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Abstract
In today’s era of rapid technological advancement, Convolutional Neural Networks (CNNs) have demon-
strated superior performance in many fields. As a key component of deep learning, CNNs have proven
to be highly effective across various applications. Deploying CNNs on Field Programmable Gate Array
(FPGA) is a challenging task due to the computational and storage requirements. This paper provides
a comprehensive review of CNNs deployment on FPGA, covering the history of CNNs and explaining
the key layers. A survey is conducted on FPGA optimization methods, and FPGA optimization meth-
ods are summarized by category. Optimizations for software deployment as well as hardware design
have been made to improve computing on FPGA, further unlocking the potential of deploying CNNs
on resource-constrained devices. Additionally, this review delves into examples of applications under
power consumption constraints. Overall, this review offers significant reference value for researchers to
understand CNNs architectures, explore FPGA acceleration methods, and application prospects.
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1. Introduction

With the rapid development of the big data industry and the arrival of the internet of things
era, the amount of global data has shown explosive growth in recent year. This surge in data
provides a solid foundation and rich resources for the development [1] of artificial intelligence
(AI). In this context, deep learning, as a core technology and an important research direction
for realizing AI, has received widespread attention and rapid development. In particular, deep
learning models based on neural networks has become a hotspot for research due to their
superior ability in processing complex data and recognizing patterns [2].
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Among many deep learning models, convolutional neural networks (CNNs) have attracted
the attention of a large number of research institutes by virtue of their high accuracy and
excellent performance in the fields of image recognition, speech processing, etc. CNNs are
able to automatically extract and learn features from data through layer-by-layer convolution
and pooling operation, which significantly improves the effectiveness of various real-world
applications. From cultural heritage protection to medical image analysis and natural language
processing, CNNs play a crucial role in practical applications in various fields, driving the
continuous progress of AI technology.

However, the size of neural networks is rapidly expanding as the accuracy requirements
and complexity increase in real-world applications [3]. This increase in data volume imposes
significant computational demands, challenging the capabilities of many traditional hardware
platforms. At the same time, many application scenarios impose stringent requirements on
the performance, low power consumption and real-time performance of hardware devices. In
addition, how to achieve low power consumption while maintaining high performance for
large-scale deep learning neural networks has become a major challenge [4]. These demands
have motivated researchers and engineers to continuously explore new computing platforms to
meet these demanding requirements.

Common platforms for accelerating deep learning include central processing units (CPUs),
graphics processing units (GPUs), field programmable gate arrays (FPGA), and application-
specific integrated circuits (ASICs) FPGA is flexible and configurable integrated circuits that
internally consist of multiple programmable logic blocks [5]. Each block contains logic gates that
perform computational tasks. The modules within the FPGA are connected together through
a programmable interconnect network and signals are transmitted through I/O moduless [6].
The user can change the functions of the logic blocks and the interconnection paths between
the modules to customize circuit functions and data flow routes.

FPGA can perform a large number of parallel operations at the same time and have lower
latency through direct hardware implementation of functions as compared to CPUs. FPGA can
reconfigure their internal logic as per the requirement whereas the hardware architecture of
CPUs is fixed. In addition FPGA have a higher energy efficiency ratio and are more effective in
processing and applying real-time data [7].

FPGA has a higher energy-efficiency ratio compared to GPUs. FPGA is more energy-efficient
when performing specific tasks, and its hardware can be highly optimized for specific appli-
cations. At the same time, FPGA is flexible and can be reconfigured to suit different tasks
and application requirements, making them particularly suitable for development, testing and
systems that require frequent upgrades.

FPGA has higher flexibility compared to ASICs, which has fixed hardware functions that
cannot be modified after fabrication. ASICs have longer design, fabrication, and testing cycles,
with high upfront development and fabrication costs. FPGA can be modified frequently during
the design validation phase to minimize design errors and risks. Whereas ASIC designs, once
finalized, can be costly to modify, and FPGA has a more low risk.

To provide researchers with a better understanding of CNNs and FPGA acceleration tech-
nology, this paper introduces the architecture of CNNs and the acceleration and optimization
directions of FPGA. This paper also introduces specific application directions, providing re-
searchers with a reference for understanding application areas.
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2. The History and Development of CNNs

2.1. Origin and development

CNNs are type of deep learning model that is particularly suitable for processing image and video
data [8]. Their design was inspired by research into the biological visual cortex in the 1980s.
Researchers observed that the visual system of mammalian brains effectively processes complex
visual information through highly structured layers. Based on these observations, scientists
began designing artificial neural networks to mimic the brain’s processing mechanisms [9].

