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Abstract 
This paper investigates the integration of Large Language Models (LLMs) in the engineering of a 
Parkinson’s Disease (PD) monitoring and alerting ontology. The focus is on the ontology engineering 
methodology which combines the capabilities of LLMs and human expertise to develop more robust 
and comprehensive domain ontologies, faster than humans do alone. Evaluating models like 
ChatGPT-3.5, ChatGPT4, Gemini, and Llama2, this study explores various LLM based ontology 
engineering methods. The findings reveal that the proposed hybrid approach (both LLM and human 
involvement), namely X-HCOME, consistently excelled in class generation and F-1 score, indicating 
its efficiency in creating valid and comprehensive ontologies faster than humans do alone. The study 
underscores the potential of the combined LLMs and human intelligence to enrich PD domain 
knowledge and enhance expert-generated PD ontologies. In overall, the presented approach 
exemplifies a promising collaboration between machine capabilities and human expertise in 
developing ontologies for complex domains. 
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1. Introduction 

The integration of LLMs (Large Language Models) with ontological frameworks is gaining 
prominence in the field of knowledge Representation (KR) and Artificial Intelligence (AI) [1, 2]. 
As KR methods become more demanding, there is a noticeable trend towards the use of LLMs 
for the construction, refinement, and mapping of ontologies, tasks that have been traditionally 
performed and supervised by human experts with in-depth knowledge of the domain and of the 
engineering of ontologies [3]. Since LLMs are trained on big data, they are making expert-level 
insights across domains more accessible and cost-effective. Moreover, while LLMs are getting 
more effective at engineering ontologies, their capabilities are   significantly enhanced in the 
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era of Neurosymbolic AI, i.e.,  combining the deep and varied knowledge of statistical AI  with 
the semantic reasoning of symbolic AI [4]. 

 Neurosymbolic AI is particularly significant in addressing complex health problems such 
as the monitoring and alerting patients and doctors of Parkinson Disease (PD), the second most 
common neurodegenerative disease globally [5]. Despite extensive research, the nature of PD 
remains elusive, and current treatments offer only partial effectiveness [6]. In response, related 
ontologies have been developed to enhance understanding, monitoring and alerting, and 
treatment approaches. Specifically, the Wear4PDmove ontology [7, 8] has been recently 
developed with the aim to integrate heterogeneous sensor (movement) and personal health 
record (PHR) data, as a knowledge model used to interface/connect patients and doctors with 
smart devices and health applications. This ontology aims to semantically integrate 
heterogeneous data sources, such as dynamic/stream data from wearables and static/historic 
data from personal health records, to represent personal health knowledge in the form of a 
Personal Health Knowledge Graph (PHKG). Also, it supports health applications' reasoning 
capabilities for high-level event recognition in PD monitoring, such as identifying events like 
'missing dose' or 'patient fall' [8, 9]. This and associated ontologies facilitate the critical 
integration of AI-driven tools and domain-specific knowledge, making it easier to integrate and 
reason with health data and promote creative PD treatment approaches.  

 PD monitoring and alerting of patients requires flexible KR methods to effectively adapt 
to their health changes. LLMs have shown impressive abilities in handling vast quantities of 
data and producing valuable insights from their near real-time analysis. Yet, their use in 
monitoring PD and alerting patients is limited by factors like inadequate reasoning abilities and 
reliance on specialized health knowledge. Health is a complicated domain, with distinct 
contexts, subtle meaning variations, and disease-specific vocabularies. To effectively capture 
and express this complex knowledge, it is necessary to fine-tune and train LLMs specifically for 
the domain, which can demand a significant number of resources that are not always available, 
or health/medical experts are not willing to provide for many different reasons. Also, healthcare 
ontologies now adhere to several standards and forms. The technical challenge, however, lies 
in the integration and reconciliation  of information from many heterogeneous sources into a 
coherent ontology, while also ensuring interoperability. To achieve an efficient ontology 
development process within an ontology engineering methodology (OEM), LLMs must be able 
to navigate these disparities efficiently. Existing research on PD has already utilize ontologies 
[7, 10]. However, maintaining these ontologies in this rapidly changing field of PD, calls for 
constant effort and resources. Failure to update/refine the ontology may result in outdated 
information.  

 This study aims to investigate the possibilities of LLM-based collaborative OE (ontology 
engineer) to improve the speed and accuracy of PD knowledge representation. LLMs can 
efficiently analyze large volumes of health-related data, recognize patterns and semantic 
connections between them [11]. Human specialists contribute to ensuring the precision and 
domain-specific significance of the acquired knowledge. LLMs and humans, working together, 
can collaboratively engineer PD-related ontologies that efficiently support the monitoring and 
alerting of patients and doctors.  

