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Abstract
This study proposes a method to shorten the deformation simulation time of four-dimensionally printed
hydrogel models using deep learning. In this method, a large number of hydrogel models with the same
shape but different distribution of expansion ratios are first created using Abaqus, and then deformation
simulations are performed using the Abaqus thermal expansion method, and a dataset is created based
on the simulation results. A recurrent neural network (RNN) was created and trained on this dataset,
allowing the RNN to learn model deformation features that can be used to predict the deformation
of longer hydrogels under the same loading conditions. This research provides a method for efficient
simulation and inverse modeling of 4D printing.
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1. Introduction

In recent years, 3D printing technology has become an important technology in the manu-
facturing and engineering fields [1], bringing innovation to product design and production.
However, as the technology develops, more advanced manufacturing technologies are attracting
attention, one of which is 4D printing technology [2]. Compared to traditional 3D printing
technology, 4D printing technology has unique advantages [3]. 4D printing technology can
not only create objects in three-dimensional space, but also control changes in the fourth
dimension, time. This temporal control allows the fabricated object to automatically adjust
its shape, structure, or function in response to external stimuli, achieving a higher degree of
adaptability and intelligence[4]. Smart materials such as hydrogels are used in 4D printing
technology. Hydrogels undergo reversible or irreversible deformation under stimuli or specific
conditions [5]. With the use of smart materials, the fabricated products are equipped with a
wide variety of functions such as self-healing, self-folding, and self-expanding, offering new ap-
plication possibilities in various fields. 4D printing technology can achieve highly individualized
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manufacturing. It can customize products with different shapes and functions to meet specific
needs and environments. Due to this adaptability, 4D printing technology has great potential in
a variety of fields, including smart materials, bio-medicine, and wearable technology [6].

However, while there are many advantages to 4D printing technology, there are some chal-
lenges and limitations to its practical application. One of these problems is related to modeling
and simulation. Simulating the deformation of long sequences of hydrogels requires a large
number of calculations, which will consume a lot of time and computational resources [7].
This is a limiting factor for practical applications. In addition to this, due to the large number
of physical parameters of the model with complex simulation settings, it is often difficult to
obtain a globally optimal solution when optimizing the model parameters. To overcome these
difficulties, we propose a new method. That is, the recurrent neural network (RNN) is utilized to
predict the simulation results of the model based on the initial sequence of the hydrogel model
[8]. This method can replace the traditional simulation process, avoid the consumption of time
and computational resources caused by simulation, and improve the efficiency and feasibility
of 4D printing technology [9]. In terms of model parameter optimization, since the method is
based entirely on data-level computation and processing, it avoids the complex effects of the
physical level, making it simpler to solve for the global optimal solution.

The contributions made by this study are as follows:
1.This study is the first to apply RNN models to a hydrogel modeling method based on 4D

printing technology, and demonstrates the superiority in time and computational space.
2.The RNN model used in this study can be used not only for the deformation prediction of

hydrogel models of the same length, but also for hydrogel models of different lengths with high
accuracy. This advantage makes the technology not only suitable for hydrogel models, but also
for the production of 4d printed models with modular structures.

2. Hydrogel Model Structure

The model for this study was created using software named Abaqus. As shown in Figure 1,
the entire model consists of two identically shaped sections stacked above and below each
other, with each section a rectangle 10 mm long, 2 mm wide, and 2 mm thick. Divide each
layer into parts in millimeter increments in the longitudinal direction. The numbers "0" and "1"
represent the different expansion rates of each part. "0" shows hydrogel with the expansion rate
of 1.8938 and "1" shows the expansion of 2.1223. The Random Forest Model (RFM) generates
rectangles arranged in various orders. Each part has exactly the same material properties such
as density, Poisson’s ratio, Young’s modulus, specific heat, and thermal conductivity, except for
the expansion coefficient.

Based on the above material properties, the hydrogel model will continuously absorb water
and swell in water to produce deformation. The whole process of deformation can be clearly
reflected according to the time change, while the deformation result depends on the initial
swelling rate sequence of the model. It can be seen that the sequence and deformation of the
hydrogel model are standard time series data.
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(a) Sequences schematic (b) Abaqus Model

Figure 1: Model Structure:(a) shows the hydrogel model built in Abaqus software; (b) shows the
schematic of one of the different swelling rate sequences of the hydrogel model

Figure 2: simulation result:The results of the simulation of the deformation of the hydrogel model after
finite element analysis are shown, in which the leftmost lower edge is fixed and cannot move freely.

