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Abstract

Tomato, as a main cultivated vegetable with a worldwide production of over 170 million tons annually,
draws huge attention on its disease prevention. Numerous types of tomato diseases that target the
tomato’s leaf at an alarming rate have been discovered. Though traditional method requires high human
involvement and people are seeking autonomous method, the early symptoms of tomato disease which
can be observed on leaves are too tiny for existing lightweight detectors. By improving the backbone, we
have proposed a lightweight object detection model that improves feature extraction, especially for tiny
objects, compare to the original YOLOv8. We have benchmarked the original YOLOv8 and our improved
model at different input image sizes and model scales. Experiments on the tomato leaf disease dataset
have shown that the best accuracy at mAP50 is 1.8% higher than YOLOv8]. Additionally, our improved
model has exhibited a 74% reduction in parameter size.
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1. Introduction

In the field of agriculture, crop diseases are critical problems. Especially with an worldwide
production of over 170 million tons annually, tomatoes have been one of the most commonly
cultivated vegetables worldwide [1]. Traditionally, experienced farmers have been required to
identify and address these issues based on their experience and skills as quickly as possible to
avoid damage. With the development of deep learning, high-quality object detection models can
now be deployed on mobile devices, which means they are no longer confined to the laboratory.
This advancement allows for real-time application in agricultural production directly on the
farm, thereby enhancing efficiency and effectiveness.

At the moment, the traditional industry and the field of computer vision have become
increasingly interconnected. The demand for object detection has grown significantly, making it
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one of the most popular domains within computer-vision science. Currently, depending on the
method of implementation detection algorithms can be categorized into two groups. Two-stage
models, including SPPNet[2], R-CNN[3], Fast R-CNN[4], Faster R-CNN[5], etc., generate a
set of candidate frames, which are then classified and predicted with convolutional neural
networks. One-stage models, including the YOLO (You Only Look Once) series[6, 7, 8], SSD[9],
CenterNet[10], etc., directly turn the problem of target boundary prediction into a regression
task. These algorithms each have their own merits; the former excels in terms of accuracy and
precision, while the latter performs better in terms of detection speed[11].

In this research, the aim was to improve the accuracy of detection on the tiny symptoms of
tomato disease which can be observed on leaves. To address this challenge, we have adapted
the channel attention mechanism and compound scaling method to construct our backbone
network for better feature extraction ability. To achieve mobility as well as high performance
of our proposed model, we have searched our whole network with multiple combinations for
the best model structure. Finally, our proposed model has outperformed the original YOLOv8
on datasets with classes that have indistinct appearance without significantly increasing its
number of parameters or inference time.

Overall, our main contributions can be summarized below:

« Animproved model for tiny objects has been proposed by combining the MBConv module
and YOLOvS head.

« For usability on mobile devices, a series of models with different sizes have been searched
and eventually a lightweight network has been proposed.

The remainder of this article is organized as follows. Section 2 reviews the previous agricul-
tural detection and related YOLO models. Details of our proposed method are introduced in
Section 3. Section 4 presents the experiments and the dataset. Finally, Section 5 concludes the

paper.

2. Related Work

Object detection aims to classify certain objects from defined categories contained in the dataset
and then predict the position of the object. The challenges in object detection can be basically
categorized into increasing the inference speed and enhancing the accuracy of classification, as
well as predicting object location. Benefiting from the development of deep learning, improved
accuracy and detection speed can now be achieved with state-of-the-art deep learning algorithms.
YOLO models have been used for many purposes due to their superior performance, especially
for detection tasks in videos[12].

2.1. Agricultural detection

To achieve maturity detection, positioning, and harvesting in crop production, as well as disease,
pest, and climate hazard prevention during the growth process, object detection technology is
being introduced into the fields to enhance agricultural productivity. Taking tomato cultivation
as an example, classification networks can be used to categorize potential diseases on tomatoes.
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TM et al.[13] have employed a very classic convolutional neural network model "LeNet" to
address the challenge of tomato leaf disease detection, demonstrating that comparable results
to state-of-the-art techniques can be achieved with minimal computational resources. This indi-
cates that neural networks can successfully classify tomato leaf diseases even under unfavorable
conditions. Agarwal et al.[14] have proposed a deep learning-based disease detection method,
utilizing a convolutional neural network with 3 convolutional layers and 3 max pooling layers.
Experimental results demonstrated that it outperformed some popular pre-trained models. Yang
et al.[15] have proposed a tomato object detection method based on an improved YOLOv8 model
to address the problem of low automation level in tomato harvesting in agriculture. The model
utilizes depth-wise separable convolution to reduce computational complexity, and incorporates
a dual-path attention gate module to enhance the network’s ability to distinguish between
tomatoes and the background. Additionally, a feature enhancement module is introduced to
highlight target details and prevent the loss of effective features.