 This paper presents experiments with LLMs for PD ontology engineering.  More 
important, in this paper, an extension of a human-centered collaborative OEM (HCOME) [12] 
with LLM-based tasks is propose and assessed (namely X-HCOME). The aim is to provide a 
novel OEM, including both humans and LLMs in the engineering of ontologies, with a focus on 



speed, conceptualization, and human-assistance. The final product of this work will be an OEM 
more effective in knowledge representation than those used solely by humans or LLMs. The 
paper focuses on LLM-based collaborative OE to create comprehensive PD ontologies and 
discusses limitations identified from the experimental results. 

 The organization of this paper is as follows: Section 2 presents related work on 
integrating LLMs to OE; Section 3 describes the proposed research methodology; Section 4 
presents the conducted experiment; Section 5 presents further experimentation; and finally, 
section 6. Discuss the results and draws the conclusions.  

 

2. Related Work 

Oksannen et al. (2021) developed an approach to derive product ontologies from textual reviews 
using BERT models. Their approach, which required minimum manual annotation, 
demonstrates increased   precision and recall in comparison to established methods such as 
Text2Onto and COMET, signifying a noteworthy advancement in automatic ontology 
extraction [13]. The BERTMap, a tool designed for the visualization and analysis for 
Bidirectional Encoder Representations from Transformers by He et al. (2022), demonstrates the 
effectiveness of LLMs by exceling at ontology mapping (OM), especially in unsupervised and 
semi-supervised scenarios, surpassing current OM systems. It demonstrates the precision of 
LLMs in matching entities between knowledge graphs [14]. Ning et al. (2022),  introduce a 
technique to extract factual information from LLMs by creating prompts for pairs of subjects 
and relations. They utilize an approach that incorporated pre-trained LLMs with prompt 
templates derived from web material and personal expertise. The authors identify effective 
prompts through a parameter selection technique and filter the generated entities to pinpoint 
reliable choices. They stress the significance of investigating parameter combinations, testing 
LLMs, and expanding research into different domains [15].  
 Lippolis et al. concentrate on harmonizing entities across ArtGraph and Wikidata. By 
combining traditional querying with LLMs, they achieve a high accuracy in entity alignment, 
showcasing the efficiency of LLMs in filling knowledge gaps in intricate databases [16]. Funk 
et al. (2023) investigates the capability of ChatGPT3.5 in creating concept hierarchies in several 
fields. Their method decreases mistakes and generates appropriate concept names, 
demonstrating the effectiveness of LLMs in the semi-automatic creation of ontologies. Studies 
on GPT4's abilities in structured intelligence within ontologies indicate its potential for 
groundbreaking progress. Their study emphasizes the importance of implementing controlled 
LLM integration in business environments through a collaborative framework. [17]. Biester et 
al. (2023) develops a technique that utilizes prompt ensembles to improve knowledge base 
development. When applied to models such as ChatGPT and Google BARD, they demonstrate 
notable enhancements in precision, recall, and F-1-score, highlighting the effectiveness of LLMs 
in improving knowledge bases [18]. Mountantonakis and Tzitzikas (2023) devise a technique to 
verify ChatGPT information by utilizing RDF Knowledge Graphs. They confirm the accuracy 
of 85.3% of ChatGPT facts, highlighting the significance of verification services in maintaining 
data precision [19]. Pan et al. (2023) suggests combining LLMs with KGs to improve reasoning 
skills. Their frameworks attempt to combine the benefits of both LLMs and KGs, resulting in 
enhanced data processing and reasoning abilities [20]. Joachimiac et al. (2023), used the 
Spindoctor approach, which employed LLMs to summarize gene sets, demonstrating the 
versatility of LLMs in analyzing intricate biological information. Their method showcased the 
effectiveness of LLMs in summarizing text specifically related to gene ontology [21]. The 



SPIRES approach developed by Caufield et al. (2023) demonstrates the adaptability of LLMs in 
extracting information from unstructured texts in many fields. This zero-shot learning method 
does not require any model adjustment, demonstrating the wide range of applications of LLMs 
in various disciplines [22]. Mateiu et al. (2023) showcase the application of GPT3 in converting 
natural language words into ontology axioms. Their methodology facilitates ontology creation, 
enhancing accessibility and efficiency, demonstrating the effectiveness of LLMs in streamlining 
intricate ontology engineering processes [23]. 
 However, the aforementioned studies primarily concentrate on the capabilities of LLMs 
in isolation or in comparison with traditional methods, often emphasizing automated or semi-
automated processes. What remains less explored, and thus the focus of current study, is the 
symbiotic integration of both human expertise and LLMs in the process of OEM. This novel 
approach aims to harness the speed and computational efficiency of LLMs while simultaneously 
capitalizing on the complex understanding and conceptualization skills of human experts. 
Furthermore, it is reasonable to believe that the differences between LLMs have strengths and 
weaknesses that can help researchers and practitioners choose the best models for use in real-
world entity resolution [24]. 
 

