑈𝐺𝐸 =
𝑏𝑖𝑔𝑟𝑎𝑚𝑐𝑎𝑛𝑑. ∩ 𝑏𝑖𝑔𝑟𝑎𝑚𝑟𝑒𝑓.

𝑏𝑖𝑔𝑟𝑎𝑚𝑐𝑎𝑛𝑑.

𝑅𝑅𝑂𝑈𝐺𝐸 =
𝑏𝑖𝑔𝑟𝑎𝑚𝑐𝑎𝑛𝑑. ∩ 𝑏𝑖𝑔𝑟𝑎𝑚𝑟𝑒𝑓.

𝑏𝑖𝑔𝑟𝑎𝑚𝑟𝑒𝑓.

𝐹1𝑅𝑂𝑈𝐺𝐸 = 2.
𝑅𝑅𝑂𝑈𝐺𝐸 .𝑃𝑅𝑂𝑈𝐺𝐸

𝑅𝑅𝑂𝑈𝐺𝐸 + 𝑃𝑅𝑂𝑈𝐺𝐸



Hallucination and Omission. As mentioned before, we calculate hallucination and omission
using OEP, which is the optimal edit paths between the gold and predicted graphs. Each edit
operation (ei) in OEP represents an action required to transform the predicted graph into the
gold graph.

• Hallucination: An edit operation 𝑒𝑖 is considered a hallucination if it involves adding
an entity or a relation that is not present in the gold graph but exists in the predicted
graph. In our work, we take into account the overall hallucination ℎ𝑎𝑙𝑙., this metric is
represented by the following equation :

𝐻𝑎𝑙𝑙. =
ℎ𝑎𝑙𝑙

𝑇𝑜𝐺𝑟𝑠

Where ℎ𝑎𝑙𝑙 is the number of graphs with hallucination, and 𝑇𝑜𝐺𝑟𝑠 in the total number
of generated graphs

• Omission: An edit operation 𝑒𝑖 is considered an omission if it involves deleting an entity
or a relation that exists in the gold graph but is missing in the predicted graph. In ou
work, we do the same as the hallucicnation, we calculate the overall omission 𝑜𝑚𝑖𝑠.,
presented by the following equation :

𝑂𝑚𝑖𝑠. = 𝑜𝑚𝑖𝑠𝑠/𝑇𝑜𝐺𝑟𝑠

Where 𝑜𝑚𝑖𝑠𝑠 is the number of graphs with omission.

Figure 4: Results examples



4. Experiments

This section provides insights into the LLMs utilized in our study for ZSP, FSP, or FT, followed
by the presentation of our experimental results.

In this section, we provide a brief overview of the LLMs utilized in our experiments. Our
selection criteria focused on employing small, open-source, and easily accessible LLMs. All
models were sourced from the HuggingFace platform2

• Llama 2 [12] is a collection of pretrained and fine-tuned generative text models ranging
in scale from 7 billion to 70 billion parameters. In our experiments, we deploy the 7B and
13B pretrained models, which have been converted to the Hugging Face Transformers
format.

• Introduced by [15], Mistral-7B-v0.1 is a pretrained generative text model featuring 7
billion parameters. Notably, Mistral-7B-v0.1 exhibits superior performance to Llama 2
13B across all benchmark tests in their experiments.

• In the work presented by [16], Starling-7B is introduced as an open LLM trained through
Reinforcement Learning from AI Feedback (RLAIF). This model leverages the GPT-4
labeled ranking dataset, berkeley-nest/Nectar, and employs a novel reward training and
policy tuning pipeline.

In our review of the state-of-the-art, we observed that, apart from [3], which incorporates
hallucination evaluation in their experiments, other studies primarily focus on metrics such as
precision, recall, F1 score, triple matching, or graph matching. In our approach to evaluating
experiments, we consider also hallucination and omission through a linguistic lens.

Upon examining Table 1, we observe the superior performance of the FT method compared
to ZSP and FSP for the T2KG construction task. Of particular interest is the finding that,
with the exception of Llama2-7b, applying ZSP to the fine-tuned Llama2-7b results in worse
performance than FSP on the original Llama2-7b. Overall, this table provides a clear visualization
of the relative performance of each method, highlighting the strengths and limitations of each
approach for T2KG construction.

