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Abstract
A major challenge of a microgrid (MG) system is to design its protection system. The protection
system response should be for utility network system and MG faults. Faults viz., (1) value changes
and monitoring if the connection is established or not for the overcurrent path conditioned upon a
distributed generator (DG), (2) decreased detecting ability drawn on Distributed Energy Resource (DER)
networks, (3) unintentionally power cuts caused by faults from the neighboring lines because of DER
participation, (4) line reconnection by a breaker linking two points with or without delay during fault
occurrence and fuse failure during transient faults, and (5) closed circuit and local area network topology
using DER. Increasing demand of electricity has led to the growth in adoption of electrical MGs in
electrical distribution systems, thus, this paper reviews the utilization of Machine learning (ML) methods
in direct current (DC) subsystems in a alternating current (AC) network on detecting and localizing faults.
These MG challenges impact the consistency and steadiness in power systems; hence, reviewing ML
methods for fault detection and localization is critical. In literature ML methods are used individually or
combined (hybrid) for fault detection and localization and discusses and reviews the possible combination
of Principal Component Analysis (PCA), K-means clustering, Convolutional Neural Networks (CNN),
Genetic Algorithm (GA), and eXplainable Artificial Intelligence (XAI) to detect, localize, and explain faults.
Nevertheless, this paper will not review all the methods of machine learning, but the ones mentioned
above.
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1. Introduction

Over the years, the development of renewable energy rose to address the global problems,
namely, increasing energy demand, environmental issues, and fossil fuel exhaustion. This
led to MGs development allowing more distributed energy resources connected with power
grids [1]. Grid development should conform consistency, lessen carbon emanation and reduce
costs. It consists of transmission lines, and with a single transmission line consisting specified
distance sharing self-same voltage and current. They accurately and reliably conduct electrical
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energy. However, collateral arrangements, with mutual coupling effects make protection a
challenge. Detecting and locating faults in power system operations need crucial methods to
ensure defensiveness, reliability, and self-repair. Effectively, fault detection gives fault isolation
protective relays good operability and cuts power from faulty grid portion. Therefore, fault
detection and localization provided a fault occurs answer the questions like: what type of
fault is detected and where is it located? Faults should be properly designed to avoid severe
components damages and costly interruption. Thus, this research focuses on fault detection
and localization problems in MGs. Fault detection process identifies the anomalies, while fault
localization process determines the position of the fault.

A fault can be seen or defined as an irregular electric current that travels in an unintended
path due to contacts between live wire and short-to-ground, or caused by faulty apparatus viz.,
convertors, men mistakes and environmental changes. Other possible faults could be due to
open circuit, high resistance, and short-to-power. The voltage and current level alter during fault
occurrence in the utility structure [2]. Thus, locating faults is very handy in lengthy connections
and in challenging areas where inspection is problematic to conduct and unbearable. In such
situations, eXplainable Artificial Intelligence (XAI) can play a big role in explaining the fault type
to technical staff [3]. The idea behind XAI is to provide human-understandable explanations
to the decisions made by the classification algorithm. These are the decisions generated by AI
and the ML models. These models are divided into two categories: model-specific methods and
model-agnostic methods. Model-specific methods scope is limited and can be applied to linear
regression, decision trees, and neural network interpretability. As opposed to model-specific
methods, model-agnostic methods can be applied to any ML model, regardless of the type or
structure. Model-agnostic method focuses on data analyzation of the input-output feature pairs.
This method incorporates AI systems such as Local Interpretable Model-agnostic Explanations
(LIME) and SHapley Additive exPlanations (SHAP) to manifest model interpretability certainty.
LIME explains the predictions of the model individual cases rather than the whole model dataset
predictions. SHAP on the other hand, explains by calculating individual feature contribution
per case. Visual inspection is also difficult during bad weather conditions.