3. Research Methodology 
 

The forthcoming section presents an experiment encompassing two distinct phases, focusing 
on the development and assessment of ontologies, with a special emphasis on classes. The initial 
phase involves generating an ontology for PD monitoring and alerting, mainly powered by the 
autonomous capabilities of LLMs. This process utilizes both 'One Shot' (OS) and 'Chain of 
Thought' (CoT) techniques. The OS method involves presenting a model with a single prompt 
and expecting it to produce a suitable response based only on this input. In a one-shot situation, 
the model is not provided with several examples for learning and must complete the task with 
little context. This is a straightforward approach where the model uses its pre-trained 
knowledge to infer the most likely answer. For this paper purposes, CoT refers to a 
methodological approach where the OS is segmented into two sequential prompts. This 
segmentation allows for a structured progression in the reasoning process, whereby each 
prompt is strategically designed to focus on a specific element of the overall task. By employing 
sequential prompting, we direct the language model to tackle each segment of the problem 
individually, thereby facilitating a cumulative build-up of information and reasoning. 
Subsequently, in the second phase, a hybrid OEM is established, which integrates human 
expertise with the abilities of LLMs. This collaboration aims to elevate the quality and 
practicality of the ontology within the PD monitoring and alerting framework. Figure 1 depicts 
a flowchart that outlines this two-phase experimental process. Initially, four LLMs 
independently develop an ontology with minimal human input (phase 1). The process evolves 
into a more collaborative approach (Human and LLMs) with the X-HCOME OEM (phase 2). The 
resulting ontologies are then compared against a gold standard ontology using various metrics. 
The process is further customized (further experimentation) through expert evaluations and 
refinement of  the gold standard ontology. 



 
Figure 1. Flowchart of a multi-phase experimentation assessing the construction and 

validation of ontologies using different methodologies (created with AI-Whimsical ChatGPT, 
20232). 

 
 To fulfill the study's objective, the following will be conducted: a)  an examination of 

the LLMs attempting to construct ontologies in with minimal human intervention and b), an 
examination of the X-HCOME methodology in OE and its evaluation by comparing the quality 
of LLM-generated ontologies with human-generated ones. The X-HCOME methodology is an 
extension of the Human-Centered Collaborative Ontology Engineering methodology (HCOME) 
[12]. This extension concerns the inclusion of LLM-based tasks (along with the human-centered 

 

2 OpenAI. 2023. "Whimsical Diagrams." ChatGPT Functionality. OpenAI. https://openai.com/chatgpt. 
 

https://openai.com/chatgpt


ones) in the OE lifecycle. This study aims to show that ontologies that are collaboratively 
engineered by humans (knowledge engineers, knowledge workers, domain experts, etc.) and 
machines (LLMs) are of higher quality than ontologies that are created by humans or LLMs 
alone. A secondary goal is to support the hypothesis that working along with LLMs, humans 
can complete ontology engineering tasks (and consequently, the OE lifecycle) much faster i.e., 
from several days or weeks to hours. The proposed research methodology is driven by two 
specific hypotheses. These hypotheses drive the experimental phases carried out to assess the 
efficacy of the proposed approach. 
Hypothesis 1: LLMs, when prompted with domain-specific queries, can autonomously develop 
a coherent and comprehensive ontology, as it is in the case of PD monitoring and alerting 
ontology. LLMs have the ability to extract domain knowledge efficiently from their extensive 
data repositories, and construct ontologies using different prompts engineered by human-user 
of the LLM.  

• This hypothesis is tested in Phase 1 of our experiments, where LLMs are tasked with 
creating a PD patients’ monitoring and alerting patients ontology from ground zero, 
using domain-specific prompts. The effectiveness of LLMs in developing an accurate 
and relevant ontology is measured against a gold standard -expert-generated ontology. 
In this study, the Wear4PDmove [7, 8] is utilized as the gold standard ontology, and it 
will be referred to as such throughout the remainder of the study.  

o Phase 1: Initiating LLMs to develop the ontology. During the initial phase of 
the experiments, the LLMs will independently (no human-involvement) 
reconstruct the Wear4PDmove ontology from scratch. This phase comprises 
the following steps:  

1. LLMs construct an ontology in Turtle format. The ontology represents 
various aspects of PD patient care, including monitoring, alerting, patients’ 
health record and healthcare team coordination. 

