
Parked Vehicles Assisted Task Offloading Based on
Deep Reinforcement Learning
Guangting Lu1, Zhuojun Lv1, Zheng Zhang1 and Feng Zeng1,*

1School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract
As demand continues to grow, edge servers are increasingly constrained by their limited com-puting
resources. In addition, large-scale deployment of edge servers will inevitably lead to unnecessary waste of
resources. To further expand the resources of Vehicular Edge Computing, in this paper, we point out that
the idle resources of parked vehicles can be integrated to assist edge servers in processing offload tasks
and propose a computing offloading framework for parking cluster collaboration. In this framework, the
computing task of each vehicle is composed of multiple subtasks that have dependencies between each
other. To efficiently manage hetero-geneous resources in the framework, a layered offloading method
based on deep reinforcement learning is proposed to minimize the average completion time of all vehicles.
Simulation results show that the proposed method has better performance than the other three baseline
methods in terms of task processing time and task execution success rates.

Keywords
Edge Computing, Deep Reinforcement Learning, Dependent Task Offloading, Parked Vehicles

1. Introduction

In Vehicular Edge Computing, due to the very limited computing and storage resources, vehicles
are often unable to process some computationally intensive and latency-sensitive intelligent
applications locally, such as digital twins, augmented reality, etc. [1]. As a complementary
solution, cloud computing meets the service needs of some computing-intensive tasks by
offloading applications to cloud servers for execution [2]. However, cloud servers are usually
located in data centers far away from vehicles, which leads to higher bandwidth consumption
and increased communication latency during task offloading, thus affecting the performance
of computation offloading. To this end, Vehicular Edge Computing (VEC) came into being.
Its idea is to provide highly reliable and low-latency computing offload services to vehicle
users by deploying edge servers on both sides of the road [3]. However, as demand continues
to grow, edge servers are increasingly constrained by their limited computing resources. To
optimize the resource allocation of a single-edge server, some scholars [4, 5, 6] have devoted
themselves to taking one or more performance indicators as the optimization goal and modeling
the computation offloading problem as the best optimization model. However, as the number of
requests for computing offload services increases, the approach that simply relies on optimizing

The 6th International Symposium on Advanced Technologies and Applications in the Internet of Things (ATAIT 2024),
August 19-22, 2024, Kusatsu, Shiga, Japan
*Corresponding author.
$ fengzeng@csu.edu.cn (F. Zeng)

© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

165
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:fengzeng@csu.edu.cn
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

the resource configuration of a single-edge server still has the problem of insufficient resources.
To this end, some scholars [7, 8] have explored the resource scheduling problem across multiple
edge servers and achieved resource collaborative scheduling among multiple edge servers by
building a resource load balancing model. However, due to the temporal and spatial differences
in the spatial distribution of vehicles, servers in the same area often face similar load pressures.
Thus, migrating computing tasks to distant edge servers for collaborative processing may result
in higher service delays.

Considering that idle computing resources near vehicles are ubiquitous and do not require
additional deployment, some scholars have studied the use of neighboring vehicles to expand
the capabilities and service scope of edge computing. Some works [9, 10] have studied how
to use mobile vehicles as edge servers to assist in offloading. However, the rapid movement
of vehicles may cause frequent changes in communication channels and interruptions in task
offloading, which in turn affects the performance of computation offloading. Liu et al. [11]
investigated the availability of parked vehicles and pointed out that parked vehicles have the
characteristics of dense distribution, long parking time, and fixed location, which can provide
stable network connections and computing resources, making them potential computing devices
in the infrastructure [12]. Based on this, Reis et al. [13] proposed adding parked vehicles as static
nodes to VEC, forming the concept of parking assistance and developing it into a new type of
hybrid network. To alleviate the computing pressure on edge servers, some scholars have studied
how to use the computing and communication resources of parked vehicles to collaborate with
the edge for computing offloading. Kadhim et al. [14] integrated Software Defined Networks
and fog computing, used parked vehicles as auxiliary nodes for fog computing, and proposed a
load balancing mechanism. Pham et al. [15] studied partial computation offloading in parked
vehicle-assisted multi-access edge computing and used the subgradient method to optimize
the offloading ratio and resource allocation. Ma et al. [16] organized parked vehicles into
parking clusters and theoretically proved the long-term stability of the number of vehicles
in a parking cluster. Zhao et al. [17] organized parked vehicles into static service nodes in a
scenario where edge infrastructure was limited and proposed a task offloading algorithm based
on reinforcement learning.

However, the scenarios considered in the above research on parking vehicle-assisted edge
computing are too idealistic, and the main scenario considered is the collaborative offloading
problem between a single edge server and multiple unassociated parked vehicles. In addition,
the dependencies of subtasks are not taken into account, which limits the potential of parallel
processing in edge computing and makes it difficult to meet the needs for low-latency services.
In the face of the shortcomings and challenges of existing research, the main contributions of
this work are summarized as follows:

• We propose to integrate parked vehicles into parking clusters and design a dependent
task computation offloading framework for multiple parking clusters to collaborate with
a single edge server.