2.2. The improvement of YOLO series algorithms

To achieve real-time object detection and automation in industrial production or services, the
YOLO series continues to play a vital role due to its high speed, high accuracy, lightweight and
locally deploy-able features.

Egi et al. [16] have utilized deep learning algorithms such as YOLOv5 and Deep-Sort to
perform object detection on tomato greenhouse videos captured by drone platform. This ap-
proach enabled systematic counting of red tomatoes, green tomatoes, and flowers in greenhouse
environments based on computer vision and drone systems. To address the labor shortage in
food service, Ge et al. [17] have designed a fast and accurate empty-dish detection model for
robots. A GPU-efficient Ghost module is utilized to replace the original YOLOv4 backbone
network, achieving high-speed computation and high accuracy while reducing the number of
parameters. To address the challenge of object detection for single-class multi-deformation
objects, Yue et al. [18] have designed a Densely Connected Multi-scale (DCM) module to en-
hance semantic extraction of deformed objects and constructed a lightweight Neck structure for
feature fusion, ultimately achieving a good balance between speed and accuracy for single-class
multi-deformation objects. To address the negative impact of top-down connections between
adjacent layers in FPN on tiny object detection, Gong et al. [19] have proposed a novel concept
called the "fusion factor" to control the information delivered from deep layers to shallow
layers, thereby adapting FPN for tiny object detection. By using statistical methods to estimate
the number of objects within specific size ranges distributed in the dataset, they derived an
appropriate fusion factor, which significantly improved performance on tiny object detection
datasets.

3. Methodology

In this study, we have utilized network structure extracted from Efficient-Net[20] to replace
the backbone of original YOLOv8[6] which is called CSPDraknet-53 and we have conducted
experiments on tomato leaf disease dataset at different scales.
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3.1. YOLOvS

Released in January 2023, YOLOv8[6] is a mainly used real-time object detection and segmenta-
tion model. YOLOvVS8 has been built on the basis of previous versions and it supports a wide
range of tasks including detection, segmentation, pose estimation, tracking and classification.

YOLOVS consists of a backbone network and a head network. With scaling factors N/S/M/L/X,
YOLOVS8 provides five models of different sizes, each possessing unique characteristics in terms
of the number of parameters and required computational resources. These differences result in
significantly different detection performance and inference times.

The backbone network utilizes convolution operations to extract features. In this process, the
feature map gradually downgrades its size while increasing its number of channels. As a result,
the backbone network can retain and extract important features passed to the head network for
further processing. The head network is mainly designed to fuse features from shallow layers
representing geometry and features from deep layers representing semantics. Compared to
its predecessor, YOLOv5[21], YOLOv8 has two significant improvements. Firstly, it has been
changed from the Anchor-Based method to the Anchor-Free method. Secondly, it has also
been replaced with the Decoupled-Head. Due to these changes in the head network, YOLOv8
introduces Task Aligned Assigner[22] and Distribution Focal Loss (DFL)[23] to enhance the
network’s ability to focus on the distribution of positive and negative samples.

3.2. Efficient-Net

In practice, we have observed that the performance of classification models can be improved
with appropriate increments in depth, width (number of channels), or resolution, but the positive
gain decreases as the model becomes larger. To address this problem, Network Architecture
Search (NAS)[24] has been chosen by the authors of Efficient-Net[20] to search for better sets
of depths, widths, and resolutions on their backbone, which is improved from Mobile-Net V3.
In the paper, the authors formulated the target of maximizing the model accuracy for any given
resource constraints as an optimization problem:

maz Accuracy(v(d,w,r)) (1)
~d-L;

st. v(d,w,r) = ;(P Fy (X W0 (2)

Memory(v) < target_memory (3)

FLOPs(v) < target_flops (4)

where r,w,d are coefficients for resolution, width and scaling network depth: F is i}i, H i Wi, C i
are predefined parameters in the baseline network Efficient-Net B0. To avoid tedious manual
tuning on balancing network width and depth, a new compound scaling method has been
proposed which use a compound coefficient ¢ to uniformly scales network depth, width and
resolution in a principled way:

depth : d=a? (5)
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Figure 1: Overall framework of our Improved model with Efficient-Net backbone. The focus is to
enhance the ability of feature extraction in order to improve detection performance on tiny objects.

width : w=[? (6)
resolution : r=n~? (7)
s.t. a-B2-y2~2 (8)
a>1l,>1,7v>1 )

The most basic and important module in Efficient-Net is MBConv [25]. MBConv is featured
with its Inverted Residual and linear bottleneck. It also adapts the Squeeze and Expansion
modules from SENet [26] to bring in a channel attention mechanism, which can adaptively
study the dependent relationship among different channels.

