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Abstract
Reinforcement Learning (RL) is a promising approach for creating adaptive solutions for robotic tasks that are
difficult to design directly. Unlike traditional approaches that rely on designing explicit behaviors, RL allows
agents to learn skills by interacting with their environment. Inspired by human learning processes, agents acquire
knowledge through trial and error guided by the rewards gained from their actions through various experiences.
A key step when solving planning problems with RL algorithms is the definition of state and action spaces.
Typically, state and action spaces are manually designed in a domain-specific manner to ensure effective problem
solving. In this paper, we present an innovative approach to define state and action spaces through a Knowledge
Base (KB) encoding information about the environment and physics. We propose a structured and extensible form
for knowledge description, and we show how to extend the action space through action learning. This allows the
robot to reach its goal in those states where unexpected scenarios are encountered and where, therefore, the
action space obtained through the KB is not sufficient.
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1. Introduction

Reinforcement learning (RL) has emerged as a promising approach to create adaptive solutions to
challenging robotic tasks that are difficult to tackle with conventional approaches, such as manipulation
[1], navigation [2] and locomotion [3, 4]. Unlike traditional methodologies that rely on designing
explicit behaviours [5, 6], RL allows agents to learn skills autonomously through interaction with the
environment [7, 8, 9, 10]. This learning process, inspired by human cognition, involves the acquisition
of skills through iterative trial and error, guided by the rewards gained from their actions. Leveraging
various experiences, the agents can effectively explore complex environments and achieve desired goals.

A key step when solving planning problems with RL algorithms is the definition of state and action
spaces, which are used by the agent to learn the desired policy. Typically, state and action spaces are
manually designed in a domain-specific manner to ensure effective problem solving.

In our work, we present a novel approach in which the definition of state and action spaces occurs
through a Knowledge Base (KB) that encodes information about the environment and physics via
Resource Description Framework (RDF) triples. We propose a structured and extensible form for the
knowledge description, that allows the creation of new state and action spaces, based on structured
information that is added to the KB, using specific prepared queries. Next, we introduce a solution for
extending the action space to include unforeseen situations that the agent may encounter during the
policy learning. The agent can learn new actions, which allow it to reach a successful state, by using
low-level reinforcement learning based on motor commands. We define a successful state as a state in
which the initial action space is sufficient to reach the goal, and for which a policy is therefore already
known. Lastly, a final training is performed, this time considering both the original state and action
space, as well as the newly learnt actions.
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2. Preliminaries and related work

2.1. Knowledge Graphs

Knowledge Graphs (KG) are networks of interconnected data points, where each node represents a
piece of information and each edge represents a connection between those pieces of information. They
are a representation that is easy for humans as well as for machines to understand, and they can provide
new inferences and remodel themselves with the addition of new data over time.

Ontologies define the vocabulary within a given domain. Its main components are classes (entities
are classified within a hierarchy of classes, e.g. in the context of robotics, classes could include robot
types, action types, etc.), relationships (they define how entities or classes are related to each other) and
attributes (properties that describe an individual class).

RDF1 and Web Ontology Language (OWL)2 are key standards of the Semantic Web. Represented in
RDF, knowledge graphs excel at integrating, unifying, linking and reusing data.

2.2. Reinforcement Learning

Reinforcement Learning (RL) is a type of Machine Learning that makes an agent learn from interactions
with the environment without explicit examples or external instructors [11, 7, 8]. The environment
is typically modelled as a Markov Decision Processes (MDP) or a partially observable MDP (POMDP).
Formally, an MDP is denoted as a tuple of five elements (𝑆,𝐴, 𝑃,𝑅, 𝛾) where 𝑆 represents the space of
states (i.e. the set of possible states), 𝐴 represents the space of actions (i.e. the set of possible actions), 𝑃
represents the probability of transition from one state to another given a particular action, 𝑅 represents
the reward function and 𝛾 ∈ [0, 1] is the discount factor that determines the importance of future
rewards. The agent interacts with the environment in discrete time steps, 𝑡 = 0, 1, 2, .... At each time
step 𝑡, the agent obtains a representation of the environmental state 𝑆𝑡 ∈ 𝑆, takes an action 𝐴𝑡 ∈ 𝐴,
moves to the next state 𝑆𝑡+1 and receives a scalar reward 𝑅𝑡+1 ∈ 𝑅. The agent’s behaviour is described
as a policy 𝜋 : 𝑆 ×𝐴, where 𝜋(𝑠|𝑎) = 𝑃 (𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠) is the probability of taking an action 𝑎 ∈ 𝐴
given state 𝑠 ∈ 𝑆. The agent’s goal is to maximise the expected cumulative discounted reward, which
is denoted as 𝐺𝑡:

𝐺𝑡 =
∞∑︁
𝑛=0

𝛾𝑛𝑅𝑡+𝑛+1

The optimal behaviour of taking the best action in each state to maximise the reward over time is called
the optimal policy, 𝜋*.