• We propose a deep reinforcement learning algorithm based on a multi-actor and single-
critic network architecture to minimize the average completion time of the application.
Guided by a single critic network, multiple actor networks efficiently divide the decision
action space into two layers: the first layer determines the location of task execution

166

(locally, on edge servers, or in parking clusters); the second layer selects the specific
parked vehicle to execute the task. This approach not only reduces the action space that
each actor network handles, but also significantly improves the overall performance and
efficiency of the system.

The remainder of the paper is organized as follows: Section II shows the system model studied
in this paper, including: scenario modeling, task modeling, computational modeling, and the
formalization of the optimization objectives established in this paper. Section III introduces the
Double Actor-Layered Deep Deterministic Policy Gradient (DALDDPG) algorithm. We first
model the decision-making process of the scenario studied in this paper as a Markov decision
process. Then, the network structure of the DALDDPG algorithm, the update method of each
network, and the DALDDPG pseudocode are introduced. Section IV evaluates the effectiveness
of the proposed algorithm by comparing it with existing algorithms. Finally, we conclude this
paper in Section V.

2. System model

As illustrated in Figure 1, we consider a computation offloading scenario involving multi-parked
vehicles, multi-task vehicles, and a single VEC server. To effectively manage the resources of
parked vehicles and facilitate task cooperation among them, we group parked vehicles into
multiple Parking Vehicle Clusters (PVC) and designate a Cluster Management Vehicle (CMV)
within each cluster. The primary responsibility of the CMV is to maintain basic information
about the vehicles within the cluster and report this information to the Road Side Unit (RSU) of
its area via V2I communication regularly. Considering that the communication cost of the CMV
with exterior entities is usually greater than its communication cost within the cluster, we do
not consider the communication delay between the CMV and other vehicles within the cluster.
Furthermore, the CMV is regarded as a bridge for the entire cluster to communicate with the
exterior, responsible for accurately forwarding messages to the targeted parked vehicles.

We posit that there are M PVCs on the road, denoted as {𝑃𝑚|𝑚 = 1, 2, ...,𝑀}. In each
𝑃𝑚, there are 𝐺 parked vehicles, where 𝑄𝑚,1 represents the CMV of the 𝑚-th PVC, and
𝑄𝑚,𝑔 represents the 𝑔-th vehicle in the 𝑚-th PVC. The computing resource set for the parked
vehicles in each 𝑃𝑚 is represented as {𝐹𝑚,𝑔|𝑔 = 1, 2, ..., 𝐺}, where 𝐹𝑚,𝑔 signifies the CPU
clock frequency of the 𝑔-th vehicle in the 𝑚-th PVC. Moreover, there are 𝑁 task vehicles on
the road, which can either connect to the RSU in their coverage range through V2I to access the
VEC server, or connect to the PVC through V2V.

2.1. Task model

In this paper, we model the dependent subtask relationships derived from the application 𝐾𝑛,
generated by vehicle 𝑛, as 𝐺𝑛 = (𝑉𝑛, 𝐸𝑛). Here, 𝑉𝑛 = {𝑣𝑛𝑖 |0, 1, ..., 𝑙, 𝑙 + 1} represents the
𝐼 + 2 subtasks of 𝐾𝑛. Specifically, 𝑣0 and 𝑣𝐼+1 represent the virtual entry and exit subtasks
of 𝐾𝑛, respectively. These two virtual tasks are established to ensure that 𝐾𝑛 can start and
end on vehicle 𝑛. Each edge within the set 𝐸𝑛 denotes a dependency relationship between
subtasks of 𝐾𝑛. Specifically, an edge 𝑒(𝑣𝑛𝑖 , 𝑣

𝑛
𝑗) ∈ 𝐸𝑛 indicates that the result from 𝑣𝑛𝑖 must

167

Figure 1: System Model.

be transmitted to 𝑣𝑛𝑗 before 𝑣𝑛𝑗 can commence its execution. The tuple {𝑧𝑛𝑖 , 𝑜𝑛𝑖 , 𝑑𝑛𝑖 , 𝑡𝑛𝑖.𝑚𝑎𝑥} is
defined to characterize the 𝑖-th subtask 𝑣𝑛𝑖 of 𝐾𝑛, where 𝑧𝑛𝑖 is the input data volume for 𝑣𝑛𝑖 , 𝑜𝑛𝑖
is the output data volume resulting from executing 𝑣𝑛𝑖 , 𝑑𝑛𝑖 represents the number of CPU cycles
required to execute 𝑣𝑛𝑖 , and 𝑡𝑛𝑖.𝑚𝑎𝑥 is the maximum tolerable delay for 𝑣𝑛𝑖 .

