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Abstract
2023 was the world’s warmest year on record, summer 2023 in Japan, the high temperature reduced rice quality (i.e.
the ratio of top-grade rice). The crop grades are directly linked to rice farmers’ incomes. For stable production of
high-quality crops, UAV monitoring whose introduction cost is reasonable, is attracting attention and expectations.
In previous our research, time-series clustering analysis was developed on vegetation indices obtained from UAVs.
In this research, the analysis method of previous research was applied to high-temperature years and analyzed
changes in vegetation indices and additional fertilizer effects. As a result of time-series analysis, it was possible
to determine which rice fields were fertilized appropriately. The fields diagnosed as adequate got the highest
yields. In addition, although it was not at a statistically significant level, rice applied with chemical fertilizers had
lower yields in high-temperature years than rice applied with organic fertilizers.
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1. Introduction

Global warming has long become a problem, and the frequency of abnormal weather events is increasing.
In Japan, heavy rain, heavy snow, and high temperatures occurred [1]. In particular, in 2023, the annual
average temperature was the highest since 1946, when the Japan Meteorological Agency began keeping
statistics [2]. In the case of paddy rice, high temperatures caused crops to grow faster, and farming work
was moved forward by more than a week compared to usual years. The yield was 101% of the previous
year because there was no shortage of temperature and sunlight. However, the ratio of top-grade rice
(highest rank in coloration and traits) was approximately 17% lower than the previous year (Figure 1)
[3, 4]. As the quality rank decreases, the transaction price also decreases, so it is important to produce
high-yield and high-quality rice.

To produce high-quality crops, appropriate farming works are essential. On the other hand, previous
research cited problems with Japanese farming work, such as "new workers cannot share expert farmers’
tacit knowledge" and "it requires large human labor." In other words, the appropriate knowledge transfer
and mechanization of farming works have not progressed. To solve these problems, Smart Agriculture
has been proceeded such as production management systems [5]. However, the introducing and
operating cost is enormous, and it has not become widespread in Japan, where there are many small and
medium-sized individual farmers. Therefore, in the previous our research, Unmanned Aerial Vehicle
(UAV) monitoring was adopted because it is more reasonable than other Smart Agricultural technologies.
Also, it focused on additional fertilization and used machine learning to analyze Vegetation Index (VI)
values obtained through continuous UAV monitoring. As a result, it clarified the growth of paddy rice

The 6th International Symposium on Advanced Technologies and Applications in the Internet of Things (ATAIT 2024), August
19-22, 2024, Kusatsu, Shiga, Japan
*Corresponding author.
†
These authors contributed equally.
$ s236w001@s.iwate-pu.ac.jp (T. Ito); minamino@iwate-pu.ac.jp (K. Minamino); sumeki@iwate-u.ac.jp (S. Umeki)

© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

83
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:s236w001@s.iwate-pu.ac.jp
mailto:minamino@iwate-pu.ac.jp
mailto:sumeki@iwate-u.ac.jp
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Figure 1: Average yield of paddy rice and the ratio of top-grade rice in Japan since

before and after additional fertilization, the appropriate amount of additional fertilizer, and the optimal
monitoring period [6, 7]. Using the method, this paper visualizes the impact of high temperatures
on paddy rice, and analyzes changes in vegetation indices and additional fertilizer effects to prevent
high-temperature damage.

2. Method

2.1. Vegetation Index

This research used VI for remote monitoring of crops by UAV. VI uses the spectral reflectance of sunlight
on plant leaves [8]. For example, the reflectance of stressed crops increases in the red band and decreases
in the near-infrared band compared to healthy corps(Figure2) [9, 10]. VI is numerical vegetation using
such reflection characteristics to understand crop condition from a formula. Various VI has been devised
so far [11, 12]. By using such indicators, it is possible to diagnose yield, growth, and stress in paddy rice
and wheat [13, 14, 15]. In this study, the following VIs were adopted to visualize the effect of fertilization
and determine the amount of additional fertilizer needed for the experimental sites: the Normalized
Difference Vegetation Index (NDVI) [13, 15, 16] and the Normalized Difference Red Edge Index (NDRE)
[14, 17], which are used to diagnose the growth, yield, and stress. In addition, it was computed that the
Standardized Normalized Difference Red Edge Index (SNDRE) [6, 7, 18], which are relative stress values
for each day. The respective derivation formulas are (1), (2), and (3) below.