3. DataSet Creation

After placing the model in water, the model is deformed by expansion due to the higher water
absorption of the hydrogel, and the different expansion rates of the parts cause the model to
bend and deform into a curvilinear shape. To simulate the deformation process, a finite element
analysis is performed using Abaqus. As an equivalent substitute for water absorption and
expansion, the simulated loads were set to vary in temperature from 0°C to 15°C. 2 shows the
result of the simulation. At the same time, one side of the model is fixed so that the deformation
of the model occurs only in the x-axis and z-axis directions, which is convenient for the final
result processing. For processing the simulation results, 20 reference points are selected at 1 mm
intervals in the deformed model and the coordinates of each reference point are output. In total,
400 reference points will create a curve showing the simulation results. Models with different
expansion rates will obtain different deformation curves after simulation. After simulating 1000
of these different models, 1000 different curves are obtained. The data set of the hydrogel model
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Figure 3: The sequence structure of the two hydrogel layers and the x-axis and z-axis displacements of
the datum are stored in a table

is obtained by storing all the coordinates of the obtained curve reference points corresponding
to the "0" and "1" sequence codes of the initial model in the form of a table. As shown in the
figure 3, each row represents one of the layers in the two-layer hydrogel model, and every two
rows form a piece of the hydrogel model. The 10 columns on the left side of the table encode the
hydrogel "0" and "1" sequence before the deformation, while the 200 columns on the right side
correspond to the coordinates of the reference points after the deformation. The first and second
rows of each group represent the coordinates of the reference point in the x-axis direction and
in the z-axis direction, respectively.

4. RNN Structure

Recurrent Neural Network (RNN) is a neural network characterized by its ability to take into
account not only the forward flow of information but also the backward flow of information.
That is, inputs corresponding to the present point in time not only produce outputs for the
present point in time, but also outputs the effect on the subsequent point in time, which makes it
possible to react the sequence to the global effect. This property matches the material properties
of the hydrogel model, so this study chose to use RNN as the model for deep learning [10].In
addition, a special RNN derivative called LSTM (Long Short-Term Memory) has the ability to
learn long-term dependencies and can effectively understand long-term relationships in time
series data [11]. Due to the advantage of flexibility and versatility, RNNs can be adapted to a
wide variety of problems, and in this study, RNNs are used to predict deformations [12]. As
Figure 4 shows, the RNN employed in this experiment alternates between four LSTM layers
with 64 neurons and four tightly coupled layers with 64 neurons.

Overall, the alternate use of the LSTM layer and the fully-connected layer enables the RNN
model used in this experiment to capture the long-term dependencies in the time-series data
and to perform feature extraction and dimensionality reduction on the captured information,
which leads to a better representation of the states and features of the hydrogel model and a
more accurate prediction of the future state of the hydrogel model, and has yielded good results

158



Figure 4: RNN structure:The data of 2x10 structure is converted to 2x200 and then sequentially fed
into the neural network consisting of the intersection of LSTM and Dense layers, and finally output as
2x10x20 data structure.

in the experimental results [13].

4.1. LSTM Structure

As the figure 5(a) shows, the LSTM layer, as a kind of recurrent neural network, has good
memory capability, it can effectively capture the long-term dependencies in time series data
[14]. In this experiment, each LSTM layer is designed to learn the state changes of the hydrogel
model at different time steps and optimize the model parameters to predict the future state
more accurately through the back propagation process of the network.

4.2. Dense Structure

Second, for the four tightly packed dense layers with 64 neurons employed. As the Figure 5(b)
shows, These dense layers are designed to take the output of the LSTM layer for downscaling and
feature extraction to better represent the states and features of the hydrogel model. During the
training process, these fully connected layers help the network better understand the structure
and changing patterns of the hydrogel model by learning the relationship between the inputs
and outputs of the hydrogel model.
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(a) LSTM model (b) Dense model

Figure 5: Model structure:The data is partitioned into x(i) sequences by time step order into the LSTM
layer, the output y(i) sequences as the input to the Dense layer through the Dense layer to process the
data, the results of the processing is done as the input to the next LSTM layer, the cycle of the process
to complete the extraction of features.

5. Prediction Process for Deep Learning

5.1. Training Process

For the training part, as the figure 6 shows, the parameters of the RNN model including weights
and biases are initialized first, and the above parameters will be updated gradually during the
training process so that the model can fit the training data better. After the initialization of the
model is completed, the short sequence data with a length of 10 cm obtained from the finite
element analysis is used as the training data, which contains different sequence alignments as
input data and the deformed coordinates as predicted target data. After inputting the training
data into the RNN model to start training, the loss function is utilized to calculate the difference
between the predicted results of the model and the real results each time, which is called
loss. The loss results in each training session are used as a measure of model accuracy, and
the backpropagation process uses an optimization algorithm to update the parameters of the
model so that the model fits the training data better. After repeating the steps of forward
propagation to calculate the loss and backpropagation to update the parameters until the
predefined convergence threshold of the loss function is reached, the RNN model will learn the
pattern of change of the hydrogel model and try to predict the future state at each time step in
the subsequent process [15].