The set of computing devices, available for offloading services within the communication
range of the task vehicle, is denoted by 𝑆 = {0, 1, ...,𝑀,𝑀 + 1}, where 𝑆0 represents the task
vehicle itself, 𝑆1 to 𝑆𝑀 represent PVCs, and 𝑆𝑀+1 represents the VEC server. The decision
variable 𝑋𝑛

𝑖,𝑚 is used to indicate whether subtask 𝑣𝑛𝑖 is offloaded to the computing device 𝑆𝑚.
This variable can be defined as follows:

𝑋𝑛
𝑖,𝑚 =

{︃
0 if subtask 𝜈𝑛𝑖 is no offoaded to device 𝑆𝑚,

1 if subtask 𝜈𝑛𝑖 is offoaded to device 𝑆𝑚.
(1)

The decision variable 𝑌 𝑛,𝑚
𝑖,𝑔 indicates whether subtask 𝑣𝑛𝑖 is executed on parked vehicle 𝑄𝑚,𝑔

in PVC 𝑃𝑚. This variable can be defined as follows:

𝑌 𝑛,𝑚
𝑖,𝑔 =

{︃
0 if subtask 𝑣𝑛𝑖 is executed n𝑜𝑡 on parked vehicle 𝑄𝑚,𝑔 in 𝑃𝑚,

1 if subtask 𝑣𝑛𝑖 is executed on parked vehicle 𝑄𝑚,𝑔 in 𝑃𝑚.
(2)

168

2.2. Computational model

In this paper, we assume that the VEC server, parked vehicles, and local vehicles can only handle
one subtask at a time and that each subtask can only be processed on a computing device.

2.2.1. Local computing model

When 𝑋𝑛
𝑖,0 = 1, the task 𝑣𝑛𝑖 is executed locally. The local ready time, 𝑅𝑇 𝑙𝑜𝑐

𝑛,𝑖, for 𝑣𝑛𝑖 , is the time
when all the predecessor tasks of 𝑣𝑛𝑖 have been executed and their results have been trans-mitted
back to the local vehicle. 𝑅𝑇 𝑙𝑜𝑐

𝑛,𝑖 can be expressed as follows:

𝑅𝑇 𝑙𝑜𝑐
𝑛,𝑖 = max

𝑣𝑛𝑖 ∈𝑝𝑟𝑒𝑛𝑖
{𝐹𝑇𝑛,𝑗 + 𝑇 𝑐𝑜𝑚𝑚,𝑛

𝑗,𝑖 } (3)

where 𝑝𝑟𝑒𝑛𝑖 is the set of all predecessor tasks of 𝑣𝑛𝑖 ; 𝐹𝑇𝑛,𝑗 refers to the completion time
for 𝑣𝑛𝑗 on the designated computing device based on the offloading decision; 𝑇 𝑐𝑜𝑚𝑚,𝑛

𝑗,𝑖 is the
time required to transmit the execution results of 𝑣𝑛𝑗 back to 𝑣𝑛𝑖 . When 𝑣𝑛𝑖 is ready locally, it
may not immediately be scheduled for execution due to the need to account for local queuing
execution times. The completion time of 𝑣𝑛𝑖 , when executed locally, is denoted as 𝐹𝑇 𝑙𝑜𝑐

𝑛,𝑖 and
can be expressed as follows:

𝐹𝑇 𝑙𝑜𝑐
𝑛,𝑖 = 𝑚𝑎𝑥{𝑅𝑇 𝑙𝑜𝑐

𝑛,𝑖 , 𝐴𝑇
𝑙𝑜𝑐
𝑛,𝑖 }+

𝑑𝑛𝑖
𝑓 𝑙𝑜𝑐

(4)

where 𝐴𝑇 𝑙𝑜𝑐
𝑛,𝑖 stands for the earliest possible scheduling time for the local execution of 𝑣𝑛𝑖 , and

𝑓 𝑙𝑜𝑐 denotes the computing capacity of the local terminal.

2.2.2. VEC computing model

When 𝑋𝑛
𝑖,𝑀+1 = 1, the task 𝑣𝑛𝑖 is carried out on the VEC server. The transmission delay for

vehicle 𝑛, when uploading data 𝑧𝑛𝑖 to the VEC server, can be represented as:

𝑇 𝑡𝑟𝑎𝑛,𝑣𝑒𝑐
𝑛,𝑖 =

𝑧𝑛𝑖

𝑟𝑉 2𝐼,𝑈𝑃
𝑛

(5)