The concept of CNNs can be traced back to the "Neocognitron" model proposed by Kuni-
hiko Fukushima in 1980 [10]. Fukushima’s model had a multi-layer structure that transmitted
information layer by layer for image recognition. However, due to the lack of modern backprop-
agation training methods, its recognition performance for complex tasks was not very good
[11].

In 1989, Yann LeCun and his team developed LeNet-5 [12], a convolutional neural network for
handwritten digit recognition, marking a significant advancement in the practical application
of CNNs. LeNet-5 effectively improved the performance of image recognition by combining
convolutional layers, pooling layers, and fully connected layers with backpropagation algorithms
for training [13]. It was successfully applied in the postal code recognition system of the United
States Postal Service.

In the 21st century, with the advancement of big data and computing power, CNNs have
undergone further development. In 2012, AlexNet [14] achieved breakthrough results in the
ImageNet competition, demonstrating the powerful potential of deep learning. In the AlexNet
network, the ReLU activation function and Dropout regularization were utilized to significantly
reduce the error rate of image classification. This achievement showcased the remarkable
potential of deep learning and sparked rapid development in the field [15].

Building upon AlexNet, many teams continued to optimize CNNs architectures, resulting in
the development of models such as VGGNet, GoogLeNet, ResNet and YOLO [16].

• VGGNet (2014): Proposed by the Visual Geometry Group [17] at the University of
Oxford, multiple small 3x3 convolutional kernels are used instead of large ones, increasing
the depth of the network while reducing the number of parameters and improving its
capabilities.

• GoogleNet (2015): Proposed by Google [18], it adopts the inception module, which
uses multiple convolutional kernels of different sizes and pooling operations to capture
multi-scale features in the same layer, improving the feature extraction capability. A
1x1 convolutional kernel is used in the descending operation to improve computational
efficiency.

• ResNet (2015): Proposed by Microsoft Research, ResNet introduces a residual block
design that skips one or more layers and directly adds the inputs to the outputs. This
approach effectively addresses the problem of vanishing gradients that occurs during
training, enabling the network to be trained at greater depths.

• YOLOv1 (2016): Proposed by Joseph Redmon et al, YOLOv1 [19] treats the object de-
tection problem as a single regression problem, directly predicting the object’s boundaries
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and categories from the input image. This approach significantly improves detection
speed [16]. YOLOv1 uses full-image prediction, fully integrating the input image with
global contextual information, thereby enhancing detection accuracy.

Table 1
Comparison of CNNs model architectures and performance metrics

Year Architecture Name Content Parameter Error Rate
1989 LeNet-5 Spatial Exploitation 0.06M MNIST: 0.95
2012 AlexNet Spatial Exploitation 60M ImageNet: 16.4
2014 VGGNet Spatial Exploitation 138M ImageNet: 7.3
2014 GoogleNet Spatial Exploitation 4M ImageNet: 6.7
2015 ResNet Depth + Multi-Path 25.6M CIFAR-10: 6.43
2016 YOLOv1 Unified Detection + Real-time Performance 62.4M VOC-2012: 42.1

The development history of CNNs is shown in Table 1, including the content, parameter, and
error rate. From Neocognitron to modern deep convolutional networks, the development of
CNNs reflects the tremendous progress in artificial intelligence and deep learning technologies.

2.2. Structure and Principle

Multiple layers are combined, and together they form CNNs , with each layer serving a different
purpose. In this subsection, we provide a brief overview of the key layers required to build a
CNNs.

• Input Layer: The starting point of a neural network is the input layer, responsible for
receiving raw data and passing it on to subsequent layers. In image processing tasks, the
input layer typically receives a matrix of pixels, including the height, width, and number
of color channels of an RGB image.

• Convolutional Layer: Convolutional operations can be thought of as sliding a con-
volutional kernel over the input data, extracting local features, and computationally
generating a feature map. Convolutional layers can gradually extract higher-level fea-
tures from captured low-level features, such as edges, after multiple layers of stacking.

• Activation Functions: activation functions introduce nonlinear transformations
that allow the network to learn to represent complex nonlinear relationships. Activate
the ReLU function in this process sigmoid and tanh are commonly used. Activation
functions are typically applied to the outputs of convolutional and fully connected layers,
significantly enhancing the performance of the model.