2. Validate the ontology by assessing its accuracy and coherence with OOPS!3 
and Protégé4 tools (Pellet). 

3. Use metrics such as  Precision, Recall, and the F-1-score (Table 1) to 
compare the LLM-generated ontology with the gold standard ontology 
created by human experts. 

Table 1: Summary of metrics for classes evaluation. This table presents the formulas 
for Precision, Recall, and the F-1-score, along with their definitions. 
Formulas Definitions  
Precision = True Positives / (True 
Positives + False Positives) 

True Positives: classes correctly classified as 
positive in alignment with the 'gold standard' 
ontology, 

Recall = True Positives / (True 
Positives + False Negatives) 

False Positives: classes incorrectly classified as 
positive in alignment with the ''gold standard' 
ontology 

 

3 https://oops.linkeddata.es 
4 https://protege.stanford.edu 



F-1 score = 2 * (Precision * Recall) / 
(Precision + Recall) 

False Negatives: classes that are incorrectly 
classified as negative despite being positive in 
the 'gold standard'  ontology 

 
Hypothesis 2: The combination of human expertise and LLM capabilities enhances the quality 
and applicability of the developed ontology, as it is in the case of PD monitoring and alerting 
ontology. 

• This hypothesis is related to Phase 2 experimentation, where the X-HCOME 
methodology is deployed. It assesses how the collaboration between humans and LLMs 
contributes to refining and validating the ontology, ensuring its relevance and accuracy 
e.g., in the case of PD monitoring and alerting patients.  

o Phase 2. The X-HCOME methodology presented in this paper involves a 
number of steps assigned to either human experts or LLMs in an alternating 
manner during the OE process. These steps are: 

1. (Human): Define prompts and provide LLMs with the specified data.5 
§ Define the aim and scope of the ontology: Explain the reasons for its 

development and the depth of the information it aims to encompass. 
§ Ontology Requirements: Enumerate the necessary knowledge that 

must be represented and explain its significance. 
§ Integrate data from PD cases. This data was specifically asked for from 

the LLM to give a full and accurate picture of the condition (i.e. make 
sure that PD tremor is properly represented in the ontology).  

§ Formulate specific questions (competency questions) in natural 
language that the ontology should be able to answer, as defined by 
knowledge workers. 

2. (LLM): Construct a domain ontology using the input provided previously, in 
specific syntax e.g., Turtle . This is a fully automated task performed by the 
LLM, asking it to act as an ontology engineer and a domain expert. 

3. (Human): Compare the LLM-generated ontology with existing gold standard 
(or widely accepted) ontologies. This is a human based comparison performed 
either manually or assisted by ontology alignment-mapping tools e.g., LogMap 
[25]. 

4. (LLM): Perform a machine-based comparison of LLM-generated ontology 
against the gold standard ontology. This is a fully automated comparison of the 
two ontologies, asking LLM to act as an ontology engineer using an OM tool 
such as LogMap. 

5. (Human): Develop a revised domain ontology by combining an existing 
ontology with the one generated by the LLM. 

6. (LLM): Repeat step 4 (LLM-based evaluation of the developed ontology). 
7. (Human): Evaluate the revised/refined ontology using OE tools. This step 

includes a comprehensive assessment of the engineered ontology to confirm 
that it fulfills the particular requirements and attains the intended level of 
validity. 

 
 
4. Methodology Assessment Through Experiment 



 
The results described in this section, supported by supplementary material placed at a GitHub 
repository 5, focus on the complex process of creating ontologies for monitoring and alerting 
patients in PD. The conducted experimentation progresses through the two distinct phases 
presented in Section 3. This experiment evaluates the proposed research methodology by 
comparing the ontologies generated in the experiment with the gold standard ontology. It is 
essential to clarify that the metrics presented in this paper solely focused on the generated 
ontological classes. The validation involves both exact matching, where generated classes 
corresponded to entities in the gold standard ontology, and similarity matching, where classes 
were considered correct if they were semantically similar to the gold standard classes. This dual 
approach ensures a comprehensive evaluation of the LLM's performance, capturing both direct 
accuracies and contextually appropriate approximations. While our study did include 
calculations for object properties, unfortunately, due to space limitations, they were not 
included in this paper. Having said that, the results obtained for object properties were less than 
optimal, as evidenced by the observed low F1 scores as presented in the GitHub repository 6. 

 Ontological class definitions consistency and syntactical correctness were observed in 
all LLM and hybrid generated ontologies, apart from the ones generated by Llama2 (OS, CoT 
and X-HCOME)7. Llama2-generated ontologies included both syntactical errors and  
inconsistent definitions, and thus it failed to generate a valid ontology. Also, all the developed 
ontologies were validated with OOPS!, identifying only one minor pitfall (pitfall P36-URI, file 
extension) during the experimental process7.  