The ready time of 𝑣𝑛𝑖 on the VEC server, denoted as 𝑅𝑇 𝑣𝑒𝑐
𝑛,𝑖 , comprises two components:

the upload time for 𝑣𝑛𝑖 to the VEC server, and the time at which all precursor tasks of 𝑣𝑛𝑖 get
completed and their results are delivered back. Therefore, 𝑅𝑇 𝑣𝑒𝑐

𝑛,𝑖 can be expressed as:

𝑅𝑇 𝑣𝑒𝑐
𝑛,𝑖 = 𝑚𝑎𝑥

{︃
𝑇 𝑡𝑟𝑎𝑛,𝑣𝑒𝑐
𝑛,𝑖 , max

𝑣𝑛𝑗 ∈𝑝𝑟𝑒𝑛𝑖
{𝐹𝑇𝑛,𝑗 + 𝑇 𝑐𝑜𝑚𝑚,𝑛

𝑗,𝑖 }

}︃
(6)

Once task 𝑣𝑛𝑖 is ready on the VEC server, it may not necessarily be immediately scheduled
for execution due to the queuing execution time on the VEC server. The completion time of 𝑣𝑛𝑖 ,
when executed on the VEC server, is denoted as 𝐹𝑇 𝑣𝑒𝑐

𝑛,𝑖 and can be expressed as:

𝐹𝑇 𝑣𝑒𝑐
𝑛,𝑖 = 𝑚𝑎𝑥

{︀
𝑅𝑇 𝑣𝑒𝑐

𝑛,𝑖 , 𝐴𝑇
𝑣𝑒𝑐
𝑛,𝑖

}︀
+

𝑑𝑛𝑖
𝑓𝑣𝑒𝑐

(7)

169

where 𝐴𝑇 𝑣𝑒𝑐
𝑛,𝑖 is the earliest possible scheduling time for 𝑣𝑛𝑖 on the VEC server, and 𝑓𝑣𝑒𝑐

denotes the computing capacity of the VEC server.

2.2.3. PVC computing model

When 𝑋𝑛
𝑖,𝑚 = 1 (where 𝑚 ̸= 0 and 𝑚 ̸= 𝑀 + 1), task 𝑣𝑛𝑖 is executed on the parked vehicle

within PVC 𝑃𝑚. The transmission delay for vehicle n, when uploading data 𝑧𝑛𝑖 to 𝑃𝑚, can be
represented as:

𝑇 𝑡𝑟𝑎𝑛,𝑝𝑣𝑐
𝑛,𝑖,𝑚 =

𝑧𝑛𝑖
𝑟𝑉 2𝑉
𝑛,𝑚

(8)

The ready time 𝑅𝑇 𝑝𝑣𝑐
𝑛,𝑖,𝑚 for task 𝑣𝑛𝑖 on the parked vehicle within 𝑃𝑚 includes two parts: the

time required to upload 𝑣𝑛𝑖 to PVC 𝑃𝑚, and the time when all precursor tasks of 𝑣𝑛𝑖 have been
completed and their results are delivered back. Therefore, 𝑅𝑇 𝑝𝑣𝑐

𝑛,𝑖,𝑚 can be expressed as:

𝑅𝑇 𝑣𝑒𝑐
𝑛,𝑖 = 𝑚𝑎𝑥

{︃
𝑇 𝑡𝑟𝑎𝑛,𝑣𝑒𝑐
𝑛,𝑖 , max

𝑣𝑛𝑗 ∈𝑝𝑟𝑒𝑛𝑖
{𝐹𝑇𝑛,𝑗 + 𝑇 𝑐𝑜𝑚𝑚,𝑛

𝑗,𝑖 }

}︃
(9)

Once task 𝑣𝑛𝑖 is ready on the parked vehicle in 𝑃𝑚, it may not immediately be scheduled
for execution due to the queuing execution time on the parked vehicle. The completion time
𝐹𝑇 𝑝𝑣𝑐

𝑛,𝑖,𝑚 of 𝑣𝑛𝑖 , when executed on the parked vehicle in 𝑃𝑚, can be expressed as:

𝐹𝑇 𝑝𝜈𝑐
𝑛,𝑖,𝑚 = 𝑚𝑎𝑥

{︃
𝐹𝑇 𝑝𝜈𝑐

𝑛,𝑖,𝑚,
𝐺∑︁
1

𝑌 𝑛,𝑚
𝑖,𝑔 𝐴𝑇𝑚,𝑔

𝑛,𝑖

}︃
+

𝑑𝑛𝑖∑︀𝐺
1 𝑌 𝑛,𝑚

𝑖,𝑔 𝐹𝑚,𝑔

(10)

where 𝐴𝑇𝑚,𝑔
𝑛,𝑖 denotes the earliest scheduling time for 𝑣𝑛𝑖 to be executed on the 𝑔-th parked

vehicle in 𝑃𝑚, and 𝐹𝑚,𝑔 represents the computing capacity of the 𝑔-th parked vehicle within
PVC 𝑃𝑚.