Experiments performed on Image-Net [27] have shown that scaled Efficient-Net models can
consistently reduce parameters and FLOPS compared to some other popular models with similar
accuracy.

3.3. Improved structure

Original Efficient-Net has been trained and tested on classification tasks. In this study, we aimed
to leverage its strong ability on feature extraction and lightweight design so as to achieve better
performance on tiny object detection without significantly increasing parameters and FLOPs
compared to YOLO series. As shown in Figure 1, the model consists of two parts, Backbone and
Head.

Feature extraction is vital for object detection, thus, we aimed to improve the backbone.
As shown on the left of Figure 1, the MBConv module has been repeated to form a feature
pyramid network. Inside the MBConv module, the squeeze and excitation layer provides channel
attention, and depth-wise separable convolution significantly decreases model size. By adjusting
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the coefficients of depth, width, and resolution of the backbone, models of different sizes for
specific applications can be conveniently constructed.

As shown on the right of Figure 1, we have used two components: the Feature Pyramid
Network (FPN) [28] and the Path Aggregation Network (PAN) [29]. FPN first extracts feature
maps from the backbone to construct a feature pyramid. It merges feature maps from different
levels through up-sampling and coarser-grained feature maps, enabling the fusion of different
feature levels. The C2f module is used to keep the model light-weighted and enable richer
gradient information. Furthermore, the decoupled detect module separates classification and
regression bounding boxes with two independent loss functions. For classification loss, Binary
Cross Entropy (BCE) Loss is used to calculate the loss for each category, and for bounding box
loss, Complete Intersection over Union (CIoU) is used to calculate the difference between the
bounding boxes of objects and predictions. Distribution Focal Loss (DFL) is then used to address
the extreme imbalance between foreground and background classes.

4. Experiment

In this section, comprehensive experiments have been conducted using models with backbones
and heads of different sizes on the tomato leaf disease dataset, demonstrating the effectiveness
of the proposed network.

4.1. Dataset

We have used the public Tomato Leaf Disease dataset[30] on roboflow, which consists of 7
categories of tomato leaf diseases: Bacterial Spot, Early Blight, Healthy, Late blight, Leaf Mold,
Target Spot, Black Spot. Image augmentation has been applied to each photo to address the
deficiency in data variety.

The Tomato Leaf Disease dataset has 737 images in total, 645 images for training set, 61 images
for validation set, and 31 images for testing. As shown in the Figure 2, two main challenges can

be found:

1. Tiny objects. Symptoms of tomato leaf diseases can be very small, these minuscule
symptoms are even difficult for human eyes to capture. As shown in the Figure 2(b), the
size of objects are mostly below 10% of the image size.

2. Multiple symptoms. It is not uncommon to find multiple symptoms on the same tomato
leaf, and the appearance of different symptoms can be similar. This similarity makes
distinguishing between different diseases a significant challenge.

4.2. Implementation details

All experiments have been performed on a platform with an NVIDIA GeForce RTX 4090 graphics
card. The deep learning framework used was PyTorch 2.2.2 with CUDA 12.1. The proposed
method in this study has been implemented based on Ultralytics 8.1.47, an innovative framework
developed by the company that proposed YOLOv5 and YOLOvS.

The epochs and batch size have been set to 400 and 16, respectively, with patience set to 100.
The IoU has been set to 0.7 for non-maximum suppression. All models have been trained using
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Figure 2: Distribution of training data in tomato leaf disease dataset

the AdamW optimizer, with an initial and final learning rate of 0.01, momentum of 0.937, and
weight decay of 0.0005. The learning rate has adopted the warm-up cosine annealing algorithm.
The learning rate of the model gradually increases within the first 3 epochs. In the experiment,
nearly all models triggered early stopping around epoch 400, which means sufficient training
has been conducted on the whole dataset.

