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Abstract
Recent advancements in Vision Transformers (ViT) have seen their applications extend to object detection,
image classification, and segmentation, often outperforming Convolutional Neural Networks (CNNs).
However, Transformers generally impose higher computational costs compared to CNNs. Various
techniques have been developed to reduce computational costs. Among the techniques for reducing
the high computational cost, we have enhanced the traditional method to preserve the top K tokens
and delete the rest by using four new approaches: Top k-norm, EViT-norm, TNWAF, and TAWNF.
Specifically, while the Top K method decides which tokens to be detected based on the weights after
attention, the Top K-norm method determines which tokens to delete after normalizing the tokens. The
EViT-norm method fuses tokens into a single token by using weights. These weights are derived from
contribution rates, which are determined through norm of the tokens that are to be deleted. The TAWNF
method integrates the traditional approach of selecting candidate tokens for deletion based on similarity
with class tokens using attention with the EViT-norm method. The TNWAF method integrates the
TAWNF method, which fuses candidate tokens for deletion using weights from traditional attention
following the Top K-norm method. The objective is to reduce information loss and computational costs
through token fusion. Our results indicate that, for instance, using the Top K-norm method with the
deletion of the lowest 10 tokens, computational costs decreased by 24.7%, with only 0.07% accuracy
down. Furthermore, in the TNWAF method, when deleting the lowest 19 tokens, computational costs
are reduced by 49.4%, with accuracy decreasing by 0.96%. These methods are effective in pruning
models by significantly reducing computational costs without greatly affecting performance. The success
achieved in norm token importance metrics in classification tasks suggests potential applicability to
other model types. This is a hypothesis we plan to explore in future research. Code is available at
https://github.com/maikimilk/ViT-NormReg-Compressor

1. Introduction

Computer Vision (CV) uses artificial intelligence to emulate human visual functions such as
object recognition and identification. CV is increasingly utilized across various industries,
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including autonomous driving, facial recognition, and industrial sorting, and the application
in diverse products is expected to grow. Traditionally, tasks such as object detection [1, 2],
image classification [3, 4, 5, 6], and semantic segmentation [7] have been accomplished using
Convolutional Neural Networks (CNNs). However, more recently, Transformer models[8, 9,
10], originally designed for Natural Language Processing (NLP), have been adapted for CV
applications, leading to the development of Vision Transformers (ViT) [11] which are known
to surpass the capabilities of CNNs. Despite their advantages, ViTs require significantly more
computational resources than CNNs, presenting a substantial challenge for their deployment.
To address these demands, various techniques have been explored to reduce computational

costs [12] [13]. Training ViT models from scratch required large datasets and extensive training
to achieve convergence of the loss function, making the efficient utilization of ViTs challenging
without substantial computational resources. Consequently, both companies and research
institutions have been exploring methods to reduce and speed up computations. However,
common strategies such as pruning and distillation can lead to information loss and reduced
accuracy. In response to these challenges, this study proposes four novel methods that combine
traditional approaches with a new strategywhere tokens are norm, and the top Kmost significant
tokens are retained. The remaining less significant bottom tokens are fused into a single token
using weights derived from a SoftMax function. This approach aims to reduce computational
costs significantly without compromising accuracy. The major contributions of this research
are as follows:

• Across all pruning levels, our methods, which use normalized contribution rates for token
importance, show significant improvements over traditional techniques.

• At the Pruning Level Extra-Large, our TNWAF method achieves a Top-1 Accuracy of
97.52%, slightly better by 0.3% compared to other methods but with a 0.96% decrease
compared to the baseline model.

• At the Pruning Level Small, our Top K-norm method achieved a Top-1 Accuracy of 98.41%,
with a minor decrease of 0.07% compared to the baseline.

The remaining parts of this paper are organized as follows: Section 2 introduces the related
works. In Section 3, we propose our pruning methods. Section 4 shows implementation
conditions, dataset, comparison models, evaluation index, and experimental result. Section 4.3
reports discussion and future work. Finally, this paper is concluded in Section 5.