2.3. Problem formulation

The actual completion time for subtask 𝑣𝑛𝑖 𝑜𝑓 application 𝐾𝑛, denoted as 𝑅𝑇𝑛,𝑖, based on the
current offloading decisions, can be expressed as:

𝑅𝑇𝑛,𝑖 = 𝑋𝑛
𝑖,0𝐹𝑇 𝑙

𝑛,𝑖 +𝑋𝑛
𝑖,𝑀+1𝐹𝑇 𝑉 𝐸𝐶

𝑛,𝑖 +
𝑀∑︁
1

𝑋𝑛
𝑖,𝑚𝐹𝑇𝑃𝑉 𝐶

𝑛,𝑖,𝑚 (11)

The actual completion time 𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 for 𝐾𝑛 is the actual completion time of the virtual exit

subtask 𝑣𝑛𝐼+1 and can be represented as:

𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 = 𝐹𝑇𝑛,I+1 (12)

The main objective of this work is to minimize the average completion time of system
applications under the condition that each task is completed within its maximum tolerable
delay. The optimization problem is formulated as follows:

170

⎧⎪⎨⎪⎩
𝑚𝑖𝑛 1

𝑁Σ𝑁
𝑛=1𝑇

𝑡𝑜𝑡𝑎𝑙
𝑛

C1:
∑︀M+1

m=0 X
n
i,m ∈ {0, 1},

∑︀G
g=1 𝑌

n,m
i,g ∈ {0, 1}

C2:𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 ≤ 𝑡𝑛𝑚𝑎𝑥, 𝑅𝑇𝑛,𝑖 ≤ 𝑡𝑛i,max

(13)

where 𝐶1 stipulates that each task can only be executed on a single computing device, and
𝐶2 ensures that the actual completion time of each application and its respective subtasks
remains within their maximum tolerable delay.

3. Design of algorithm

Given that the above optimization problem is a complex mixed integer linear programming
problem, traditional optimization algorithms struggle to effectively solve. Moreover, to efficiently
manage heterogeneous resources in proposed scenario, we propose a layered task offloading
scheduling algorithm based on deep reinforcement learning with a multi-actor and single-critic
network. For this purpose, we first model the offloading scheduling process for dependent tasks
as a Markov Decision Process (MDP). Below, we provide the formal expressions for the state
space, action space, and reward function in the MDP.

State. At time t, the Actor1 network in the first layer is responsible for offloading the subtasks
of application 𝐾𝑛 to either the local, a PVC, or the VEC server. The local state 𝑜1𝑡,𝑛 observed
by the Actor1 network includes four main components: the position of the CMV, the available
computing resources of parked vehicles, the sequence of tasks that have already been scheduled,
and the collection of task priority sequences. Therefore, 𝑜1𝑡,𝑛 can be abstractly defined as follows:

𝑜1𝑡,𝑛 = {𝑃 𝑝𝑣𝑐, 𝐹 𝑝𝑣𝑐, 𝑃 𝑟𝑖𝑜_𝑆𝑒𝑞𝑛𝑡 , 𝐷𝑜𝑛𝑒_𝑆𝑒𝑞𝑛𝑡 } (14)

The Actor2 network of the second layer is responsible for offloading the subtasks of application
𝐾𝑛 to specific parked vehicles for execution. The local state 𝑜2𝑡,𝑛 observed by the Actor2
network includes three main parts: the computing resources available of the parked vehicles,
the processing time required for tasks pending in the compute queue of the parked vehicle, and
the set of task priority sequences. Therefore, 𝑜2𝑡,𝑛 can be abstractly defined as follows:

𝑜2𝑡,𝑛 =
{︀
𝐹 𝑝𝑣𝑐, 𝐴𝑇𝑃𝑉 𝐶 , 𝑃 𝑟𝑖𝑜_𝑆𝑒𝑞𝑛𝑡

}︀
(15)

Actions. In the layered action space, for task 𝑣𝑛𝑖 , the first layer action space 𝐴1
𝑛,𝑖 that the

Actor1 network can take is represented as:

𝐴1
𝑛,𝑖 = {𝑥0𝑛,𝑖, 𝑥1𝑛,𝑖, . . . , 𝑥𝑚𝑛,𝑖, . . . , 𝑥𝑀+1

𝑛,𝑖 } (16)

where 𝐴1
𝑛,𝑖 determines the allocation layer level of task 𝑣𝑛𝑖 ; if 𝑥0𝑛,𝑖 = 1, 𝑣𝑛𝑖 is executed locally; if

𝑥𝑀+1
𝑛,𝑖 = 1, 𝑣𝑛𝑖 is executed on the VEC server; if 𝑋𝑛

𝑖,𝑚 = 1 (where 𝑚 ̸= 0 and 𝑚 ̸= 𝑀 + 1), 𝑣𝑛𝑖
is executed on the 𝑚-th PVC. Based on the decisions of the first layer, the second layer action
space 𝐴2