𝑁𝐷𝑉 𝐼 = (𝑅𝑁𝐼𝑅 −𝑅𝑅𝑒𝑑)/(𝑅𝑁𝐼𝑅 −𝑅𝑅𝑒𝑑) (1)

𝑁𝐷𝑅𝐸 = (𝑅𝑁𝐼𝑅 −𝑅𝑅𝐸)/(𝑅𝑁𝐼𝑅 −𝑅𝑅𝐸) (2)

𝑆𝑁𝐷𝑅𝐸 =
(︀
𝑁𝐷𝑅𝐸 − 𝜇𝑑

𝑁𝐷𝑅𝐸

)︀
/𝜎𝑑

𝑁𝐷𝑅𝐸 (3)

where

𝑅𝑏 : Reflectance of band "𝑏"
𝜇𝑑
𝑁𝐷𝑅𝐸 : Average of NDRE on date "𝑑"

𝜎𝑑
𝑁𝐷𝑅𝐸 : Standard deviation of NDRE on date "𝑑"

Monitoring was conducted at private farmer’s paddy fields in Hanamaki City, Iwate Prefecture, Japan,
from 2021 to 2023 at 6 sites in 10 conditions [6, 7, 18]. Among these monitoring sites, this paper deals
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Figure 2: Image of spectral reflectance of plants [6, 7, 18]

Figure 3: UAV used in this study (DJI Ci., Ltd., China)

with the "Okamizawa" site, which was monitored in 2023 (high-temperature year). Table 1 shows
growth information at Okamizawa. This site is divided into three fields (North, Center, and South), and
the method of additional fertilization differs for each field. North field was used conventional chemical
fertilizer. Center and South fields were fertilized with the farmers’ homemade liquid fertilizer and
organic cow dung. Note that preliminary analysis results of Time-Series Clustering (TSC) for this site
have already been reported [19], this paper reports the results in detail.

The UAV used for monitoring is shown in Figure 3. This UAV is equipped with one RGB sensor for
visible light and five monochrome sensors for multispectral. The bands of each monochrome sensor are
450nm (Blue), 560nm (Green), 650nm (Red), 730nm (RE: Red Edge), and 840nm (NIR: Near-Infrared) [20].
However, in this study, only the Red, RE, and NIR bands necessary for calculating NDVI and NDRE
were used. To optimize the resolution of the drone images, camera settings were adjusted according to
lighting conditions, distance, and drone speed (e.g. flight altitude: 30 meters). The monitoring interval
was also set according to the growth stage (i.e. once a week from the panicle formation stage until before
harvest). In addition, correcting errors in luminance values and coordinates, a standard reflector was
used and 4 ground control points (GCP) were established at the four corners of the site. However, this
period was the rainy season so there were missing measurements when drone flight was not possible.
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Table 1
Growth information of the experimental field

Site Okamizawa
Comparative Experiment Fertilization Method

Number of Meshes 744
Year 2022 2023

Rice Variety Hitomebore Yumi-azusa
Transplanting May 7 May 5

Additional Fertilization

North
Jul. 24

Same as in 2022

Center & South
Aug. 1
Aug. 6

No date details available

Heading Aug. 3 Late Jul.
Harvesting Sep. 27 Mid-Sep.

2.2. Time-Series Analysis

In order to compute VI from aerial photographs taken by UAV, it is necessary to create orthophotos of
each band. Therefore, they were generated using software (Agisoft Metashape, Agisoft LLC, Russia).
Next, calculate NDVI, NDRE, and SNDRE from multiple orthophotos using free and open-source
geographic information system (QGIS [21]). The VI value was calculated for each 3m square mesh.
This was done on all observation days to create VI time-series data for each mesh. That is, there is VI
time-series data for the number of meshes. These meshes were classified into several clusters according
to the pattern of time-series changes in VI using a Python TSC program based on the K-Means++
method to [6, 7, 18]. Note that the number clusters were determined subjectively using the elbow
method [22]. Using the VI time-series data at the centroid of each cluster and the cluster distribution
map by this method, this paper will visualize the growth and stress of rice and diagnose which rice
fields have been properly fertilized.