Hence, locating faults is crucial and automatic fault detection is beneficiary for the MG
system’s reliability. For fault detection, parameters like voltage and current alteration, pre
and post fault frequency signals are measured. Power plant controller (PCC) controls faults
via a static switch, to isolate a MG and main grid when fault occurs. [4] proposed a fault
identification approach under MG different situations and enabled a backing protector for
intelligent MGs DERs of excessive penetration. Fault detection based on initiating failures and
clearing the intervals responsible for the noise magnitude, and DERs effect on grid networks and
isolated MGs. Fault localization and isolation based on supervised learning for centralized fault
localization. Backup protection using two phasor measurement units (PMUs) on the distribution
feeder to help empower the microgrid central protection unit (MCPU) carrying out remedial
actions in case of relay malfunctioning. And finally, prevent unstable operation of DERs. [5]
proposed a technique that estimates the direction of the fault by using Negative Sequence
Superimposed Impedance Angle (NSSIA) magnitude. It performed well on various uncertainties
of DG generation and frequencies.

[6] proposed a solution to the fault detection and fault localization problem by utilizing three
techniques viz., Decision Tree (DT), Random Forest (RF) and neural network (NN). RF obtained
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Figure 1: Outside and inside faults of MGs.

an accuracy of 99% for fault prediction. The focus was on predicting the fault type, faulty cable
and lastly detecting total length from the distribution system. The dataset was generated using
MATLAB simulations and each fault was sustained for 5 seconds. The Root Mean Square (RMS)
value of the three phase voltages and currents signals at three sources are collected. Burdens
viz., line-line-line (LLL) fault, line-line-line-ground (LLLG) fault, single line to ground fault (LG),
line-line (LL) fault or line-line-ground (LLG) created a bigger dataset. From tests NN didn’t
perform well due to poor precision and longer execution time. Though obtained better results
with the RF, there is still a gap as CNN can perform better than artificial neural network (ANN)
for image recognition (voltage and current data converted into images). Therefore, the same
dataset can be transformed into images and utilized as CNN input and only manipulate the
parameters to enhance training time and accuracy. To overcome the longer execution time, PCA
can be used for data dimensionality reduction in a big dataset while maintaining important
features to enhance the training or execution time. The paper organization structure: Section
I introduction, Section II MG theoretical background and protection zones, Section III MG
challenges review, Section IV ML methods, and Section V conclusion.

2. MG theoretical background and protection zones

Figure 1 represents outside and inside faults in a distribution system (MG included) with
local network protective zones such as overhead cables, and lines such as buses, transformers,
generators, and loads. A distribution protection system contains basic design criteria viz.,
sensitivity, selectivity, and speed; and they are abbreviated as “3S”. Whereby, sensitivity states
that the protection system should identify an abnormal disorder that surpasses the normal
threshold value. Selectivity represents the system’s ability to disconnect the faulted part only
and minimize fault consequences. Finally, the speed that the protective relays should have to
react to unusual situations within feasible time avoiding equipment harm and maintaining
system steadiness.
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From Figure 1 the following faults F1, F2, F3 and F4 are discussed.
F1 is detached through circuit breaker (CB)1 within 70 ms dependent on the voltage sag

level in the MG. CB1 detaches MG from the master network when protection via medium
voltage (MV) fails to trip. However, detecting F1 through overcurrent relay could be challenging
due to DERs linked through power electronics (PE) components integrated with fault current
constraint. Hence, the answer is to utilize directional overcurrent relay in CB1 provided current
usage is for detecting faults; and consider DERs representing subdivided elements contributing
to the short-circuit current on the specified direction. The output current is calculated by using
(1) whereby 𝐼𝑟𝐷𝐸𝑅 represents DER output current and 𝐾𝐷𝐸𝑅 the fault current 1.1 factor aimed
at PE liaised DER and at 5.0 aimed at concurrent DER elements.