𝑛,𝑖 that the Actor2 network can take is defined as:

𝐴2
𝑛,𝑖 =

{︁
𝑦1𝑛,𝑖, 𝑦

2
𝑛,𝑖, . . . , 𝑦

𝑔
𝑛,𝑖, . . . , 𝑦

𝐺
𝑛,𝑖

}︁
(17)

171

where 𝐴2
𝑛,𝑖 specifies that, within the layer determined by 𝐴1

𝑛,𝑖,task 𝑣𝑛𝑖 is further offloaded to a
specific parked vehicle, and if 𝑦𝑔𝑛,𝑖 = 1, 𝑣𝑛𝑖 is executed on the 𝑔-th parked vehicle.

Rewards. After executing the joint action 𝐴𝑛,𝑖 =
{︁
𝐴1

𝑛,𝑖, 𝐴
2
𝑛,𝑖

}︁
under the global state 𝑆𝑛,𝑡 =

{𝑜1𝑡,𝑛 ∪ 𝑜2𝑡,𝑛},the Agent receives an immediate reward 𝑅𝑡 from the environment, which can be
expressed as follows:

𝑅𝑡 =
𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 (𝐷𝑜𝑛𝑒−𝑠𝑒𝑞

𝑛
1:𝑡)− 𝑇 𝑡𝑜𝑡𝑎𝑙

𝑛 (𝐷𝑜𝑛𝑒−𝑠𝑒𝑞
𝑛
1:𝑡+1)

𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 (𝑙𝑜𝑐𝑎𝑙)

(18)

where 𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 (𝐷𝑜𝑛𝑒_𝑆𝑒𝑞𝑛1:𝑡) denotes the time spent on the subgraph of tasks that have been

scheduled under state 𝑆𝑛,𝑡, and 𝑇 𝑡𝑜𝑡𝑎𝑙
𝑛 (𝑙𝑜𝑐𝑎𝑙) represents the delay when all scheduled tasks are

executed locally.
The Double Actor-Layered Deep Deterministic Policy Gradient (DALDDPG) algorithm com-

prises six networks: the Actor1 network, 𝜋1(𝑜1|𝜃1); the Actor2 network, 𝜋2(𝑜2|𝜃2); and their
respective target networks, 𝜋′

1(𝑜
1|𝜃′1) and 𝜋′

2(𝑜
2|𝜃′2). Additionally, it includes a Critic network,

𝑄(𝑆,𝐴|𝜔), and a corresponding target network, 𝑄′(𝑆,𝐴|𝜔′). In the decision-making process,
the Actor1 and Actor2 networks independently make first-layer and second-layer decisions
based on their local states. The Agent subsequently combines these two decisions (𝐴1

𝑡 , 𝐴
2
𝑡) into

a joint decision, 𝐴𝑡, which is then executed. Following this execution, the global state, 𝑆𝑡, and
local states, 𝑜1𝑡 and 𝑜2𝑡 , move to the next state and provide the Agent with an immediate reward,
𝑅𝑡. Then the Agent stores the single set of experience (𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1, 𝑅𝑡) from the interaction
with the environment in the sample pool. During the training phase, a batch of samples is
periodically drawn from the experience pool, and the 𝑄− values for each sample 𝑖 are calculated
through the target network, 𝑄′(𝑆,𝐴|𝜔′).

𝑄−
𝑖 = 𝑅𝑖 + 𝛾𝑄′(︀𝑆𝑖,𝑛𝑒𝑥𝑡, 𝐴𝑖,𝑛𝑒𝑥𝑡|𝜔′)︀ (19)

where 𝐴𝑖,𝑛𝑒𝑥𝑡 = 𝜋′
1

(︀
𝑜1𝑖,𝑛𝑒𝑥𝑡|𝜃′1

)︀
∪ 𝜋′

2

(︀
𝑜2𝑖,𝑛𝑒𝑥𝑡|𝜃′2

)︀
, and 𝛾 is the discount factor.

In this paper, we minimize the loss function 𝐿(𝜔) using gradient descent, based on the
Temporal Difference algorithm, to update the weight parameter 𝜔 of the Critic. 𝐿(𝜔) can be
expressed as follows:

𝐿(𝜔) =
1

𝑧

𝑍∑︁
𝑖=1

(︀
𝑄−

𝑖 −𝑄(𝑆𝑖, 𝐴𝑖|𝜔)
)︀2 (20)

where 𝑍 represents the number of samples drawn from the sample pool.
Under the evaluation of the 𝐶𝑟𝑖𝑡𝑖𝑐 , we employ gradient ascent to update the parameters of

the Actor1 and Actor2 networks. The policy gradients are expressed as follows:

∇𝜃1𝐽 =
1

𝑧

𝑍∑︁
𝑖=1

(︁
∇𝐴𝑄(𝑆𝑖, 𝐴𝑖|𝜔)∇𝜃1𝜋

1
(︁
𝑜1𝑖 |𝜃1

)︁)︁
(21)

∇𝜃2𝐽 =
1

𝑧

𝑍∑︁
𝑖=1

(︁
∇𝐴𝑄(𝑆𝑖, 𝐴𝑖|𝜔)∇𝜃2𝜋

2
(︁
𝑜2𝑖 |𝜃2

)︁)︁
(22)

172

To update the parameters of the target network, a soft update strategy is employed. The
updates for all target networks are expressed as follows:⎧⎪⎨⎪⎩

𝜃′1 = 𝜆𝜃1 + (1− 𝜆)𝜃′1
𝜃′2 = 𝜆𝜃2 + (1− 𝜆)𝜃′2
𝜔′ = 𝜆𝜔 + (1− 𝜆)𝜔′

(23)

where 𝜆 is the soft update coefficient.

Algorithm 1 DALDDPG algorithm

1: Randomly initialize: 𝜃1, 𝜃2, 𝜔, 𝜃′, 𝜃′2, 𝜔
′

2: Initialize the sample pool D, learning rate, 𝜆, etc
3: for each episode = 1 to 𝐸 do
4: Initialize 𝑆, 𝑜1, 𝑜2

5: for 𝑡 = 1 to 𝑇 do
6: Actor1 selects action 𝐴1 based on the current 𝑜1

7: Actor2 selects action 𝐴2 based on the current 𝑜2

8: Agent combines action 𝐴← (𝐴1,𝐴2), and executes
9: Compute reward 𝑅,𝑆 ← 𝑆′, 𝑜1 ← 𝑜′1, 𝑜

2 ← 𝑜′2
10: Store the transitions (𝑆,𝐴,𝑅, 𝑆′) in D
11: if 𝑙𝑒𝑛(D) > 100 then
12: Sample a batch of transitions (𝑆,𝐴,𝑅, 𝑆′) from D
13: Update 𝐶𝑟𝑖𝑡𝑖𝑐 parameter 𝜔 using equation (20)
14: Update Actor1 parameter 𝜃1 using equation (21)
15: Update Actor2 parameter 𝜃2 using equation (21)
16: Every 𝐶 steps, update parameters 𝜃′1, 𝜃′2, 𝜔′ using equation (23)
17: end if
18: end for
19: end for

4. Simulation and result analysis

We use Python 3.7 and TensorFlow 2.0 for simulations. The simulation scenario considers a
400-meter road populated with 𝑁 ∈ [5, 30] task vehicles, alongside a VEC server, and 𝑀 ∈ [3, 6]
PVCs, each containing 𝑄 ∈ [3, 7] parked vehicles. The computing capacities of the task and
parked vehicles are (0, 0.5] and [1, 2] GHz, respectively. The VEC server has a computing
capacity of 6 GHz. The sample pool capacity is 2000, and the batch size for sampling is 64.

To evaluate the performance of the proposed strategy, we compare the following three
offloading strategies:

• RS: Tasks are randomly assigned to be executed on the vehicle locally, on the VEC server,
or on a parked vehicle;

• HUDQN: Tasks are executed according to the offloading decisions made in the first layer;

173

Figure 2: Convergence Performance of DALDDPG.

Figure 3: Average Completion Time for Different Numbers of Applications.

• SLDQN: The two-layer offloading decisions are consolidated into a single-layer frame-
work.

As depicted in Figure 2, as the number of training epochs increases, the rewards under various
learning rates increase and stabilize. To balance convergence speed with system stability, we
adopt a learning rate of 6× 10−4 for model training.

As shown in Figure 3, the average completion time of each strategy escalates with the
increase in the number of applications, yet the proposed strategy consistently exhibits the
lowest completion time. Compared to the other three strategies, our strategy reduces the
average completion time by 11.47%, 25.41%, and 51.01% on average, respectively. Figure 4 shows
that as the number of PVCs increases, the average completion time for each strategy decreases,

174

Figure 4: Average Completion Time for Different Numbers of PVCs.

Figure 5: Task Completion Rates for Different Computational Complexities.

with the proposed strategy performing the best. Compared to the other three strategies, the
proposed strategy reduces the average completion time by 15.42% to 26.58% on average. As
depicted in Figure 5, with rising task computational complexity, the task completion rates for all
strategies gradually decrease, but the proposed strategy maintains the highest completion rate.
Compared to the other three strategies, the proposed strategy enhances the completion rate by
an average of 42.52%, 13.21%, and 4.21%, respectively. The above improvements are because
the proposed strategy has considered well the heterogeneity of parked vehicle resources and
adopted a layered task offloading scheduling framework to optimize task allocation, which
significantly improves the performance and efficiency of the system.