2. Related work

2.1. Vision Transformer

Vision Transformer (ViT) [11] is a model that adapts the Transformer architecture, which has
become prevalent in Natural Language Processing (NLP), to handle image data by modifying
the input token representation. The tokenization process involves splitting the image into
patches, flattening them, and applying a linear projection to obtain D-dimensional vectors.
These resulting vectors are referred to as patch embeddings, as shown in Equation (1).
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Specifically, each patch 𝑥𝑝 is projected onto a D-dimensional space using an embedding
matrix E, as expressed in the equation:

Patch Embedding: 𝑥𝑝𝑖E = Linear Projection of 𝑥𝑝𝑖 (1)

where 𝑥𝑝𝑖 is the flattened representation of the 𝑖-th patch and E is defined in Equation (1). By
treating each patch as a token, the Transformer model can process the image data. The matrix
𝐸 belongs to the space of real numbers with dimensions:

𝐸 ∈ ℝ(𝑃
2⋅𝐶)×𝐷 (2)

where 𝑃 is a dimension of the patch, 𝐶 is the number of channels, and 𝐷 is the feature dimension.
A distinctive feature of ViT is the inclusion of a learnable class token, which serves as a special

token positioned at the beginning of the input token sequence. The class token is designed to
capture the positional relationships within the input. By passing this class token through a
Multi-Layer Perceptron (MLP), the model can perform classification tasks. The Transformer
encoder, which processes the input tokens, consists of alternating layers of multi-head self-
attention and MLP blocks. Normalization layers are applied before each block, and residual
connections are implemented after every block. Here, we explain the self-attention mechanism,
which is a crucial component of the Transformer model and ViT. The compatibility function
between queries and keys is used to compute the weights assigned to the values. The weighted
sum of the values constitutes the output. The resulting output vector encodes the relevance and
importance between the queries and keys. This computation is represented by Equation (3).

Attention(𝑄, 𝐾, 𝑉 ) = SoftMax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (3)

where 𝑄, 𝐾, and 𝑉 represent the query, key, and value matrices respectively, and 𝑑𝑘 is the
dimensionality of the keys. Since the queries and keys are derived from the same data, the
self-attention mechanism can capture the relationships between all regions within the image.
This provides a broader receptive field than Convolutional Neural Networks (CNNs), allowing
for more flexible feature extraction. However, large-scale datasets are required to effectively
extract features for training the model. Generally, larger datasets are considered better for
pre-training, which can be more computationally expensive compared to CNNs.

2.2. Top K

The Top-K algorithm is a commonly used technique that involves selecting the top K elements
from a set of N elements based on a specific criterion. The process begins by defining a criterion
for comparison and then evaluating all elements against this criterion. The top K elements are
identified and retained, while the remaining elements are discarded. The Top-K algorithm is
widely employed in various applications where it is necessary to select the most relevant or
significant elements from a larger set. By retaining only the top K elements, this algorithm
can effectively reduce the data size, improve computational efficiency, or focus on the most
important elements for further processing or analysis. It is important to note that the choice
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of the selection criterion plays a crucial role in determining the effectiveness of the Top K
algorithm. The criterion should be carefully designed to align with the specific requirements
and objectives of the application.

2.3. EViT

EViT [14] is a method proposed to accelerate the ViT model. At the time, existing model
compression techniques such as pruning and distillation, could not be directly applied to
ViT due to the architectural differences between Convolutional Neural Networks (CNNs) and
ViT. Therefore, there was a lack of focus on accelerating ViT models. EViT addresses this
by proposing to remove and reorganize unnecessary tokens based on their contribution to
the classification results, potentially reducing computational costs. The contribution of each
token is determined by the difference between the class token’s feature representation after
attention and the feature representation of each token. Tokens with smaller feature differences
are considered less important and are candidates for removal. This process involves selecting
the top k elements and removing the remaining tokens, where k is a predefined value. However,
removing tokens can lead to information loss and decreased classification accuracy. To mitigate
this potential information loss and accuracy drop, EViT proposes fusing the candidate tokens
through a weighted average and reorganizing them into a new sequence, thereby preserving
the information content. By selectively pruning tokens at each layer, EViT significantly reduces
computational costs.