𝐼𝑘𝑚𝑖𝑛 =
𝑛∑︁
1

𝐾𝐷𝐸𝑅 * 𝐼𝑟𝐷𝐸𝑅, (1)

For F2 fault, the supply transformer overcurrent (OC) protection opens CB0 to remove faulty
line, and CB1 opens at the same time via a “follow-me” function of CB0. However, hardware lock
failure is a conceivable fault issue. A possible solution is the utilization of directional adaptive OC
defense, below-voltage and below-frequency safeguard including different islanding detection
techniques. For F3 fault, MG CB1.2 and CB2.1 detach the potential portion of the low voltage
(LV) feeder. High short-circuit current distributed by the main MV grid opens CB1.2. If CB1.2
fails to trip, CB1.1 (CB1.2 backup) removes F3 faults. However, CB1.1 protection relay could be
disturbed provided a substantial synchronous DER installation has taken place and turned on
at switchboard 1 (SWB1). Hence, a solution to this is bringing together MG and DER protection
systems and modifying the protection settings of current operating conditions (DER status).
Fault F4 occurs at the end-consumer site in grid connected mode and it is caused by a high
short-circuit current provided to F4 fault via master net, and DER role tripping CB2.4. A fuse
is used instead of a CB and if set off occurred, SWB2 detachment is via CB2.5 and local DER
is removed. Fault computations are common in electrical systems computations conducted
throughout the analysis and design phase and these computations aid to establish the current in
circuit elements in irregular situations like short circuits and earth faults. Electrical fault types
are transient faults, asymmetric faults, and symmetric or balanced faults. The focus of this
study will look more into asymmetric faults which are line-to-line, line-to-ground, and double
line-to-ground faults. A transient fault refers to the absence of fault when shortly detaching
power and later reinstated. It briefly impacts a device’s insulation, but later reinstated. They
can be caused by transient tree contactors or birds. Symmetrical faults or balanced faults are
three-phase faults, whereby all three phases short-circuit to the ground or together, and these
are faults that give rise to symmetrical fault currents. They may hugely harm appliances yet
still operationally balanced. CBs, set-phase relay, and other protective switchgear help for their
analysis per phase based on bus impedance matrix or Thevenin’s theorem. Thevenin’s theorem
states that, any linear electrical network containing only voltage sources, current sources and
resistances can be replaced at terminals A–B by an equivalent combination of a voltage source
𝑉𝑡ℎ in a series connection with a resistance 𝑅𝑡ℎ. For a three-phase: any three-terminal active
linear network can be substituted by three voltage sources with corresponding impedances,
connected in wye or in delta.
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𝑉𝑇ℎ =
𝑅2 +𝑅3

(𝑅2 +𝑅3) +𝑅4
.𝑉1, (2)

An asymmetric or unbalanced fault is a line-to-line (L-L) or phase-to-phase (P-P) fault that
affects phases unequally. It is short circuited among branches, air ionized, or lines (cables) phys-
ical contact occurrence. Transmission cable faults occur about 5% -10%. Another asymmetric
fault type to look at is a double line-to-ground or two-phase-to-earth fault (L-L-G) that happens
during two-line contact plus the ground through storms and in transmission cable faults this
occurs about 15% - 20%.

3. MG challenges overview

3.1. MG challenges

One of the most critical concerns in MG is a well-defined protection scheme [7]. MGs challenges
such as the demand changes, export limits, generation, and short circuit fault currents require
an appropriate protection strategy that will ensure the system meets its demands. Direct
Current (DC) MGs parts like convertors get damaged by high fault current. Hence, a convertor
loses control over voltage and current because they demand high power ranking that raises
expenses, and surges additional protection areas. Due to these challenges fault detection and
localization are critical. Currently, many state-of-the-art theorems or techniques namely, (1)
signal processing based methods: wavelet transform (WT), fast Fourier transform (FFT), short
time Fourier transform (STFT), s-transform (Gabor and wavelet transforms), background noise,
Hilbert-Huang transform, and mathematical morphology; and (2) advanced methods: fuzzy
logic, deep neural network (DNN), ANN, and decision tree-based developed by researchers,
academics, private and governmental institutions seeking to address faults in AC/DC MGs, [8].