175

5. Conclusion and future work

In this paper, we design a dependent task scheduling framework, which is composed of mul-
tiple parking clusters cooperating with a single edge server. In addition, we propose a deep
reinforcement learning algorithm based on a multi-actor and single-critic network architecture
to minimize the average completion time of the application. Simulation results show that the
proposed algorithm has better performance than the other three baseline algorithms in terms of
task processing time and task execution success rates. Future work will explore task offloading
and resource scheduling within a VEC system assisted by multi-parking clusters, while also
considering the energy consumption cost of parked vehicles.

References

[1] Y. Peng, B. Shi, T. Jiang, X. Tu, D. Xu, K. Hua, A survey on in-vehicle time-sensitive
networking, IEEE Internet of Things Journal 10 (2023) 14375–14396.

[2] S. Lu, W. Shi, Vehicle computing: Vision and challenges, Journal of Information and
Intelligence 1 (2023) 23–35.

[3] M. Raeisi-Varzaneh, O. Dakkak, A. Habbal, B.-S. Kim, Resource scheduling in edge com-
puting: Architecture, taxonomy, open issues and future research directions, IEEE Access
11 (2023) 25329–25350.

[4] H. Zhou, K. Jiang, X. Liu, X. Li, V. C. Leung, Deep reinforcement learning for energy-
efficient computation offloading in mobile-edge computing, IEEE Internet of Things
Journal 9 (2021) 1517–1530.

[5] J. Chen, H. Xing, Z. Xiao, L. Xu, T. Tao, A drl agent for jointly optimizing computation
offloading and resource allocation in mec, IEEE Internet of Things Journal 8 (2021) 17508–
17524.

[6] A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, G. Liu, Collaborative computation
offloading and resource allocation in multi-uav-assisted iot networks: A deep reinforcement
learning approach, IEEE Internet of Things Journal 8 (2021) 12203–12218.

[7] W. Fan, M. Hua, Y. Zhang, Y. Su, X. Li, B. Tang, F. Wu, Y. Liu, Game-based task offloading
and resource allocation for vehicular edge computing with edge-edge cooperation, IEEE
Transactions on Vehicular Technology 72 (2023) 7857–7870.

[8] P. Li, W. Xie, Y. Yuan, C. Chen, S. Wan, Deep reinforcement learning for load balancing of
edge servers in iov, Mobile Networks and Applications 27 (2022) 1461–1474.

[9] K. Xiong, S. Leng, C. Huang, C. Yuen, Y. L. Guan, Intelligent task offloading for heteroge-
neous v2x communications, IEEE Transactions on Intelligent Transportation Systems 22
(2020) 2226–2238.

[10] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, Y. Liu, Joint task offloading and resource
allocation for vehicular edge computing based on v2i and v2v modes, IEEE Transactions
on Intelligent Transportation Systems 24 (2023) 4277–4292.

[11] N. Liu, M. Liu, W. Lou, G. Chen, J. Cao, Pva in vanets: Stopped cars are not silent, in: 2011
Proceedings IEEE INFOCOM, IEEE, 2011, pp. 431–435.

[12] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, S. Chen, Vehicular fog computing: A viewpoint

176

of vehicles as the infrastructures, IEEE Transactions on Vehicular Technology 65 (2016)
3860–3873.

[13] A. B. Reis, S. Sargento, O. K. Tonguz, Parked cars are excellent roadside units, IEEE
Transactions on Intelligent Transportation Systems 18 (2017) 2490–2502.

[14] A. J. Kadhim, J. I. Naser, Proactive load balancing mechanism for fog computing supported
by parked vehicles in iov-sdn, China Communications 18 (2021) 271–289.

[15] X.-Q. Pham, T. Huynh-The, E.-N. Huh, D.-S. Kim, Partial computation offloading in
parked vehicle-assisted multi-access edge computing: A game-theoretic approach, IEEE
Transactions on Vehicular Technology 71 (2022) 10220–10225.

[16] C. Ma, J. Zhu, M. Liu, H. Zhao, N. Liu, X. Zou, Parking edge computing: Parked-vehicle-
assisted task offloading for urban vanets, IEEE Internet of Things Journal 8 (2021) 9344–
9358.

[17] H. Zhao, J. Hua, Z. Zhang, J. Zhu, Deep reinforcement learning-based task offloading for
parked vehicle cooperation in vehicular edge computing, Mobile Information Systems
2022 (2022) 9218266.

177

	1 Introduction
	2 System model
	2.1 Task model
	2.2 Computational model
	2.2.1 Local computing model
	2.2.2 VEC computing model
	2.2.3 PVC computing model

	2.3 Problem formulation

	3 Design of algorithm
	4 Simulation and result analysis
	5 Conclusion and future work