As an additional experiment from the previous research [19], a unit acreage sampling was conducted
just before harvest. The sample method was to select 5 meshes from each rice field so that the NDVI
values at the heading stage were dispersed, and then measure the yield of the 5 plants within each mesh.
The selected meshes are shown in Figure 4. By the data of sample yield, the significant differences in
yield between rice fields and which rice fields were most appropriately fertilized were evaluated.

3. Result

3.1. Fertilization Effect and High-Temperature Influence

As the results of TSC for Okamizawa, the time-series transitions of each cluster centroid and daily
weather data are shown in Table 2. In addition, the cluster distribution map is shown in Table 3. The
vertical dashed lines in each figure in Table 2 mean the growth stage transition dates. They were
estimated from the growth stage prediction model based on the effective cumulative temperature from
the date of transplantation [23, 24].

In 2022, a variety "Hitomebore" was planted which commonly consumed in Japanese households.
As a comparative experiment, the fertilization method was changed for each rice field. In North field,
chemical fertilizer was applied at 0.51g/m² of nitrogen equivalent on July 24th, and in Center and South
fields, liquid fertilizer and cow dung were applied on August 1st and 6th [7]. Temperatures in the first
half of June were approximately 3°C lower than normal, but other periods were around normal. A major
feature was heavy rainfall in August, and the amount of solar radiation was approximately 70% of the
normal. In NDVI, the cluster-ID appearing in each field was different. Based on reports that there is a
correlation between NDVI and yield from the Panicle Formation stage to the Heading stage [16], the
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Figure 4: The meshes selected in unit acreage sampling

yield of North and Center field is expected to be higher. NDRE does not show much difference between
clusters. Since NDRE value does not change unless a significant stress is imposed on plants [6, 7, 18], it
is expected that there was no major stress at this site.

SNDRE was divided into Cluster-0 (large difference in fluctuation), Cluster-1(upward trend), Cluster-
2(high values around the heading stage), and Cluster-3(fluctuation range between -0.5 and 0). Cluster-0
is an abnormal value because only a few meshes appear in the corner of the rice field. Cluster-1 was
often seen near the ridges of each rice field, so it is thought that the fertilizer washed away by rain
and wind was concentrated in these meshes. Cluster-2 appeared in North field and is thought that
the effects of chemical fertilizers were evident. Cluster-3 appeared well in Center and South fields. It
is thought that liquid fertilizer and cow dung were gradually absorbed into paddy rice over a longer
time than chemical fertilizers. From these results, it is thought that the yield in North or Center field is
higher, so these two fields were fertilized optimally.

In 2023, "Yumi-azusa" was planted. This variety has a lower taste than Hitomebore, but it is resistant
to diseases. So, it is used as commercial rice. The comparative experiment will be roughly the same as
in 2022, but detailed work dates were not recorded. Regarding the climate, the daily mean temperature
was always higher than normal. In particular, it in August was approximately 4°C higher than normal.
Additionally, the weather remained sunny before the heading stage, so there were few precipitations. In
NDVI was divided into cluster-0 and cluster-1 (high values around the heading stage), and cluster-2 and
cluster-3 (low values around the heading stage). Since high values clusters are often found in Center
field, the yield would be higher. NDRE took a higher value compared to 2022. This meant lower stress
levels so no growth problems were observed. In SNDRE, cluster-0 was high during the heading stage so
it was a good transition that showed the effect of additional fertilizer. This cluster was found in Center
fields. In any VIs, Center field was expected to be the best fertilization because well-diagnosed clusters
are widely distributed in this field. But North and South fields were higher stress levels after the heading
stage than Center field. Only Center field might have been less affected by high-temperature years.
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Table 3
Cluster distribution map