• Pooling Layer: Pooling, also known as subsampling, the pooling layer gradually
reduces the spatial size of representations through downsampling operations. This
reduction in size helps decrease the number of parameters and computation, lowering
computational complexity and memory usage while preserving critical information.

• Fully Connected Layer: A fully connected layer whose neurons are fully connected
to all activations of the previous layer, It expands the feature map of the previous layer
into a one-dimensional vector and generates the output through matrix multiplication.
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• Output Layer: The output layer is the last layer of the neural network and is responsible
for generating the final prediction, usually using Softmax or Sigmoid functions to convert
the output of the network into a probability distribution and generate the final prediction.
Figure 1 gives an example of CNNs architecture.

Figure 1: A sample CNNs architecture designed for image classification.

In order to meet the growing computational demands with limited energy consumption. The
next step will explore the deployment of CNNs on FPGA to improve inference and training
efficiency.

3. FPGA acceleration technology

As models deepen, the computational process involves a large amount of computation and data,
which significantly increases the system burden. Using more energy-efficient FPGA for model
deployment has become a promising option. Improving operational efficiency and reducing
energy consumption are key focuses of current research. This section will introduce FPGA
optimization techniques through software optimization and hardware optimization. Figure 2
shows the article structure.

3.1. Software Optimization

This section presents the software optimization aspect, primarily focusing on the optimization
of CNNs network models and algorithms.

3.1.1. Optimization of network structure

In CNNs [20], meta-heuristic refers to an advanced optimization strategy or algorithm used to
find the global optimal solution rather than being limited to locally optimal solutions.
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Figure 2: FPGA acceleration technology article structure.

In the literature, L. M. Rasdi Rere et al. compared the effectiveness of three meta-heuristic
algorithms—Simulated Annealing, Differential Evolution, and Harmony Search in optimizing
CNNs [21]. The computational time of the optimized CNNs increased compared to the original
CNNs. These optimization effect analyses and research outlooks demonstrate the potential and
future directions of metaheuristic algorithms in optimizing neural networks and deep learning
architectures.

Traditional gradient-based backpropagation methods, although widely used, still have some
problems such as local optima, being computationally expensive, and dependence on a con-
tinuous cost function. Mehrdad Kaveh et al. summarized the strengths and weaknesses of
metaheuristic (MH) algorithms in deep learning and CNNs optimization and proposed future
research directions in integrating MH algorithms and deep learning, especially the potential of
hybrid MH algorithms [22]. MH algorithms have a significant advantage in the optimization of
neural networks and deep learning architectures, and there are many directions worth exploring
in future research.

3.1.2. Model compression optimization

Compressing and optimizing the model can greatly reduce computational and storage costs. In
this section, we will review [23] the optimization techniques [24] for model compression on
CNNs.

Li et al. proposed a Collaborative Compression (CC) method that combines channel pruning
and tensor decomposition to compress CNNs by simultaneously learning the sparsity and
low-rank nature of the model [25]. The compression sensitivity of each layer is analyzed by
constructing a model of the relationship between information loss and compression rate. The
results showed that the CC method significantly outperforms existing methods. For example,
it achieved a 52.9% reduction in FLOPs on ResNet-50, while decreasing the Top-1 accuracy by
only 0.56%.
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Luis Balderas et al. proposed a method for optimizing CNNs architectures and named it
OCNNsA [26]. The method uses techniques such as pruning and knowledge refinement to
identify and retain the most important filters. It used Principal Component Analysis , Frobenius
Paradigm and Coefficient of Variation to determine the importance of the filters, thus simplifying
the model with minimal loss of accuracy. The method performed well and significantly reduced
the number of parameters while maintaining high accuracy. The method reduced computational
cost and energy consumption, ensuring that the neural network remains effective and accurate
when deployed on resource-limited devices.

By compressing the CNNs [27], power consumption can be significantly reduced, and com-
putational complexity, memory usage, and storage space consumption can be decreased. This
improves the deployability and environmental friendliness of the model [23].

3.1.3. Algorithm optimization

When deploying CNNs in FPGA, the algorithms need to be optimized to improve performance
and resource utilization. The use of Winograd algorithm and Fast Fourier Transform (FFT) can
significantly reduce computational complexity and improve computational efficiency [28].