2.4. Token Merging

ToMe (Tokens-Merging) [15] is a method that achieves acceleration comparable to pruning while
maintaining higher accuracy bymerging tokens. In each Transformer block, an arbitrary number
of tokens can be merged, gradually reducing the number of tokens at each layer. This process
leads to improved throughput. However, it is important to note the trade-off between the number
of tokens merged and the potential decrease in accuracy. The key advantage of this method is
that it can obtain information from the merged tokens, allowing the attention mechanism to
determine which tokens should be merged. This enables the reduction of computational costs
without sacrificing accuracy. The specific process for deciding which tokens to merge involves
using the self-attention mechanism’s Query, Key, and Value (QKV) representations. The Key
(K) contains information about each token, and the dot product similarity metric between the
Keys of different tokens is used to determine the similarity between tokens. The algorithm
employed to determine the token similarities and merge decisions is the Bipartite Soft Matching
algorithm, which consists of the following five steps:

1. Divide the tokens into two equal-sized groups, 𝔸 and 𝔹.
2. Draw edges between each token in 𝔸 and its most similar counterpart in 𝔹.
3. Retain the edges representing the highest similarities, up to a predefined number.
4. Merge the connected tokens by averaging their features or using a similar approach.
5. Recombine the merged tokens from 𝔸 and 𝔹.
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When merging tokens, a fine-tuning process is applied using Equation (4).

Attention = SoftMax (
𝑄𝐾𝑇

√𝑑
+ log 𝑠) (4)

where 𝑄 and 𝐾 represent the query and key matrices respectively, 𝑑 is the dimensionality of
the keys, and 𝑠 is a row vector containing the size of each token (number of patches the token
represents). This results in the same operations as when a copy of the key exists. Furthermore,
when aggregating tokens, such as during token merging, it is essential to always weight them
by s.

3. Proposed Method

This paper proposes a method to reduce computational complexity by removing tokens with
low contribution scores and merging them, thereby reorganizing the input sequence while
minimizing information loss.

3.1. Contribution Score Metric

Unlike EViT, which used the similarity between token embeddings and the class token output
from attention, we calculate the contribution score of each token to the overall image by
computing the vector norm of the input token embeddings in Equation (5). A smaller vector
norm suggests a smaller impact on the learning process. By avoiding the need for a class token,
our approach can be applied to various image recognition tasks beyond classification.
The contribution score 𝑐𝑖 of token 𝑖 to the overall image is calculated as the L2 norm of the

token embedding:

𝑐𝑖 = ‖𝑥𝑝𝑖‖2 =
√

𝑛
∑
𝑗=1

𝑥2𝑝𝑖𝑗 (5)

where 𝑥𝑝𝑖 is the flattened representation of the 𝑖-th patch defined in Equation (1). 𝑥𝑝𝑖𝑗 is the 𝑗-th
component of the embedding vector x𝑝𝑖 , and 𝑛 is the dimension of the token embedding vector.

3.2. Token Removal

Top K-norm Method: In this method, similar to EViT, we employ a Top-K approach for token
removal. As shown in Figure 1a. Top K-norm Method involves retaining the top K tokens with
the highest contribution scores in Equation (5) as the next input sequence, while the remaining
tokens are marked for removal and stored for token merging in other methods.

3.3. Token Merging

EViT-norm method: In this method, the norm results of the tokens designated for removal
are input into the SoftMax function in Equation (6) to determine their weights. These weights
are then used to compute the weighted average, resulting in the fusion of these tokens into a
single token in Equation (7). As shown in Figure 1b. Let 𝑥new represent the fused token, 𝑥𝑝𝑖
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(a) Top K-norm (b) EViT-norm

(c) TNWAF (d) TAWNF

Figure 1: Each Pruning Methods. In the original Vision Transformer (ViT), these techniques are
employed within a single transformer block. Specifically, the methods are utilized between the multi-
head self-attention and MLP components to reorganize the tokens.

denote the tokens designated for removal, 𝑐𝑖 indicates the norm results of these tokens, and 𝑤𝑖
denotes the weights obtained from the SoftMax function.

𝑤𝑖 = SoftMax(𝑐𝑖) =
𝑒𝑐𝑖

∑𝑛
𝑘=1 𝑒𝑐𝑘

(6)
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Where 𝑐𝑖 represents the norm value of the 𝑖-th token designated for removal, and 𝑤𝑖 is the weight
for the 𝑖-th token calculated by the SoftMax function.

𝑥new =
𝑛
∑
𝑖=1

𝑤𝑖𝑥𝑝𝑖 (7)

In this equation, 𝑥new is the fused token calculated as the weighted average of the tokens 𝑥𝑝𝑖 ,
where each token’s contribution is weighted by 𝑤𝑖 the SoftMax-derived weights.

Topk-Norm-Weighted-Attention-Fusion (TNWAF) method: This method uses the
attention-derived similarity between the tokens marked for removal and the class token as
weights to compute the weighted average in Equation (8). As shown in Figure 1c.