 Phase 1 experimentation. LLMs are initially given prompts with two methods. One-
shot prompting (OS): with this method, the LLMs were given a single, clear prompt that stated 
the aim and scope of the gold standard ontology without any additional information or 
background. The goal was to test LLMs' initial response effectiveness by generating accurate 
and relevant ontology from a single standalone prompt. Along with thus test, a focus on 
minimal human effort was given.  

The following paragraph provides an example of an OS prompt: 
“Act as an Ontology Engineer, I need to generate an ontology about Parkinson disease 
monitoring and alerting patients. The aim of the ontology is to collect movement data of 
Parkinson disease patients through wearable sensors, analyze them in a way that enables 
the understanding (uncover) of their semantics, and use these semantics to semantically 
annotate the data for interoperability and interlinkage with other related data.  You will 
reuse other related ontologies about neurodegenerative diseases. In the process, you should 
focus on modeling different aspects of PD, such as disease severity, movement patterns of 
activities of daily living and gait. Give the output in TTL format.” 

Chain-of-Thought prompting (CoT): Τhe CoT prompting method, which breaks down the  
OS prompt into two distinct prompts. The following paragraph provides an example of an 
CoT prompt: 

Prompt 1: "Act as an Ontology Engineer, I need to generate an ontology about Parkinson 
disease monitoring and alerting patients. The aim of the ontology is to collect movement 

 

5 https://github.com/GiorgosBouh/Ontologies_by_LLMs 
6 https://github.com/GiorgosBouh/Ontologies_by_LLMs 
7 https://oops.linkeddata.es/catalogue.jsp 



data of Parkinson disease patients through wearable sensors, analyze them in a way that 
enables the understanding (uncover) of their semantics, and use these semantics to 
semantically annotate the data for interoperability and interlinkage with other related 
data."   
Prompt 2: "You will reuse other related ontologies about neurodegenerative diseases. In the 
process, you should focus on modeling different aspects of PD, such as disease severity, 
movement patterns of activities of daily living and gait. Give the output in TTL format.” 

 The first prompt cover the role and aim and scope of the ontology and is crucial as it sets 
the foundation for the ontology. The second prompt deals with the processing and utilization 
of the data collected as per the framework set up in the first prompt. 

Phase 2 experimentation. Subsequently, we have developed and evaluated the X-
HCOME methodology, a novel approach in OE, that seamlessly integrates the expertise of 
human experts (domain and ontology engineer) with the computational power of LLMs in 
domain knowledge acquisition and ontology engineering. At each stage of this iterative process, 
human domain experts critically examine and provide feedback on the ontologies generated by 
the LLMs. This collaborative working and human-machine teaming is central to the X-HCOME 
methodology, as it allows for the integration of expert knowledge and insights with the 
advanced data processing capabilities of LLMs. The experts' contributions are pivotal in 
identifying variations and complexities that might be overlooked by automated systems, 
ensuring that the resulting ontology is not only technically sound but also contextually rich and 
aligned with real-world applications. 

 Following is a presentation of the two phases' findings. Based on the data provided in 
Table 2, the chatGPT3.5 OS method identified 5 classes but had relatively low accuracy 
(Precision 40%, Recall 5%, F-1 score 9%). ChatGPT3.5 CoT achieved higher precision (67%) with 
limited recall (5%), identifying only 3 classes. ChatGPT4 OS improved, identifying 9 classes 
(Precision 56%, Recall 12%, F-1 score 20%), while ChatGPT4 CoT showed further enhancement 
with 6 classes (Precision 67%, Recall 10%, F-1 score 17%). Conversely, GEMINI OS had lower 
precision (8%) and recall (2%), identifying 13 classes, whereas GEMINI CoT identified 8 classes 
with better precision (63%) and recall (12%), mirroring ChatGPT4 OS's performance. To 
summarize, the CoT method generally returned higher precision than the OS method, indicating 
more accurate but fewer classes. Conversely, OS tended to identify more classes but with lower 
precision, suggesting a broader but less accurate approach to class identification. While CoT 
focused on the quality of classifications, OS emphasized quantity, leading to differences in their 
overall effectiveness in ontology creation. 

 For the X-HCOME method, the ChatGPT3.5 X-HCOME generated 25 classes with a 
Precision of 40%, a Recall of 24%, and an F-1 score of 30%, balancing the number of classes 
identified and accuracy. The ChatGPT4 X-HCOME generated 33 classes but with lower 
precision, reflected in a Precision of 30%, Recall of 24%, and an F-1 score of 27%. Remarkably, 
the GEMINI X-HCOME method produced the highest number of classes (50) with a Precision 
of 38%, a Recall of 46%, and an F-1 score of 42%, showcasing the best recall rate among the 
methods. 