RL can be divided in two distinct computational strategies, namely model-free RL and model-based
RL.
Model-free RL assumes that learning occurs without access to any internal representation of the causal
structure of the environment [12]. The agent merely stores estimates of the expected values of actions
available in each state or context, modelled by a history of direct interactions with the environment,
without building a model of the environment.
Model-based RL, on the other hand, assumes that the agent has an internal model that predicts the
outcomes of actions and estimates the immediate reward associated with specific situations [8, 13].
Decisions are not made on the basis of stored action values, but through planning: after learning, the
agent is able to make predictions about what the next state and reward will be before taking each action
and is thus able to compare candidate courses of action.

In our work, we utilise both types of learning. We employ model-based RL to learn policies and
model-free RL to learn new actions.

1https://www.w3.org/TR/rdf-mt/
2https://www.w3.org/TR/owl-semantics/

https://www.w3.org/TR/rdf-mt/
https://www.w3.org/TR/owl-semantics/


2.3. Related work

Learning a representation of the state is an active research topic, under the term State Representation
Learning (SRL) [14, 15, 16, 17]. In [14], prior knowledge about interaction with the physical world is
used to learn state representations that are consistent with physics. The method extracts task-relevant
state representations from high-dimensional observations. In [16], the authors focus on partially
observable environments and propose to learn a minimal set of state representations that, given
observational sequences, capture sufficient information for decision making, termed Action-Sufficient
state Representations (ASRs).

Previous work has also demonstrated the feasibility of combining skill learning with external knowl-
edge. In reference to the work of Wardenga et al. [18], knowledge is introduced in the form of RDF
knowledge graphs during the RL process. This is achieved through the introduction of a KG wrapper,
which utilises observations from the environment (text, images, heterogeneous data...) to extract the
most relevant features and define the observation state. This is then inputted to the RL method of
choice. In [19], the authors propose an integrated learning process for the robot, in which knowledge
is incorporated into the learning process. They distinguish between two types of knowledge: explicit
knowledge, which is extracted from prior information; and tacit knowledge, which is acquired through
the robot’s direct interactions with the environment. Similarly, [20, 21] exploit knowledge graphs in
reinforcement learning. In [20], the authors combine the agent’s belief with commonsense knowledge
from the ConceptNet knowledge graph in order to act in the world.

3. Proposed approach

We present a framework that allows to create a state space 𝑆 and action space 𝐴 as input of a rein-
forcement learning problem. The core of the framework is a knowledge base that encodes information
about the environment and physics via RDF triples. Given the robot type and the task to be learned, via
queries to the KB and a low-level RL action training, the agent learns the state and action space, which
are then used to obtain the policy 𝜋. To the best of our knowledge we are the first ones who propose an
approach that tries to create state and action spaces starting from a KB. Our approach has the following
advantages:

• generality: The knowledge related to the task is independent from the robot type;
• extensible: The KB can be extended with new knowledge; we give a structure to be followed when

adding new information, making it possible to use provided predefined queries;
• almost fully automatic process: The only human input is in the definition of the KB and the reward

function. We expect that encoding manually all of the knowledge needed to scale to real-world
applications will not be feasible, so in the future we would like to introduce methods for acquiring
and integrating knowledge from different sources;

• the ability to learn a policy is not limited by the KB: If the actions obtained from the KB are not
sufficient to achieve the goal, new actions can be learned through action learning.

3.1. Knowledge Base

The KB provides the mechanisms to store and retrieve information about actions, objects, the environ-
ment, the physics, their properties and relations. The knowledge base is defined via RDf triples, where
each element is represented by a Uniform Resource Identifier (URI). We use RDFlib 3 for handling RDF
data using the Python programming language.

3.1.1. General predicates

To describe the relations between the concepts we define the following predicates:

3https://rdflib.readthedocs.io/en/stable/index.html
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• requires: property to describe the requirements of the task. Fig. 1a shows the structure of the
task definition.