𝑥new =
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑝𝑖
∑𝑛

𝑖=1 𝑎𝑖
(8)

Where 𝑥𝑝𝑖 represents the 𝑖-th token designated for removal, 𝑎𝑖 is the weight assigned to 𝑥𝑝𝑖 ,
derived from its similarity to the class token. Additionally, 𝑛 represents the total number of
tokens designated for removal.

Topk-Attention-Weighted-Norm-Fusion (TAWNF) method: This method, similar to
EViT, determines tokens for removal based on their similarity to the class token after attention,
using the Top K approach. The tokens designated for removal, denoted as 𝑥𝑝𝑖, are scored with
a norm and then input into the SoftMax function to determine their weights, 𝑤𝑖 as shown in
Equation (6). A weighted average is computed to create a new token representation 𝑥new that
incorporates the most relevant features of the tokens, as detailed in Equation (7). As shown in
Figure 1d

The resulting vector from the token merging methods is treated as a single token that
encapsulates the information from the removed tokens. This method reduces computational
complexity while mitigating information loss by removing tokens with minimal impact on the
learning process and generating a weighted token that merges information from the removed
tokens.

4. EXPERIMENTATION

4.1. Experimental Setup and Materials

The experiments in this paper are conducted on Intel(R) Core Xeon(R) CPU wih a single NVIDIA
RTX A6000 GPU for training and inference. AdamW is used as an optimizer. For the learning
condition, the number of epochs is set to 100. The maximum value of the learning rate (5e-4)
⋅B/512.0 is used in other studies [12], [16], where B indicates the batch size, which is set to 32 in
this experiment.
Regarding dataset, CIFAR-10 [17] are used for classification tasks. CIFAR-10 is a dataset

of object color images, including animals, vehicles, etc., as shown in Figure 2, which are
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small 32 × 32 RGB images of 10 classes, with 50,000 training images and 10,000 test images.
As data augmentation techniques, RandomResizedCrop at 224 × 224, RandomHorizontalFlip,
RandomErasing, and RandAugment [18] are used to increase the variation of the training data.

(a) Airplane (b) Car (c) Bird (d) Cat (e) Reindeer

(f) Dog (g) Frog (h) Horse (i) Ship (j) Truck

Figure 2: CIFAR-10 class images

In terms of comparison modles, ViT-small is used, and vanilla ViT [11] is used as the baseline
models. The viT-small model has 12 transformer encoder layers, 384 embedding dimensions,
and 6 heads.The teacher model is pre-trained by ImageNet-21k by CIFAR-10 as downstream
tasks. In addition, Top K and ToMe [15], EViT [14] are used as other comparison pruning
methods. We use a reimagined version of EViT that we created, not the original EViT.
Additionally, the Top-1 Accuracy (%) and FLOPs (G) are used as the evaluation index. Each

pruning method is compared based on the vanilla ViT as the base model. When comparing
models, pruning amounts are adjusted to achieve comparable computational complexity.

4.2. Experimental Result

Table 1 shows the indices of each model in CIFAR-10. Among the current lightweight approaches
for Vision Transformers (ViT), the ToMe method is one of the best-performing techniques.
The Top k-norm method achieves competitive performance, closely approaching ToMe, with
only a 0.12% down in Top-1 accuracy compared to the baseline at the Pruning Level Small.
At the Pruning Level Extra-large, our proposed TNWAF method results in a Top-1 Accuracy
of 97.52%, representing a 0.96% decrease compared to the baseline model. For Pruning Level
Large, both our Top k-norm and TNWAF methods achieve the highest Top-1 Accuracy of 97.62%
among the tested methods. At the Pruning Level Medium, the Top k-norm method achieves the
best Top-1 Accuracy of 97.91%. At the Pruning Level Small, the Top k-norm method reaches a
Top-1 Accuracy of 98.41%, with only a slight 0.07% decrease from the baseline model. Methods
employing norm-based contributions consistently outperform those using similarity to class
tokens based on traditional attention.
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Table 1
Experimental Result

Model Method r* Top-1 Acc. FLOPs Params
(%) (G) ↓(%) (M)

Pruning Level Extra-large

ViT-Small - - 98.48 4.25 - 21.9
ToMe 16 98.19 2.16 49.2 21.9
Top K 18 97.12 2.15 49.4 21.9
EViT 19 97.09 2.15 49.4 21.9