 Syntactical errors were indicated by the Llama2 results. However, it is noted that its 
CoT and OS methods showed high Precision but were limited in overall performance due to the 
restricted number of classes identified. 

 Overall, the performance of the X-HCOME methodology was superior in all LLMs. This 
conclusion is drawn from its consistently higher number of classes identified and the overall 



better F-1 score when compared to the other methods (OS and CoT) for each LLM. GEMINI X-
HCOME method appeared to be the most effective overall in the context of ontology creation. 
It produced the highest number of classes (50) and achieved the best recall rate (46%) among all 
the methods tested. Additionally, its F-1 score of 42% was the highest, suggesting a relatively 
better balance between precision and recall compared to other methodologies. The F-1 score for 
the object properties across all LLMs varied from 6% to 12%.8 

 
 

Table 2. Comparative evaluation of methodologies used for ontology 
creation against the gold standard ontology. 
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Gold-ontology 41       
ChatGPT3.5 CoT 3 2 1 39 67% 5% 9% 
ChatGPT3.5 OS 5 2 3 39 40% 5% 9% 
ChatGPT3.5 X-
HCOME 25 10 15 31 40% 24% 30% 
ChatGPT4 CoT 6 4 2 37 67% 10% 17% 
ChatGPT4 OS 9 5 4 36 56% 12% 20% 
ChatGPT4 X-
HCOME 33 10 23 31 30% 24% 27% 
GEMINI CoT 8 5 3 36 63% 12% 20% 
GEMINI OS 13 1 12 40 8% 2% 4% 
GEMINI X-
HCOME 50 19 31 22 38% 46% 42% 
Llama2 CoT 3 3 0 38 100% 7% 14% 
Llama2 OS 2 2 0 39 100% 5% 9% 
Llama2 X-
HCOME 32 4 28 37 13% 10% 11% 

 
 
5. Further Experimentation  

 
To better evaluate the generated ontologies, we further analyzed the results obtained for False 
Positives, serving as a domain experts, checking whether LLMs have discovered relevant 
domain knowledge that the gold standard ontology has not included (incomplete engineering 
due to human bias or other reasons). This analysis aimed to understand whether the generated 
classes, despite not matching entities within the gold standard ontology, could be reclassified 
as true positives, potentially improving the ontology. The integration of expert opinion in this 
case was crucial for expanding and enhancing the domain knowledge represented in the gold 
standard ontology. This method shows an ever-changing way of thinking about ontology 

 

8 https://github.com/GiorgosBouh/Ontologies_by_LLMs 



construction—as a conversation between human and machine intelligence that goes back and 
forth. By embracing this perspective, this experiment holds the promise of significantly 
advancing the field.  

 The ChatGPT3.5 CoT and OS methods had comparable results, with the CoT method 
showing slightly higher precision but equal recall and F-1 score as OS. For ChatGPT4, both CoT 
and OS showed similar trends, with CoT slightly outperforming OS in precision and recall (table 
3). 

 Significantly, the X-HCOME method for both ChatGPT3.5 and ChatGPT4 displayed a 
marked improvement in precision and recall, notably reducing false positives after expert 
review. The GEMINI X-HCOME method stood out with exceptional precision and recall, 
indicating no false positives and a high rate of true positives. However, GEMINI's CoT and OS 
methods lagged considerably behind in these metrics. Llama2's CoT and OS methods achieved 
high precision but lower recall. Notably, Llama2 failed to create a consistent ontology without 
errors, which is a critical aspect in OE. In summary, the X-HCOME method demonstrated 
superior performance across all LLMs, including ChatGPT3.5, ChatGPT4, and GEMINI, 
particularly after human expert intervention. This methodology proved more effective in 
accurately classifying classes with minimal false positives, highlighting its robustness and 
efficiency in ontology creation tasks. Post-revision, X-HCOME emerges as a highly effective 
method for ontology generation, balancing class creation with accuracy. For instance, GEMINI 
X-HCOME generated classes like "Surgical Intervention," "Rigidity," and "Cognitive Impairment", 
that were absent in the gold standard ontology. This fact underscores its ability to uncover 
comprehensive knowledge in PD monitoring/alerting that experts alone might overlook. For 
patients who have undergone surgical interventions like deep brain stimulation, medication 
regimens may be altered significantly. The alert system needs to be adaptable to reflect these 
changes. To avoid false alerts about missed doses, the system should account for post-surgical 
patients reduced or different medication. Also, in patients experiencing significant rigidity, a 
missed dose of medication can lead to rapid symptom exacerbation. The alert system can be 
calibrated to be more sensitive and prompting in these cases, ensuring quick notification of a 
missed dose to prevent worsening of rigidity. Patients with more severe rigidity might receive 
early or more frequent reminders to take their medication to maintain optimal symptom 
control. Lastly cognitive impairment can make it challenging for patients to remember their 
medication schedules. In such cases, the alert system can include more robust, frequent, and 
clear reminders, possibly using different modalities (like visual or auditory cues) to ensure the 
patient is aware of the missed dose. Classes like these enhance the ontology's utility in 
developing sophisticated PD monitoring and alerting systems, ensuring a more rounded 
approach to patientcare and intervention.   