5.2. Prediction Process

This is followed by the prediction part. As the figure 7 shows, where a short sequence of length
10cm is first used as the initial input to the RNN model. During the forward propagation of
the model, the RNN model processes each time step of the input sequence sequentially. At
each time step, the model generates a prediction result based on the current input sequence
data with the previous hidden state. And based on the current input and prediction result, and
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Figure 6: RNN Training:The short sequence data is trained by RNN for prediction and then the loss
function is calculated to complete the forward propagation, in order to reduce the loss function the
structural parameters in the RNN are adjusted and the data is re-inputted for the updating of the loss
function to complete the back propagation.

the previous hidden state, the hidden state is updated. This hidden state will continue to be
used in the next time step to help the model better understand the temporal dependencies in
the sequence. After the prediction of one time is completed, the RNN model will repeat the
prediction process. That is, the prediction result from the previous time step is repeatedly used
as the input for the next time step, and then the forward propagation process is performed
again. This process will continue until we predict the result of the entire long sequence.

5.3. Prediction Results

The variation of the prediction results with respect to the loss function during training and
prediction is shown in Figure 8. The blue curve in the figure 8(a), 8(b), 8(c)is the deformed curve
obtained after simulation of the hydrogel model with a length of 15 cm sequence, i.e., the true
value, and the yellow curve is the prediction curve consisting of the 300 points used as the
prediction result. The training process includes a total of 80 epochs, totaling more than 30,000
iterations of training. As can be seen from the figure 8(d), the loss function decreases rapidly in
the early stage of training, indicating that the training results fit the real deformation results
quickly, after 10 epochs the decrease of the loss function tends to level off, but is still decreasing
steadily, and after all the 80 epochs have been completed, the loss function decreases to 1.7e-7,
and the training curve basically agrees with the real curve, and the RNN model has learned the
deformation features of the hydrogel model with a length of 10cm. The results of the prediction
of the hydrogel sequence model with a length of 15cm by this model are shown in the yellow
curve in the figure 8(a), 8(b), 8(c). As can be seen from the figure 8(a) 8(b) 8(c), the change of the
predicted loss function is basically the same as the change rule of the training loss function,
in the first 10 epochs when the rapid fit with the real results, and then the decline gradually
stabilized, and finally stayed in the vicinity of 2.2e-5, and there is still a tendency to continue
to decline, if we continue to increase the number of epoch, the prediction results can also be
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Figure 7: RNN Prediction:Taking the latest 10 time steps as a group, the results of the next time step
are predicted from this group based on the data extracted during the training of the RNN model and
the grouping of the time steps is updated.

more accurate. Compared with the training loss function, the predicted loss function is 1e2
higher, but in the comparison chart with the real results, it can be seen that the real deformation
trend has been predicted, and to a large extent predicted the specific coordinates of each point.
From the comparison of the predicted results with the real results, it can be seen that the RNN
model has basically mastered the deformation characteristics of the hydrogel model used in
this experiment, and it can use the deformation characteristics of the 10 cm model to predict
the deformation of the 15 cm model. The prediction results are highly consistent with the
simulation results, and the prediction accuracy can be increased with the increase of training
times.

6. Conclusion and Feature

In this paper, we use deep learning to predict the deformation of hydrogel models created
by 4D printing technology. We designed a Recurrent Neural Network (RNN) structure and
demonstrated the utility of the method to predict the deformation of a long hydrogel based
on the deformation parameters of a short model for a two-layered rectangular object created
with hydrogel. In general, building and simulating complex models using the finite element
method is a time-consuming task. The method submitted in this study can efficiently predict
simulation results without finite element analysis, thus significantly reducing time consumption.
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(a) Prediction Results1 (b) Prediction Results2

(c) Prediction Results3 (d) loss

Figure 8: Prediction Results:(a) (b) (c) are three plots of the prediction results in the last epoch, with
the x and y axis data being the coordinates of the corresponding axes. (d) is a plot of the variation of the
training loss function versus the predicted loss function.

However, at present, this experiment still suffers from the problem that the training phase of
the RNN model takes a long time and the prediction accuracy is not high for models with long
lengths. In the future, we will continue to improve the neural network structure and optimize
the algorithm with new suitable loss function formulas to create RNN networks that allow more
accurate predictions and broader applications in the 4D printing domain.
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