This paper aims to review and peruse the ML current techniques for fault detection and
localization in DC subsystems in a AC network. [9] points out the DERs malfunctioning
exacerbation in MGs islanded protection systems including limitation challenges possessed
by typical protection systems. Protection systems viz., overcurrent relaying, facing novel
complications, protection blinding, sympathetic set off, and backup catastrophe. Also, DERs
connections altering the short-circuit currents value and route; commencing from the upstream
network affecting upstream protective devices fast response and even the failing of the relays
on detecting fault occurrence. When utilizing the DERs it can be expected that they may cause
organizational issues as typical relays might experience fault detection delays. Hence, delaying
circuit breakers (CBs) may affect postfault voltage steadiness of MGs, and worse that may cause
series failures[10]. Thus, DERs penetrating levels and uncertainties affect a protective device’s
fault detection capability when faults occur. It is therefore significant to have a fault detection
and localization method that can quickly detect, classify, and localize faults. Moreover, visually
depicts and explains these faults to field technical staff. ML methods such as CNNs, PCA,
K-means, GA, and XAI worth to be studied as they offer better classification, speed, accuracy,
and understanding. PCA helps with dimensional reduction. K-Means clustering may help
identify the similarities between the data instances. While CNNs are proficient in classifying
images (data format) fast and accurate; and in this case, images will be the converted fault,
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training, and validation data. Though, there exist hybrid algorithms to solve the fault detection
and localization problem, currently, there is no proposed hybrid of PCA, K-means, CNN, GA,
and XAI found in literature. In this study, fault detection and localization optimization challenge
is reviewed.

4. ML methods

4.1. PCA

PCA is an interesting unsupervised algorithm that can be utilized for dimensionality reduction
and feature extraction converting data toward new feature area expecting it will maintain useful
features. Dimensionality reduction enhances the required memory computation to train fast.
However, this research interprets it as a supervised method for fault location.

Assuming that the fault location is determined by similar high-frequency transients; taking
the highs and lows from the fault transients and denote them as attribute nodes and analyzing
signal after fault to classify attribute nodes via window-based local maxima or minima technique.
Attribute nodes such as intermediate sample distances (∆𝜏 ) depending on fault location (D)
parameter are calculated as fault resistance (R) and fault inception angle or FIA (∆Φ) parameters
will not affect the (∆𝜏 ) values. Therefore, PCA generates principal directions of variations and
eliminates the minor parametric disturbances of (∆𝜏 ) values. Because PCA feature extracts
multivariate data using principal components (PCs), these PCs can help show pathways of
maximum changes in downward ranking order.

Supposing that the regularized data are 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑛]
𝑇 ∈ 𝑅𝑛×𝑚, the equation includes

𝑛 variables and 𝑚 samples. Deriving PCA objective function we need a projection vector �⃗�,
with 𝑦𝑖 = �⃗�𝑇𝑥𝑖, and therefore, PCA objection function is:

𝐽𝑃𝐶𝐴(�⃗�) = max

(︃
1

𝑛

𝑛∑︁
𝑖

(𝑦𝑖)(𝑦𝑖)
𝑇

)︃
, (3)

where �⃗�𝑇 �⃗� = 1, and in that case (4) and (5) demonstrate this:

𝑋 = 𝑇 �⃗�
𝑇
+ 𝐸, (4)

𝐶 =
1

𝑛
𝑋𝑋𝑇 , (5)

Where X represents regularized data, and 𝑃 ∈ 𝑅𝑚×𝑘 representing loading matrix. By eigen
decomposition of 𝐶 , we can get 𝑇𝑛×𝑘 which determines score matrix, and 𝐸 as residual matrix.
Here, 𝑘, is PCs quantity and its computation is achieved via increasing variance influence rate
as follows:

𝑛∑︁
𝑖=1

𝜆𝑖/
𝑛∑︁

𝑖=1

𝜆𝑖 × 100% ≥ 𝜎, (6)
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Whereby 𝜆𝑖 signifies eigenvalue of the 𝐶 eigenvalue breakdown with the larger to petite
arrangement. 𝜎 representing maximum eigenvalues sum relationship in eigenvalues, and
normally summing to 85%. With the knowledge that fault diagnosis only checks if a fault has
occurred or not, we can then say it uses two statistics of 𝑇 2 and 𝑄 to validate fault occurrence.
Here 𝑇 2statistic represents Hotelling’s T-squared distribution suggested by (Hotelling, 1931) 1

and its purpose is to reflect spatial characteristics differences for PCs and can be expressed as
follows:

𝑇 2 = 𝑥𝑇𝑖 𝑃𝑆−1𝑥𝑖, (7)

While on the other hand the Q-statistic acknowledged as Squared Prediction Error Index
(SPE) echoes subspace characteristics differences of the residuals described as follows:

SPE = 𝑒𝑇 𝑒, (8)

Therefore, 𝑇 2 controller restrictions and 𝑄 statistics are 𝐷𝐶 and 𝑄𝐶,𝛼 correspondingly. Both
these control limits can be formulated as follows:

𝐷𝐶 =
𝑙(𝑛2 − 1)

𝑛(𝑛− 1)
𝐹𝛼(𝑙, 𝑛− 𝑙), (9)

𝑄𝐶,𝛼 = 𝜃1− 𝜃2ℎ0

(︂
1− ℎ0
𝜃21

)︂
+

√︁
𝑧𝛼
(︀
2𝜃2ℎ20

)︀
𝜃1

, (10)

where. . .

𝜃𝑖 =
𝑚∑︁

𝑗=𝑙+1

𝜆𝑖
𝑗(𝑖 = 1, 2, 3), (11)

and
ℎ0 = 1− 2𝜃1𝜃3

3𝜃2
2 , (12)

respectively. With 𝑛 representing the modelled data samples quantity, 𝑙 the PCs retained
quantity, 𝛼 the significance level, 𝐹 the distribution critical value under 𝑙, n-1 in the statistical
table, 𝐶𝛼 ordinary supply critical value at consequential altitude 𝛼, and finally 𝜆𝑖 representing
smaller eigenvalue of data covariance matrix.

4.2. GA method

One of the features of the RTA system is that a task should be executed within a particular time
constraint, therefore, RTA is critical for line fault location. Hence, utilizing an algorithm that is
fast and can quickly locate faults is important. Because GA is a multi-objective optimization
algorithm it seems logic to use it to locate faults fast. According to [11] GA utilization helps

1Hotelling, H. (1931). The Generalization of Student’s Ratio. Springer eBooks, pp.54-65. doi:
https://doi.org/10.1007/978-1-4612-0919-5_4
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on the fault line parameters identification and uses these line parameters on finding the fault
location. Also, noted during simulations that this algorithm can diagnose a fault just in 1ms
time and its maximum error fault location is 0.5%. One of its advantages is that fault location
has no impact on fault diagnosis. Figure 2 depicts a DC MG system:

Categorized faults into three stages such as, (1) DC side capacitor discharge stage; (2) diode
continuation stage; and (3) AC side provides current favouring DC part voltage recuperation
settling for stable status phase. Because the focus on this research was more on detecting faults
from the converter and in the line, their first assumption was that if a fault happens between
Node 1 and Node 2, it is best to strip down the converter and peruse the functional circuit
diagram by analysing the characteristics of the capacitive emancipation stage fault namely:
(1) capacitive emancipation stage characteristic examination through ordinary system task;
(2) capacitive emancipation stage distinctive analysis through single pole ground fault; (3)
capacitive emancipation stage distinctive investigation through inter-pole short circuit fault.
Therefore, during the positive grounding fault occurrence among nodes one and two line,
the converter one side comparable circuit diagram is depicted in Figure 3. Whereby, 𝐿 and
𝑅 represents the induction and defiance branch amongst line’s first end and faulty node. 𝐶

Figure 2: Constructed illustration of DC MG system [11].
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represents the one pole capacitance of DC side. 𝑅𝑓 , the fault resistance. 𝐿𝑠 and 𝑖𝛼𝑠𝑎𝑏𝑐, the
three-phase inductance and inductance current of the AC side. 𝑖𝑐, the DC side discharge current
of first stage. 𝑖𝐷, continuous diode current in next stage and finally, 𝑖𝑠, current from the AC
side to the adjacent DC voltage regaining in the third stage. When again two nodes 1 and 2
inter-pole, short circuit fault occurs. The difference between the unipolar ground fault, and
inter-pole short-circuit is the diode renewal phase that equates to a three-phase short-circuit of
the AC side.