 Finally, the F1 score for the object attributes across all LLMs varied from 6% to 84%.9 
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Lastly, an additional experiment was carried out to assess the efficacy of the proposed 
approach after the X-HCOME methodology was applied. This involved using a modified version 
of the gold standard ontology, thereby altering the ground truth of the experiments in a 
controlled manner. We have removed the imported ontologies from the gold standard ontology 
in order to create a simplified/light version of it. Specifically we removed the SOSA10, the 
DAHCC11 and the PMDO12 ontologies. This "light" ontology excluded certain complexities 
found in the original (Wear4PDmove), enabling a focused comparison with a ground truth 
constructed solely by experts. The intention was to discern the alignment of LLM-extracted 
ontologies with a more streamlined expert-based conceptualization of the domain. Also, 
comparing the above methodologies to a "light" expert-based ground truth (ontology) facilitates 
a more direct evaluation of the LLMs' performance in capturing the essential elements of PD 
monitoring and alerting without extraneous informative details. This comparison can highlight 
the LLMs' effectiveness in essential knowledge capture and representation. To assess the 
accuracy and consistency of the constructed ontologies compared to this version of gold 
standard ontology, we have employed the metrics mentioned previously. 

 As seen in Table 4, while the ChatGPT3.5 and ChatGPT4 methods with CoT and OS 
approaches showed varying levels of success, their X-HCOME counterparts showed better F-1 
score, indicating a better balance of precision and recall. Notably, GEMINI X-HCOME achieved 
the highest F-1 score of 36%, significantly outperforming other methods. This suggests that the 
X-HCOME method is particularly effective in achieving a balance between accuracy and 
comprehensiveness in ontology creation tasks.  

 

10 http://www.w3.org/ns/sosa/ 
11 https://dahcc.idlab.ugent.be/Ontology/SensorsAndWearables/ 
12 http://www.case.edu/PMDO 

Table 3. Comparative evaluation of ontology creation methods’ post 
expert review on False Positives. 
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Gold-ontology 41       
ChatGPT3.5 CoT 3 2 1 39 67% 5% 9% 
ChatGPT3.5 OS 5 2 3 39 40% 5% 9% 
ChatGPT3.5 X-
HCOME 25 23 2 18 92% 56% 70% 
ChatGPT4 CoT 6 4 2 37 67% 10% 17% 
ChatGPT4 OS 9 5 4 36 56% 12% 20% 
ChatGPT4 X-
HCOME 33 29 4 12 88% 71% 78% 
GEMINI CoT 8 5 3 36 63% 12% 20% 
GEMINI OS 13 1 12 40 8% 2% 4% 
GEMINI X-HCOME 50 50 0 -9 100% 122% 110% 
Llama2 CoT 3 3 0 38 100% 7% 14% 
Llama2 OS 2 2 0 39 100% 5% 9% 
Llama2 X-HCOME 32 26 6 15 81% 63% 71% 



 This indicates the X-HCOME method's enhanced ability to identify a broader range of 
relevant classes, showcasing its overall superiority in ontology creation tasks. 
The F1 score for the object attributes across all LLMs varied from 6% to 24%.13 

 
 

Table 4. Comparative evaluation of methods used for ontology 
generation against the simplified-/light version of the gold standard 
ontology.   
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Simplified-Lite 
Gold standard 
ontology 

27       

ChatGPT3.5 CoT 3 2 1 25 67% 7% 13% 
ChatGPT3.5 OS 5 3 2 24 60% 11% 19% 
ChatGPT3.5 X-
HCOME 25 5 20 22 20% 19% 19% 
ChatGPT4 CoT 9 3 6 24 33% 11% 17% 
ChatGPT4 OS 9 2 7 25 22% 7% 11% 
ChatGPT4 X-
HCOME 33 6 27 21 18% 22% 20% 
GEMINI CoT 9 2 7 25 22% 7% 11% 
GEMINI OS 14 1 13 26 7% 4% 5% 
GEMINI X-
HCOME 50 14 36 13 28% 52% 36% 
Llama2 CoT 3 0 3 27 0% 0% 0% 
Llama2 OS 2 1 1 26 50% 4% 7% 
Llama2 X-
HCOME 34 3 31 24 9% 11% 10% 