Year 2022 2023

NDVI

NDRE

SNDRE

89



3.2. Unit Acreage Sampling

The results of the unit acreage sampling are shown in Table 4. Each sample weighs 5 plants. "Average"
row shows the average of that column converted into gram per unit area. In 2022, the average yield of
Center field was higher and the average yield of South field was lower. This was consistent with the
diagnosis from the time-series analysis. In 2023, the Center field had a higher yield than other fields by
more than 40g/m². This was in line with the diagnosis from the time-series analysis. In addition, the
sample data in 2022 was converted to “g/5plants” units and then a two-way analysis of variance was
used to verify the significance of the average yields between years and paddy fields. In the results of
this analysis, none of the factors showed any significant differences at the 5% level (p-valueyear = 0.488,
p-valuefield= 0.345, p-valueyear×field = 0.247). Although there is no significant difference, the yield of
North decreased largely in the high-temperature year. It has been reported that organic fertilizers tend
to produce higher yields than chemical fertilizers, especially in years with abnormal weather [25, 26].
Chemical fertilizers are convenient because they are quick-acting. However, it is quickly absorbed by
crops and weeds so is not as effective at improving soil fertility as organic fertilizers. To accurately
measure the difference in effectiveness of different types of fertilizers, it seems necessary to improve
the unit acreage sampling. Specifically, the sample size was too small (15 or 25 plants per paddy field),
so the sampling method and sample size should be improved.

In both 2022 and 2023, the time-series analysis was conducted to diagnose which paddy fields could
be properly fertilized. As a result of verifying this through the unit acreage sampling, the yield of
well-diagnosed field was the highest in all cases. In other words, by time-series analysis of VIs using TSC,
it was possible to evaluate the optimal fertilized fields. Also, the average yield differed by approximately
40g/m² in both years despite applying the same fertilizer to Center and the South fields. This is possibly
caused by differences in soil properties. Center field had good drainage, and South field retains water
well.

Table 4
Result of the unit acreage sampling

2022
(g/3plants)

2023
(g/5plants)

North Center South North Center South
Sample-1 70.8 132.4 86.0 133.4 150.0 133.0
Sample-2 82.0 79.6 86.8 155.5 143.4 140.3
Sample-3 80.6 84.8 78.2 106.9 129.1 135.6
Sample-4 94.2 68.2 84.6 131.1 165.4 137.1
Sample-5 89.6 76.4 73.2 116.8 136.0 121.2

Average [g/m2] 505 534 495 467 526 484

4. Conclusion

Using the method of the previous research [18], this paper visualized additional fertilizer effects and
high-temperature Influence. By grouping the VI time-series changes of each mesh using TSC, it was
possible to visualize the growth and stress conditions, the effect of additional fertilizer, and diagnose
which rice fields were fertilized properly. From the unit acreage sampling, all well-diagnosed rice field
took the best yield. On the other hand, the yield of chemical fertilizer field decreased significantly in
high-temperature years. Thus, under high-temperatures, it was suggested that organic fertilizers which
improve soil fertility are more useful than chemical fertilizers which act fast.

To gain further insight, the following three things need to be considered. The first is to analyze
images with wavelength bands not used in this study. Using green bands (GNDVI and so on) could
visualize the water and nitrogen absorption. Using RGB images could provide ground truth data of soil
and crops. The second is an improvement of the TSC algorithm. The K-Means++ method was used
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in this paper because it supported time-series data in Python. However, better classification can be
expected by comparing with hierarchical clustering, DBSCAN, and so on. The third is to supplement
missing data. When monitoring data cannot be obtained because the drone could not fly during rainy
days, multiple imputation is considered a good approach.

Future works are creating target values for VIs for each growth stage to diagnose well conditions
and predict yields. For the former, there is already research. This research makes NDVI target values to
achieve the target yield by using a portable NDVI measuring device [27]. It is desirable to apply this to
the UAV environment and to formulate target values for other VIs. The latter concerns preliminary
evaluation. This research was an ex-post evaluation such as visualization of crop conditions and
evaluation of additional fertilizer. However, in the future it is preferable to predict yields with fewer
explanatory variables by weather data and growth stage prediction models. Furthermore, a system will
need that outputs farm works support in natural language from such prediction models, VIs transitions,
cluster maps, and so on. It is expected that UAV monitoring will become more widespread as research
continues to meet the needs of the field.
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