The method used to diagnose faults was derived from four scenarios viz. positive pole line
grounded, positive ground fault at the converter interface, short circuit between line poles,
and inter-pole short circuit at the converter. But to be able to analyse and classify faults a DC
power distribution side is chosen for DC MG and Figure 4 depicts this. Where 𝐶𝑖 represents the
positive and negative node 𝑖 capacitance. 𝐶𝑗 , the positive and negative node j side capacitance.
𝑖𝑝𝐶𝑖, 𝑖𝑛𝐶𝑖 and 𝑖𝑝𝐶𝑗 , 𝑖𝑛𝐶𝑗 the positive and negative capacitance currents parallel with the
converters 𝑖 and 𝑗. Lastly, 𝑖𝑝𝑖−𝑗 , 𝑖𝑛𝑖−𝑗 , and 𝑖𝑝𝑗−𝑖, 𝑖𝑛𝑗−𝑖 representing the positive and negative
protection installation line currents between converter 𝑖 and 𝑗. Computing the current change
rate between 20 - 100µs sample time intervals (13) is used:

𝑑𝑖

𝑑𝑡
=

𝑖(𝑘 + 1)− 𝑖(𝑘)

∆
, (13)

Where ∆𝑡 represents the sampling time interval, 𝑘, the sampling constant, 𝑖(𝑘) and 𝑖(𝑘 + 1),
the current moment sampling value, and the next moment sampling value of the positive
and negative line terminal currents respectively. A 1× 104𝐴𝑠 threshold value 𝜀 usage is fault
detection occurrence through monitoring the current change rate from both the positive and
negative ends of the 𝜀. To stop fault resistance effectiveness the circuit parameters formula for
positive ground fault was derived from Kirchhoff’s law voltage.

𝑢𝑑𝑐𝑖 = 𝑖𝑖𝑅𝑖 + 𝐿𝑖
𝑑𝑖𝑖
𝑑𝑡

+ (𝑖𝑖 + 𝑖𝑗)𝑅𝑓 , (14)

𝑢𝑑𝑐𝑗 = 𝑖𝑗𝑅𝑗 + 𝐿𝑗
𝑑𝑖𝑗
dt

+ (𝑖𝑖 + 𝑖𝑗)𝑅𝑓 , (15)

Therefore, combining (14) and (15)

𝑖𝑗𝑅𝑗 + 𝐿𝑗
𝑑𝑖𝑗
𝑑𝑡

− 𝑖𝑖𝑅𝑖 − 𝐿𝑖
𝑑𝑖𝑖
𝑑𝑡

− 𝑢𝑑𝑐𝑖 + 𝑢𝑑𝑐𝑗 = 0, (16)

GA is a developmental technique, meaning a meta heuristic optimization technique applying
evolutionary ideologies on solving a problem. Therefore, in solving the problem of fault location
we can use the variables or fault line parameters to arrive in a solution. GA feature selection
criteria will increase the speed on obtaining the optimal solution by only applying few steps
such as, population initialization, fitness calculation, generator operator setting, and finally
updating the iterations.

To initialize the population, the genetic coding should exist prior to any production of an
individual and this affects crossover and mutation operators. Assuming that the feature retention
and loss are a zero-one (0-1) drawback, and that administered data are 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
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Figure 3: Comparable circuit [10]. Figure 4: Double-ended DC power supply system [10].

whereby 𝑥𝑛 represents attribute data. Thus, provided one meant eigenvector preservation, zero
indicates removing that eigenvector; the whole individual genotype represents binary encoded
symbol string. From this point we can determine the intensity for each utilizing the fitness
function to evaluate the strong and weak individuals.