 
6. Discussion 

The research study presented in this paper partially confirmed our initial hypothesis that LLMs 
can autonomously develop an ontology for PD monitoring and alerting patients when provided 
with domain-specific input (aim, scope, requirements, competency questions, data). While 
LLMs demonstrated the capability to construct an ontology, the comprehensiveness of these 
ontologies did not fully align with our expectations. LLMs have efficiently acquired knowledge 
from big data repositories and generated ontologies using various prompting engineering 
techniques, yet the resulting ontologies were not as comprehensive as anticipated. This suggests 
that while LLMs are effective in ontology creation, their output still requires further refinement 

 

13 https://github.com/GiorgosBouh/Ontologies_by_LLMs 



to achieve comprehensive knowledge representation in specific domains like PD monitoring 
and alerting of patients. 

 On the other hand, our second hypothesis, which stated that combining human 
expertise with LLM capabilities improves the developed ontology's quality and applicability was 
confirmed for PD monitoring and alerting of patients. Our study demonstrated that the X-
HCOME methodology, which is enhanced by the capabilities of LLMs, is a robust approach for 
developing quality ontologies in the PD domain. This methodology not only enhances the 
structural integrity of ontologies but also enriches them with a more extensive range of 
knowledge, ensuring their vitality and relevance to contemporary needs, while also showcasing 
notable time efficiency. Moreover, the collaboration between human expertise and advanced 
LLMs in OE holds great potential for future developments. It paves the way for more intelligent, 
adaptive, and comprehensive knowledge representation systems that can significantly 
contribute to the advancement of various fields, especially in complex areas like healthcare. 
Through expert revision, particularly evident in the significant improvements seen in precision 
and F-1 scores, our findings underscore the value of expert intervention in enhancing ontology 
generation, particularly in mitigating false positives. Notably, the X-HCOME method 
demonstrated excellence post-revision, showcasing its potential for ontology refinement. 

 However, biases such as interpretation bias resulting from the opinions and experiences 
of specific domain experts, as well as  biases inherent in LLMs due to their training with unfair 
or biased algorithms and data, may be present in hybrid methods such as X-HCOME. These 
biases might affect how valid and correct the knowledge that comes from LLMs is. The results 
of experiments suggest that ontologies generated by LLMs using a well-defined collaborative 
OE methodology may have the potential to be comparable to those created solely by humans. 
This indicates the importance of considering hybrid approaches in OE, which enable 
collaboration between humans and machines, potentially enhancing efficiency in knowledge-
based tasks for both parties involved. Moreover, another limitation of the current study is that 
it might have oversimplified the ontology-building process by using the number of classes 
generated as a crucial metric to evaluate ontology-building methodologies (OS, CoT, and X-
HCOME). This perspective may have led to an oversight of other crucial aspects such as 
data/object properties and diverse axioms. These entities are essential for crafting a rich and 
expansive ontology. Unfortunately, they were not thoroughly investigated in this research, 
indicating a potential gap in fully realizing a comprehensive and detailed ontology 
development. While object properties were also calculated in the current, details of these 
findings are available in the associated GitHub repository14. 

 The promising results of X-HCOME in our study suggest its potential, yet they also 
underscore the need for significant refinement and enhancement before it can be considered a 
revolutionary methodology in OE. Given the complexities of ontology construction, X-HCOME 
requires further development for comprehensive and accurate ontology creation. Additionally, 
extensive practice with this methodology by ontology engineers and domain experts across 
various domains is essential to fully harness its capabilities and adapt it effectively to diverse 
knowledge areas. 

 

14 https://github.com/GiorgosBouh/Ontologies_by_LLMs 
 



 Regarding future work, it would be intriguing to explore the development of a 
specialized GPT (Generative Pre-trained Transformer) model that is tailored specifically for 
ontology construction, utilizing the X-HCOME methodology. This could involve training a GPT 
on datasets that are representative of ontology structures and concepts, aligned with the 
principles and techniques of the X-HCOME approach. Such an attempt would not only harness 
the advanced capabilities of GPTs in understanding and generating complex language patterns 
but also integrate the methodological strengths of X-HCOME. As OE continues to evolve, the 
integration of methodologies like X-HCOME will play a pivotal role in shaping the future of 
knowledge representation, offering new possibilities for innovation and improvement in 
various domains. 
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