Ours Top K-norm 18 97.22 2.15 49.4 21.9
EViT-norm 19 97.22 2.15 49.4 21.9
TNWAF 19 97.52 2.15 49.4 21.9
TAWNF 19 97.07 2.15 49.4 21.9

Pruning Level large

ToMe 14 98.31 2.41 43.3 21.9
Top K 16 97.44 2.38 44.0 21.9
EViT 17 97.38 2.38 44.0 21.9

Ours Top K-norm 16 97.62 2.38 44.0 21.9
EViT-norm 17 97.51 2.38 44.0 21.9
TNWAF 17 97.62 2.38 44.0 21.9
TAWNF 17 97.38 2.38 44.0 21.9

Pruning Level Medium

ToMe 12 98.26 2.67 37.2 21.9
Top K 14 97.65 2.61 38.6 21.9
EViT 15 97.66 2.61 38.6 21.9

Ours Top K-norm 14 97.91 2.61 38.6 21.9
EViT-norm 15 97.87 2.61 38.6 21.9
TNWAF 15 97.81 2.61 38.6 21.9
TAWNF 15 97.70 2.61 38.6 21.9

Pruning Level Small

ToMe 8 98.53 3.20 24.7 21.9
Top K 9 97.98 3.20 24.7 21.9
EViT 10 98.14 3.20 24.7 21.9

Ours Top K-norm 9 98.41 3.20 24.7 21.9
EViT-norm 10 98.31 3.20 24.7 21.9
TNWAF 10 98.28 3.20 24.7 21.9
TAWNF 10 98.07 3.20 24.7 21.9

* The number of reduced tokens.

4.3. Discussion and Future Work

The experimental result demonstrates the effectiveness of using normalization in the calculation
of token importance, a key component of our proposed method. In cases of substantial token
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(a) Input
Image

(b) Top K
r=10

(c) Top K-n
r=10

(d) EViT
r=10

(e) EViT-n
r=10

(f) TNWAF
r=10

(g) TAWNF
r=10

(h) Top K
r=15

(i) Top K-n
r=15

(j) EViT
r=15

(k) EViT-n
r=15

(l) TNWAF
r=15

(m) TAWNF
r=15

Figure 3: Pruned images

reduction (Extra Large), our TNWAF method does not exhibit a decrease in accuracy compared
to other methods. Conversely, with minimal token reduction (Small), our Top k-norm method
achieves a reduction of FLOPs by 24.7% while experiencing only 0.07% accuracy down compared
to the baseline model. These results clearly show the superiority of our methods over traditional
techniques that rely on similarity to class tokens based on attention across all pruning levels. This
advantage underscores the potential of norm-based approaches in improving model efficiency
and performance.

In the discussions presented by Visiaraize, it is apparent that different methodologies lead to
varied remaining tokens, as shown in Figure 3. The Top K-norm method, which exhibits the
best performance at r=10, predominantly retains tokens associated with salient image features
such as ears and eyes while eliminating background tokens (see Figure 3c). This suggests
that focusing on key features while disregarding extraneous background elements enhances
performance. Conversely, the Top K method results in the removal of significant tokens, such
as those of the ears and eyes, compared to the Top K-norm method, which likely contributes to
a reduction in accuracy, as illustrated in Figure 3b. Furthermore, at r=15, the TNWAF method,
which is the most effective, predominantly omits background elements while preserving tokens
representing key image features like the nose, eyes, and ears, as depicted in Figure 3l. This
contrasts with other images where tokens representing the eyes, ears, and nose are removed,
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or background tokens are retained, underscoring the variability in token preservation across
different methods.
In the future, while we eliminate a fixed amount of tokens, future efforts will focus on

optimizing the token pruning process by identifying the optimal token removal rate for each
layer. Furthermore, given the success achieved by applying norm-based measures to the
importance of tokens in classification tasks, we intend to explore whether similar benefits can
be obtained in models beyond classification tasks.

5. Conclusion

In this paper, we propose several methods for pruning in Vision Transformers (ViT). These
include using normalized contribution rates as metrics of importance for token deletion and
applying these rates to compute weights for token fusion. Additionally, we integrate these
methods with traditional techniques that are sinilar to attention-based class tokens. The
experimental results demonstrate the significance of using normalized contribution rates over
the widely used attention-based class token similarity for assessing token importance during
deletion. The findings also indicate that the optimal pruning method varies depending on the
amount of token deletion. Future experiments will explore whether adaptive token deletion,
varying by layer, might be more effective than a fixed quantitative approach.
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