Therefore, from the processed data 𝑋1 = [𝑥1, 𝑥2, . . . , 𝑥𝑚], the individual residual space
data is 𝑋2 = [𝑥1, 𝑥2, . . . , 𝑥𝑘], 𝑘 + 𝑚 = 𝑛. Provided data are grouped into two, then, 𝐴 =
{𝑎_1, 𝑎_2, . . . , 𝑎_𝑁}, 𝐵 = {𝑏_1, 𝑏_2, . . . , _𝑏𝑁}, and from this data the Pearson correlation
coefficient is defined as follows:

𝜌𝐴𝐵 =
Cov(A,B)

𝜎𝐴𝜎𝐵
=

∑︀𝑛
𝑖=1

(𝐴𝑖−E(A))
𝜎𝐴

(𝐵𝑖−E(B))
𝜎𝐵

n
, (17)

∴ 𝜎𝐴 =

√︃∑︀𝑛
𝑖=1

(︀
𝐴𝑖 − E(A)

)︀
n + 𝜀

, 𝜎𝐵 =

√︃∑︀𝑛
𝑖=1

(︀
𝐵𝑖 − E(B)

)︀
n + 𝜀

, (18)

where 𝜀 is a small positive constant and does not affect the value of the 𝑛 but prevents the
denominator from being zero, 𝜎𝐴, 𝜎𝐵 are the standard deviations of A,B respectively; and
|𝜌𝐴𝐵| ≤ 1 is acceptable. From the Pearson correlation coefficients data, we can determine the
fitness function:

𝑓𝐹𝑖𝑡 =

(︂
p

𝑚∑︁
𝑖=1

𝑚∑︁
𝑖=1

⃒⃒
𝜌𝑋1(1)𝑥1

⃒⃒⧸︂𝑚−1∑︁
𝑖

𝑖

)︂
+

(︂
(1− 𝑝)

𝑚∑︁
𝑖=1

.
𝑚∑︁
𝑖=1

⃒⃒
𝜌𝑋1(1)𝑥2(𝑗)

⃒⃒)︂
, (19)

where 𝑖 = 1, 2, . . . ,𝑚 and 𝑗 = 1, 2, . . . , 𝑘, 𝑓𝐹𝑖𝑡 the fitness function, and 𝑝 the fitness
proportion of the two indicators, 0 ≤ 𝑝 ≤ 1.

4.3. K-means

[12], defines k-means as information cluster that joints huge data sets into reduced groups sets
of alike information and a technique that preserves good quality features. Mathematically this
algorithm is presented as follows:
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Figure 5: CNN architecture [13].

𝐽 =
𝑘∑︁

𝑗=1

.
𝑘∑︁

𝑖=1

⃦⃦⃦
𝑥𝑗𝑖 − 𝑐𝑗

⃦⃦⃦2
, (20)

where
⃦⃦⃦
𝑥𝑗𝑖 − 𝑐𝑗

⃦⃦⃦2
is a gap within a feature position and the centre 𝑐𝑗 with identical groups

and specify an opening of 𝑛 attribute location and of alike clusters centres.

4.4. CNN

CNNs consist of layers viz. input, convolutional, pooling, and fully connected. Input layer being
the first layer that takes raw data and encode it into channels and a batch of a specified size.
Convolutional layers extract attributes from previous layer to next layer. Mathematically this
layer can be depicted as below:

𝑦 = 𝑋 *𝑊 → 𝑌 [𝑖, 𝑗] =
+∞∑︁

𝑘1=−∞
.

+∞∑︁
𝑘2=−∞

𝑋[𝑖− 𝑘1, 𝑗 − 𝑘2]𝑊 [𝑘1, 𝑘2], (21)

where 𝑋 is a 2D input and 𝑊 filter matrix. A Rectified Linear Unit layer (ReLU) assigns
nought to minus quantity. ReLU activates the output of the preceding layer, and its function
is 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). This output becomes the input of a pooling layer to reduce calculations
quantity (down sampling). Lastly, the fully connected layers that calculate the output scores,
and final feature map classification task. Figure. 5 depicts CNNs structure.

5. Conclusion

In this paper a short background of a MG system and its protection challenges due to symmetric
and asymmetric faults is explained in detail. Fault detection and localization techniques are
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evaluated. Conventional protection devices that detect, protect the MG system and their limits
are reviewed. Due to conventional devices limits in detecting and localizing faults in AC-DC
MG systems ML methods are reviewed. More emphasis on PCA, CNN, GA, K-means, and XAI
algorithms was conferred due to their capabilities of classifying, detecting and localizing faults
and moreover big data handling.
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