• has_action: property to describe the actions executable by the subject.
• has_state: property to describe the state of the subject.
• has_components: property to describe the components of the subject.
• state_type: property to describe the type of state; the state can either be discrete or continuous.
• can_be: property to describe what the discrete state can be.

The task definition structure is defined as a set of triples having the form of <task/action, requires,
requirement>. For example, a task that requires a robot to “pick_up” an object, is defined by the
requirements of knowing what is used to pick up the object, what is the object to be picked up, and
where to pick up the object. A graphical representation of the generic task definition and the “pick_up”
example can be seen in fig. 1a and 1b respectively. This task definition is general and does not depend
on the robot type.

(a) (b)

Figure 1: Task definition structure: (a) General structure; (b) Example of task definition for a “pick_up” task.

In a similar way, we define the description of a robot as a set of triples having the form <robot,
requirement, object>. As can be seen, the “requirement”, which was the object in the task definition,
becomes a predicate in the robot definition, denoting that the robot has that capability. Examples of
robot definitions can be found in figures 2 and 3, where fig. 2 describes a forklift and fig. 3 a robotic
arm. It can be seen that there are identical task predicates in both contexts.

Figure 2: Example of requirements definition for a forklift. It can be seen that the forklift has the “requirements”
needed to perform the “pick_up” task.

3.2. Prepared queries

We define a set of queries that allows to extract the relevant information from the KB. We used the
prepared queries (parametrized SPARQL queries) provided by the RDFlib library, this avoids re-parsing
and translating the query into SPARQL algebra each time. The following are the principal predefined
queries used to obtain state and action spaces.



Figure 3: Example of requirements definition for a robotic manipulator. Also the robotic manipulator has the
“requirements” needed to perform the “pick_up” task.

I. Get state space.
Initial bindings: robot, task

PREFIX krl: <http://kb4rl.org/>

SELECT ?entity ?state

WHERE {

{ {?task krl:requires ?requirement .

?robot ?requirement ?entity .

?entity krl:has_state ?state }

{?state krl:type_state krl:discrete}

UNION

{?state krl:type_state krl:continuous} }

UNION

{ {?task krl:requires ?requirement .

?robot ?requirement ?entity .

?entity krl:has_state ?m_state .

?m_state krl:has_components ?state }

{?state krl:type_state krl:discrete}

UNION

{?state krl:type_state krl:continuous} }

}

II. State space into array.
Initial bindings: state

PREFIX krl: <http://kb4rl.org/>

SELECT ?can_be WHERE {

?state krl:type_state krl:discrete .

?state krl:can_be ?can_be

}

III. Decode the state array.
Initial bindings: state

PREFIX krl: <http://kb4rl.org/>

SELECT ?can_be WHERE {

?state krl:can_be ?can_be .

?can_be krl:id ?id

}

IV. Get actions.
Initial bindings: robot

PREFIX krl: <http://kb4rl.org/>

PREFIX rdfs:

<http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?action WHERE {

{ ?robot ?p ?o .

?o ?has_action ?action }

UNION

{ ?robot rdfs:subClassOf ?robot_class .

?robot_class ?has_action ?action }

}

The first query retrieves the state space; it takes as inputs the task to be learned and the robot that
needs to learn how to perform the task. The second query converts the state, which is currently an
array of URIs, into a numerical array. The third query translates the numeric array back into a URIs
array, which is useful when learning new actions. Finally, the fourth query retrieves the action space.

3.3. Methodology

The framework consists of three distinct parts, each including a training phase: the state and action
space extraction from the KB, the action space expansion via low level training and the final training.
Fig. 4 shows the conceptual structure of our framework.
State and action space extraction from the KB
The state and action space extraction is the core of the framework (first block of Fig. 4). After inputting
the robot type and the action or task to be learned, queries are sent to the KB and a state space 𝑆𝐾𝐵

and action space 𝐴𝐾𝐵 are obtained. The agent is then trained using 𝑆𝐾𝐵 and 𝐴𝐾𝐵 and a policy 𝜋𝐼 is
obtained.



Figure 4: Conceptual structure of our framework: three blocks are highlighted. Starting from the state and action
space extraction from the KB block, state and action space are extracted from the knowledge base and the first
policy training is performed. Then, in the action space expansion block, the agent learns new skills. Finally, in the
last block, the agent combines the new acquired skills with the actions obtained via the KB and a final training is
performed.