Wang et al. used the Winograd algorithm to design an efficient FPGA accelerator that
significantly reduced the number of multiplication operations [29]. Wang proposed the Sparse
Winograd-ReLU algorithm, which combines the MBM coding format and the Scatter-Compute-
Gather method to significantly optimize the FPGA performance and energy efficiency of the
CNNs accelerator. By addressing the irregularities of sparse data, the application efficiency of
the Sparse Winograd algorithm is improved, and its scalability is enhanced for applications in
embedded systems and high-performance computing environments.

He et al. proposed a fast convolutional algorithm based on FFT pruning , which removed
redundant addition operations through an intelligent pruning method and reduces more than
50% of the addition operations compared to existing algorithms, while maintaining better
numerical accuracy [30]. An efficient reconfigurable architecture was designed to support
convolutional operations with different convolutional kernel sizes, achieving a throughput of
200.6 GOPS on a Xilinx ZC706 FPGA with a 61% improvement in resource efficiency.

The two-step process of converting convolution operations into matrix multiplication is
known as Img2col and GEMM.

Ye et al. proposed a unified FPGA-based acceleration design that selects the optimal algorithm
(im2col or frequency-domain convolution) for each layer of convolutional operations [31]. The
optimal algorithm was selected through a performance model, reducing latency by 3.4x to 6.7x
compared to the CPU implementation. The computational efficiency of homomorphic crypto
convolution is significantly improved.

By performing algorithmic optimizations, model performance can be greatly improved and
deployment flexibility can be increased.

3.2. Hardware design optimization

Hardware design optimization plays a vital role in the accelerator FPGA. In this section hardware
design optimization techniques will be reviewed.
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3.2.1. BNNs Architecture

Binarized Neural Networks (BNNs) are a special type of neural network architecture in which
weights and activation values are restricted to binary values.

Tang et al. explored the challenges of deploying CNNs in an edge computing environment
[32]. The study compared the accuracy of different BNNs methods on the CIFAR-10 dataset.
The BinaryNet method showed a significant decrease in accuracy due to the loss of information
caused by the binarization of activation values. Using methods like BNC, which quantized only
the weights, accuracy can be kept high and close to that of a full-precision network. FP-BNN
achieved high performance in the number of operations per second (GOP/s) but has relatively
high power consumption. The study also pointed out that network sparsity can be utilized
to skip unnecessary computations, leading to significant power savings. Finding a balance
between efficiency and resourced consumption is crucial for implementing BNNs on FPGA
efficiently.

3.2.2. SIMD Architecture and Reduction Array

Single Instruction Multiple Data (SIMD) architecture is a parallel computing architecture that can
operate on multiple data elements with a single instruction. Optimizing SIMD architecture can
significantly improve computational performance when dealing with large datasets. Reduction
Array Optimization is a technique commonly used in parallel computing to combine multiple
elements of an array into a single result.

Wang et al. accomplished the computational optimization of the SIMD approach through
memory aggregation and vectorization [33]. By using group convolution and a new channel
shuffling process, the memory footprinted of each device was reduced, and inter-device synchro-
nization is eliminated. A parallel FPGA accelerator for ShuffleNet was designed based on this
approach. In terms of time consumption, I-ShuffleNet reduced the inference time by nearly half
compared to the original ShuffleNet. Regarding resource utilization, RAM usage was reduced
from 1707 to 1265, and memory utilization was reduced by 34% when using two FPGA devices.

Ni et al. proposed an algorithm-hardware co-optimization approach to achieved CNNs
acceleration on FPGA for remote sensing image processing via SIMD architecture [34]. The
improved YOLOv2, VGG-16, and ResNet-34 networks were deployed on an AMD-Xilinx VC709
evaluation board, and the experimental results showed that the throughput of the improved
YOLOv2 is 386.74 GOPS, that of the VGG-16 was 344.44 GOPS, and that of the ResNet-34
was 182.34 GOPS, significantly outperformed existing related work. The model optimization
technique proposed by Ni significantly reduced the hardware resource requirements of the
model and improved the energy efficiency of the system through operations such as operation
fusion and depth-first mapping.

Zhang et al. presented two strategies to improved the frequency performance of shrinking
array-based CNNs on FPGA by identifying the critical path and optimizing the design tools
[35]. To addressed the critical path problem in the shrinking array design, the length of the DSP
chain was reduced at the front end of the FPGA design, and layout constraints were imposed at
the back end by optimizing the front end and the back end separately. The optimized design
achieved a frequency of 290 MHz on the VGG16 network, an improvement of about 50% over
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the unoptimized baseline version. This directly improved throughput by 27.6% and reduces
processing latency by 21.6%.