4.3. Evaluation metrics

Typical metrics used for object detection tasks have been used to evaluate models in this study,
including Precision, Recall, mAP50, and mAP50-95. The definitions of these metrics are as
follows:

.. . TruePositives
Precision = TruePositives+ False Positives (10)
- TruePositives
Recall = TruePositives+FalseNegatives (11)
N
AP = > (Ry41 — Rn)Precisionmaz(Rn+1) (12)
n=1
1 C
mAP = &L AP (13)
J

(14)

The Average Precision (AP) of all classes is the area of the region below the precision-recall
curve. R, represents the recall of the nth value, and Precisionq,(R,+1) represents the
highest precision value in the range R,, to R,,;1. The mAP is calculated by averaging the AP of
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Figure 3: Visualization results of the proposed method on the tomato leaf disease dataset

Table 1
Performance of original YOLOv8n with different input image size

YOLOv8n

Image size | 224 | 240 | 260 | 300 | 380 | 640 |
mAP50 ‘ 0.604 ‘ 0.623 ‘ 0.661 ‘ 0.675 ‘ 0.726 ‘ 0.772 ‘

mAP50-95 | 0.399 | 0.406 | 0.434 | 0.446 | 0.473 | 0.515

each class in the dataset. mAP50 is obtained by averaging the AP (IoU = 0.5) of all classes, and
mAP50-95 is obtained by averaging the mAPs at different IoUs between 0.5 and 0.95.

4.4. Performance Comparison

The comparison model for the original YOLOvS8 in this study was reproduced using the Ultralytics
framework provided by the author. All models shared the same configuration. To visually
demonstrate the effect of our improved method, six images from the tomato leaf disease dataset
were used for testing, and the results are shown in Figure 3. The results show that the bounding
boxes of all objects have been effectively detected. In the six images, most objects are tiny,
occupying an area only 1/100th of the whole image, and the differences in the appearance of
each class are indistinct, resulting in classification difficulties.

To address this challenge, our improved network has adopted the MBConv module with a
Squeeze and Excitation (SE) layer. The channel attention mechanism helped the backbone focus
on effective feature maps during training, improving feature fusion in deeper networks. This
has been resulted in better feature extraction.

The results of the original YOLOvS8 with scale parameter n on the tomato leaf disease dataset
have been depicted in Table 1. To investigate the effectiveness of different backbones with
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Table 2
Performance on each class

Class Precision Recall mAP50 mAP50-95

Healthy 1.000 1.000 0.995 0.961
Bacterial spot 1.000 0.684 0.754 0.338
Late blight 0.811 0.889 0.930 0.780
Early blight 0.772 0.792 0.859 0.513
Black spot 0.674 0.486 0.574 0.276
Target spot 0.606 0.833 0.909 0.531
Leaf mold 0.569 0.571 0.509 0.305

different scales, experiments on each set of parameters have been evaluated. Though the depth,
width, and resolution should comply with the compound scaling method, the model performance
on object detection benefits from higher resolution. In Table 1 and 3, it was evident that the
models trained with low resolution result in worse performance than their counterparts trained
with higher resolution, thus the comparison has been conducted using an input image size of
640x640.

In terms of the number of parameters, from the original YOLO series in Tables3, it was evident
that increasing the number of parameters in the model did not necessarily improve the detection
ability of the model. Compared to the original YOLOv8 with scale factor 1 which has the best
performance on the task, our improved network with B2 coefficients and YOLOv8 head in m
size has achieved the best performance on the evaluation metrics mAP50 with only 26% of the
parameters but a 1.8% improvement. Therefore, the improvement in feature extraction ability of
the backbone has proven its parameter effectiveness in enhancing object detection performance.

5. Conclusion

In this study, we have proposed our improved network designed for detecting tomato leaf
diseases. Our network has improved the feature extraction ability of the backbone by adopting
the module and structure from Efficient-Net. The experiments conducted on our improved
network and comparison networks have shown that our network, which consists of an Efficient-
Net backbone constructed with B2 size coefficients and YOLOv8 head constructed with m size
coefficients, achieves the best mAP50 and mAP50-95, outperforming the original YOLOvV8 models
and proving the effectiveness of our model. In summary, our improved network with Efficient-
Net backbone has satisfactory feature extraction capabilities, especially enhancing the object
detection performance on tiny objects. Codes are available at https://github.com/radiuson/Effi-
YOLOVS.
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