Furthermore, it is evident that better results are achieved by providing more examples (more
shots) to the same model, whether original or fine-tuned. The results underscore the positive
correlation between the quantity of examples and the model’s performance. Comparing the
fine-tuned Mistral and fine-tuned Starling, they exhibit similar performance when given 7 shots,
surpassing the two Llama2 models by a significant margin. The standout performer with ZSP
on the fine-tuned LLM is Mistral, showcasing a considerable lead over other LLMs, including
Starling. To corroborate these findings, future versions of our study plan to assess our fine-tuned
models using an alternative dataset with diverse domains.

As depicted in Figure 2, Hall. represents Hallucinations, while Omis. denotes Omissions.
Taking into account our strategy of introducing an empty graph when LLMs fail to produce

triples, we note that even with LLama2-13b with ZSP exhibiting the least favorable results
across all metrics, it displays minimal hallucinations. Nonetheless, it’s crucial to recognize that
the model with the fewest hallucinations may not necessarily be the most suitable choice. To
2Hugging Face: https://huggingface.co/

https://huggingface.co/


Table 1
Comparison of performance metrics and models

Model | Metric G-F1 T-F1 G-BS GED F1-Bleu F1-Rouge Hall. Omis.

PiVE 14.00 18.57 89.82 11.22 - - - -

Mistral-0 2.30 0.00 77.87 15.93 54.97 55.15 20.63 31.48
Mistral-7 18.72 28.44 87.54 10.13 55.09 63.94 17.88 21.14

Mistral-FT-0 31.93 44.08 86.89 8.25 63.88 69.08 13.55 18.27
Mistral-FT-7 34.68 49.11 91.99 6.69 71.78 77.43 15.01 14.45

Starling-0 5.23 7.83 86.29 13.35 34.64 14.61 17.48 33.24
Starling-7 21.30 33.77 90.41 8.96 60.47 69.34 17.31 14.61

Starling-FT-0 21.47 28.29 72.86 11.87 44.07 47.69 10.17 42.78
Starling-FT-7 35.69 48.49 91.95 6.60 71.51 76.67 11.35 18.27

Llama2-7b-0 0.00 0.46 54.20 18.29 20.23 17.98 4.83 81.53
Llama2-7b-7 11.80 20.88 82.78 12.66 45.48 54.29 20.74 30.02

Llama2-7b-FT-0 3.82 15.41 59.19 15.78 16.82 17.95 6.07 79.20
Llama2-7b-FT-7 18.77 32.63 87.19 10.16 58.48 66.35 25.24 18.66

Llama2-13b-0 0.00 0.79 57.42 17.79 20.50 18.23 4.78 81.23
Llama2-13b-7 13.49 23.99 84.89 11.59 50.18 58.71 26.36 19.06

Llama2-13b-FT-0 20.52 32.18 75.88 11.38 46.53 50.78 11.64 39.63
Llama2-13b-FT-7 23.55 37.29 88.77 8.94 63.26 70.12 23.55 16.19

overcome this limitation in our evaluation metric, we aim to improve it by considering the
prevalence of empty graphs in the generated results before assessing them against ground truth
graphs.

The G-BS consistently remains high, indicating that LLMs frequently generate text with
words (entities or relations) very similar to those in the ground truth graphs. Among the models,
the finetuned Starling with 7 shots achieves the highest G-F1, which focuses on the entirety of
the graph and evaluates how many graphs are exactly produced the same, suggesting that it
accurately generates approximately 36% of graphs identical to the ground truth. For various
metrics, the finetuned Mistral with 7 shots performs exceptionally well, particularly in T-F1,
where F1 scores are computed for all test samples and averaged for the final Triple Match F1
score. Additionally, it excels in metrics such as "Omis.," F1-Bleu, and F1-Rouge. F1-Bleu and
F1-Rouge represent n-gram-based metrics encompassing precision (Bleu), recall (Rouge), and
F-score (Bleu and Rouge). These metric could potentially yield even better results if synonyms
of entities or relations are considered as exact matches.

The authors in [6] conduct evaluations using WebNLG+2020. Consequently, we adopt their
approach (PiVE) as a baseline for comparison with our experiments. Upon analyzing the results,
it becomes evident that nearly all fine-tuned LLMs outperform PiVE, which is applied on both
ChatGPT and GPT-4 as mentioned before.