Action space expansion via low-level training
Training the agent using the state and action space obtained from the KB may not succeed to find a
policy reaching the goal from all states 𝑆. This is due to the fact that the action space 𝐴𝐾𝐵 obtained
via the KB may not be large enough and therefore may not include unforeseen situations that the robot
would encounter while performing the task. Hence a second training is introduced in the framework,
to teach the agent actions that enable it to reach a state where policy 𝜋𝐼 is applicable. Fig. 5 shows the
action-learning framework.

Figure 5: Action-learning framework: the failing states 𝑆𝑓𝑎𝑖𝑙𝑖𝑛𝑔 are compared to the successful states 𝑆𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

in order to learn the actions the allows to reach the “closest” successful state, for which a policy 𝜋𝐼 is already
known.

The states are divided in successful states 𝑆𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 ∈ 𝑆 (i.e. states in which the goal can be reached
with 𝐴𝐾𝐵) and failing states 𝑆𝑓𝑎𝑖𝑙𝑖𝑛𝑔 ∈ 𝑆 (i.e. states in which the goal cannot be reached with 𝐴𝐾𝐵).
At each training step an initial state is chosen between the failing states 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝑆𝑓𝑎𝑖𝑙𝑖𝑛𝑔 . Next, the
Hamming distances to the successful states are calculated, and the closest states (i.e. states with the
minimum distance) are taken as potential goal states. Each potential goal state is assessed to determine
if it is physically reachable from the initial state, i.e. whether the transition is physically possible. All
states that are not physically reachable are discarded, and only the physically reachable states are kept
as possible goal states. If none of the closest successful states is physically meaningful, the second
closest successful states are considered as potential goal states and an evaluation is performed again to
see if transitions are possible. This process is repeated until at least one physically significant successful



state is identified. If a state cannot be found, the original goal used in training the first policy will be
set as the goal. Finally, the goal state 𝑠𝑔𝑜𝑎𝑙 is selected from the closest physically significant successful
states and the agent is trained to learn an action to reach the goal state. When learning actions, the KB
is used to identify similarities between the new actions (dashed arrow Fig. 4).

For example, consider a task where a forklift needs to pick up a pallet. The high-level training would
be able to find a policy from states in which one of the two faces of the pallet is free or states in which
the holes are hidden by a deformable object (the holes are accessible by the forks). However, the training
would fail in those states in which the pallet holes are hidden in both faces by a rigid obstacle, for
example, a fallen box in the warehouse. When comparing the successful states 𝑆𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 with the
failing states 𝑆𝑓𝑎𝑖𝑙𝑖𝑛𝑔 , two types of state transition would emerge: the state of the hole has to go from
hidden to free or the object has to change from rigid to deformable. However, only one of the two types
of transition makes physical sense in this case, as usually a rigid object cannot change to a deformable
one.

Therefore, the 𝑔𝑜𝑎𝑙 to achieve with the low-level training would be to free the holes in one of the
two faces of the pallet, thus learning an obstacle removal action. Once the holes are free, the agent
could simply use the policy 𝜋𝐼 obtained with the first training.
Final training
In the last RL training (third block of Fig. 4) the agent is trained by using both the old action space
𝐴𝐾𝐵 as well as the newly learnt actions 𝐴𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 and a policy 𝜋𝐼𝐼 is obtained. This time the agent
opts for the most convenient action to take.

Returning to the example of the forklift that has to pick up a pallet, let us consider a state in which
the holes are hidden in just one face; this is a successful state, i.e. a state in which the original policy
𝜋𝐼 was enough to reach the goal. By following 𝜋𝐼 the agent would have gone to the free face of the
pallet as it did not know any action to move the obstacles, but now with 𝜋𝐼𝐼 the agent may find it more
efficient to move the obstacle rather than going to the free face of the pallet.

4. Discussion

In this work, we have presented an approach to automate the creation of state and action space for
Reinforcement Learning via a Knowledge Base that provides the mechanisms to store and retrieve
information about actions, objects, the environment, the physics, their properties and relations. We
have also introduced a solution for extending the action space to include unforeseen situations that the
agent may encounter during the policy learning.

At the moment we have no experimental evaluations to support our approach, apart from human
evaluation of the generated policies. In the near future we plan to test our method on a real robot.
Additionally, we would like to automate the retrieval of knowledge from different sources and also to
automate the definition of the reward function via the KB.
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