With hardware optimization techniques, the efficiency and performance of deploying CNNs
on FPGA can be dramatically improved, allowing them to be used in multiple scenarios.

3.3. Summary

The FPGA acceleration techniques in the third section are primarily realized through software
optimization and hardware optimization. This paper posits that the flexibility and reconfig-
urability of FPGA makes it highly potential candidates for resource-constrained applications
requiring high performance, particularly in fields such as object detection, anomaly detection,
and identification of ancient documents.Future research should focus on balancing the high
performance and low energy consumption of FPGA to achieve broader applications.

4. Applications

There are many practical applications [36] for deploying CNNs on FPGA by utilizing their low
power consumption and parallel computing features. This subsection will be organized into
three parts. Figure 3 gives sample of applications. [37].

Figure 3: A sample of applications.

4.1. Object detection

Equipping CNNs on FPGA for object detection [38] is an efficient solution in scenarios with
high requirements for real-time [39] and power consumption [40].
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RB et al. designed a system for eye detection in long-distance iris recognition [41]. The
system used an AMD/Xilinx Zynq UltraScale+ MPSoC to implemented a Tiny YOLO-v3 network.
At a distance of 2 meters, the system could accurately capture and process eye images of a
person in motion. This system, which improved biometric accuracy and speed, was suitable for
security surveillance and identity verification.

Harada et al. proposed an object detection system implemented on a Xilinx ZCU102 FPGA,
utilizing the YOLOv3 network for real-time object detection in an autonomous driving system
[42]. In actual road testing, the system operated stably in various complex scenarios, achieving
a real-time detection rate of 99.8% and adapting to different lighting and weather conditions.

4.2. Anomaly detection

Anomaly detection by piggybacking CNNs on FPGA is an effective approach.
Wess et al. designed an abnormality detection system for electrocardiograms [43]. The

system used principal component analysis for feature dimensionality reduction and a multilayer
perceptron for classification. The design significantly reduced the required hardware resources
and computational latency through segmented linear approximation of the activation function
and a fixed-point implementation method. With the optimized design, the neural network
achieved an average classification accuracy of 99.82% on the MIT-BIH arrhythmia database.

A system for fire detection using multispectral imagery was designed by Coca et al [44]. A
modeling anomaly detector was implemented to detect weather-induced disasters and natural
hazards on a Xilinx Zynq UltraScale+ XCZU9EG multiprocessor system-on-chip (MPSoC) device.
The accelerator excelled in recognizing fire scenes acquired by Sentinel-2 in the Spanish and
French regions, enabling rapid generation of early warnings and interventions when hazardous
events are imminent.

4.3. Identification of Ancient Documents

Ancient document [45] identification is a complex but valuable task [46]. Deployment using
FPGA can enhance the efficiency of document digitization and preservation [47].

Rizk et al. presented a reconfigurable capsule network hardware accelerator designed for
processing ancient text symbols with sparse annotations [48]. The system used an improved
capsule network architecture that preserved the spatial relationships of image entities through
a dynamic routing algorithm, making it particularly suitable for dealing with small datasets and
sparse annotations. Processing high-dimensional matrix operations through a parallel structure
significantly reduced computational latency and improved throughput. Experiments on the
Phoenician ancient text dataset show that the accelerator achieved a high accuracy of 0.9891 and
a low loss value of 0.021. In a comparison with GPUs, the FPGA hardware accelerator achieved
a 2x reduction in latency, allowing it to outperform GPUs in handling capsule network inference
tasks. The design was particularly suitable for decoding ancient texts with sparse annotations,
enabling efficient character segmentation and detection by maintaining the positional and
gestural information of the characters.
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5. Conclusion

This paper reviews the optimization and application of CNNs on FPGA and introduces the history
and development of CNNs. This paper also focuses on enhancing FPGA performance through
software and hardware optimization techniques, thereby enabling the efficient deployment of
CNNs on resource-constrained devices. In addition, the paper explores the performance of
FPGA in practical applications such as object detection, anomaly detection, and identification
of ancient documents.

This paper posits that due to the large data volume, high computational demand, and fre-
quent memory access of CNNs, deploying FPGA systems on accelerators remains challenging.
FPGA has broad application prospects in scenarios requiring low power consumption and
high performance. As the complexity and scale of deep learning models continue to increase,
the advantages of FPGA in handling large-scale data and complex models will become more
apparent. Future research should focus on further balancing the high performance and low
energy consumption of FPGA to achieve broader applications.
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