In Table 2, we present the evaluation results of original LLMs with 7 shots and fine-tuned



Table 2
Results on KELM-sub

Model | Metric G-F1 T-F1 G-BS GED F1-Bleu F1-Rouge Hall. Omis.

PiVE 23.11 7.50 87.70 11.35 - - - -

Mistral-7 5.61 10.89 71.29 14.28 56.56 61.11 2.33 77.33

Mistral-FT-0 2.28 8.02 69.29 14.92 24.24 35.70 2.06 77.22
Mistral-FT-7 2.83 8.73 68.55 14.54 26.35 38.76 1.78 78.17

Starling-7 5.61 13.82 83.16 12.85 65.79 71.20 5.33 59.44

Starling-FT-0 2.00 5.76 64.87 16.51 17.64 24.29 0.72 79.39
Starling-FT-7 3.11 9.82 67.79 14.53 27.37 39.49 1.22 78.67

Llama2-7b-7 5.06 6.20 67.49 15.55 52.18 56.71 2.28 76.83

Llama2-7b-FT-0 0.22 1.71 58.85 18.84 6.54 7.81 0.56 80.28
Llama2-7b-FT-7 5.28 8.33 67.29 15.09 26.86 38.75 3.67 75.33

Llama2-13b-7 5.17 7.82 71.66 15.12 55.39 60.06 3.44 75.56

Llama2-13b-FT-0 1.72 7.73 63.37 15.80 20.59 29.53 1.56 79.44
Llama2-13b-FT-7 4.50 8.63 67.44 14.81 26.33 38.09 2.06 77.22

LLMs with zero-shot and 7 shots on the KELM-sub dataset prepared by [6], building upon [44].
It’s crucial to note that the experiments utilized the same prompts as previously described. The
7-shot experiments sourced examples from the WebNLG+2020 training dataset. These new
experiments aim to assess the generalization ability of original LLMs with 7 shots and fine-tuned
LLMs with zero-shot and 7 shots across diverse domains in the T2KG construction task.

The results in Table 2 indicate that our fine-tuned LLMs perform less effectively than the
original LLMs with 7 shots. Furthermore, all LLMs’ results on KELM-sub are inferior to those on
WebNLG+2020. This disparity can be attributed to the presence of different relation types, where
some types are expressed differently in Kelm, utilizing synonyms not considered in the current
metrics. Addressing this, our forthcoming versions aim to refine metrics to accommodate
synonyms in entities and relations.

We also observe that the evaluation of PiVE on Sub-Kelm yields better results, leveraging
examples from the Sub-Kelm training dataset in their few-shot experiments, providing LLMs
with insights into certain relation types.

One of the future experimentations will be to use examples from KELM-sub for few-shot
prompts to investigate whether the generalization issue stems from WebNLG domains, relation
types, or prompts that need improvement to disregard the relation types provided by the
examples.



5. Conclusion and perspectives

This study delves into the Text-to-Knowledge Graph (T2KG) construction task, exploring the
efficacy of three distinct approaches: Zero-Shot Prompting (ZSP), Few-Shot Prompting (FSP),
and Fine-Tuning (FT) of Large Language Models (LLMs). Our comprehensive experimentation,
employing models such as Llama2, Mistral, and Starling, sheds light on the strengths and
limitations of each approach. The results demonstrate the remarkable performance of the
FT method, particularly when compared to ZSP and FSP across various models. Notably,
the fine-tuned Llama2-7b with ZSP gaved worst results than FSP with the original Llama2.
Additionally, the positive correlation between the quantity of examples and model performance
underscores the significance of dataset size in training. An essential part of our study involves
the evaluation metrics employed to assess the generated graphs. Particularly, we introduced
nuanced considerations for refining these metrics to measuring hallucination and omission in
the generated graphs, offering valuable insights into the fidelity of the constructed knowledge
graphs.

Looking forward, there are promising perspectives for further enhancement. One is to involve
refining evaluation metrics to accommodate synonyms of entities or relations in generated
graphs, employing advanced methods or tools for synonym detection. Furthermore, leveraging
LLMs for data augmentation in the T2KG construction task shows promise. Notably, during
experimentation, LLMs, particularly Starling, exhibited the ability to provide continuity in
generated results for T2KG, proposing texts alongside corresponding KGs (triples).
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