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Abstract
The Video Photoplethysmography (VPPG) technique, while increasingly popular due to its convenience
and cost-effectiveness, faces challenges in handling continuous head movements and vigorous motion
interferences encountered in real-life scenarios. In this paper, we present a Transformer-based approach
aimed at enhancing the robustness of heart rate estimation from facial videos. Leveraging the self-
attention mechanism inherent in Transformers, our method adeptly captures both temporal dependencies
and spatial information, thereby elevating the accuracy and resilience of heart rate estimation, even in
challenging conditions. Through extensive experiments conducted on real-world face video datasets,
we illustrate the effectiveness of our approach. Our results demonstrate significant improvements over
existing methods in mitigating motion artifacts and enhancing the reliability of non-contact heart rate
estimation in practical environments.
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1. Introduction

The pulse is one of the physiological rhythms in our body, and much information about the
state of the body can be obtained by observing its frequency, regularity and intensity. An
abnormal pulse may indicate underlying health problems such as arrhythmia, tachycardia
or bradycardia. While VPPG technology (video Photoplethysmography) monitors pulse and
heart rate through optical sensors [1, 2] and has a wide range of applications including health
monitoring devices, clinical diagnostics, exercise physiology and biometrics. Using changes in
optical signals, cardiovascular health information is obtained in real time, providing an effective
tool for medical treatment, health tracking, and identity verification.Although VPPG technology
is widely used, it suffers from shortcomings such as accuracy being affected by the environment,
being less precise than ECG, and complex data processing.
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Existing research work mainly focuses on the motion interference problem, which can be
summarised into the following categories. 1.Optimal facial region selection. The face is
divided into several sub-regions, and the optimal detection region is evaluated by analysing
the intensity of skin colour changes in different regions [3] and the degree of influence by
motion [4]. This type of method can remove local motion interference such as speech and
expression changes, but it is difficult to effectively deal with global motion interference such as
head bobbing. 2.Spatial decomposition of pulse representation. Starting from the principle
of skin reflection and transmitted light, the decomposition models of pulse signal and motion
signal in orthogonal chromaticity space are investigated, including CHROM [5], 2SR [6] and
POS [7]. These ideal models have limited ability to cope with the complex mixing of pulse
and motion signals. 3.Pulse signal filtering. According to the range and characteristics
of human pulse rate variation, band-pass filtering [8], wavelet decomposition [9], minimum
mean square error filtering [10], etc. are used to suppress noise signals other than heartbeat
frequency, but it is difficult to separate the interference components with similar frequency
characteristics. 4.Blind source separation of pulse signals. According to the time-domain
statistical properties of pulse signals, methods such as independent component analysis [11]
and sparse representation [12] are used to construct pulse substrates and fit them to reconstruct
distorted pulse signals. Due to the limited descriptive ability of such substrates, the separation
of motion interference signals is not obvious.

While the application of deep learning methods has become the main direction of current
pulse signal extraction research, Contrast-Phys [13] used an unsupervised learning method to
generate multiple rPPG signals from different spatio-temporal locations in each video using a 3D
convolutional neural network (3DCNN) model trained with contrast loss, Contrast-Phys+ [14]
used a 3DCNN model to generate multiple spatio-temporal rPPG signals and incorporates a priori
knowledge of rPPG into the contrast loss function, Privacy-phys [15] A new approach based on
pre-trained 3D convolutional neural networks for modifying rPPG in facial videos for privacy
preservation, MTTS-CAN [16] combines a temporal displacement module, an attentional module,
and a multitasking mechanism to improve accuracy and efficiency, PhysNet [17] uses a deep
spatio-temporal convolutional network to recover remote photovoltaic volumetric pulsogram
(rPPG) signals from face videos, which can reveal the potential separability of pulse signals
from motion signals driven by training data.

The attention mechanism of Transformers excels in handling noisy signals. It enables the
network to establish better connections between different parts of the signal, effectively distin-
guishing noise and preserving essential features of the pulse signal.

2. Method

2.1. Pre-processing

Face detection and tracking is crucial since slight head movements of the subject are inevitable
in practical applications. In the recorded video, the face region is tracked in order to eliminate
the rigid motion of the face region. In this paper, we use the facial tracking method introduced
in [18]. We used the SDK provided by MediaPipe to implement this facial tracking functionality.

The chromaticity space of the video is converted from RGB space to CHROM space [5] to



Figure 1: Our method aims to accurately estimate heart rate from facial videos in real environments. We
begin by recording the video and conducting preprocessing, which involves noise and blur removal, as
well as facial detection and tracking. Subsequently, we extract facial features and construct a Transformer
model, incorporating a self-attention mechanism and a feed-forward neural network. Following this, we
derive an output estimate by training the model to minimize the heart rate estimation error. Finally, we
perform additional processing to obtain the final heart rate values.

highlight the colour changes due to impulses. For each pixel, two colour signals were computed
X = 3R - 2G and Y = 1.5R + G - 1.5B. The two signals were filtered in a band-pass (0.7-4.0Hz)
manne and then combined to form the 𝑍 = 𝑋 − 𝛼𝑌 signal, where 𝛼 = 𝜎 (𝑋) /𝜎 (𝑌 ) and 𝜎 is
the standard deviation.

Defining the ROI follows two rules: the first rule is to exclude the eye region because blinking
may interfere with the estimated HR frequency; the second is to indent the ROI boundary with
the face boundary. Therefore, the cheeks were chosen as the region of interest (ROI), which is
less affected by hair and speech. The ROI is labelled in each frame by connecting the four facial
marker points around the cheeks with straight lines, where all pixels are globally averaged.
Thus, a time series showing changes in skin colour can be constructed.

The time series was linearly interpolated into a 300-element colour signal to achieve signal
length consistency. The colour signal is then processed using wavelet decomposition methods to
remove noise outside the heart rate band. In this paper, the Meyer wavelet is used to decompose
the original colour signal into an approximate component 𝑎5 and five detail components 𝑑1 ∼ 𝑑5,
from which the fourth detail component 𝑑4 as the colour signal containing the pulse information.

2.2. Pulse signal detection with Transformer

The pre-processed pulse signal contains noise, in order to extract the pulse wave signal accurately
we use Transformer network. The function of this network is to receive the preprocessed pulse
signal as input and output the pulse wave signal after removing the noise.The Transformer
network is able to efficiently capture the long range dependencies in the signal and improve
the accuracy and generalisation of the signal extraction, which enables us to analyse the pulse
signal more reliably.



Since pulses are periodic and consistent, whereas noisy signals lack such consistent charac-
teristics, Transformer’s attention mechanism can be advantageous when dealing with noise-
containing signals. This mechanism allows the network to better establish connections between
different parts of the signal, thus effectively distinguishing noise and preserving important
features of the pulse signal.

Transformer has achieved remarkable success through its unique self-attention mechanism
and positional coding. This model mainly consists of encoder and decoder. In Transformer
encoder, multi-head attention and fully connected feed forward network layer are the main
components.

The attention mechanism first maps the feature vectors to different linear spaces to obtain
three different vectors: the Queries vector (𝑄), the Keys vector (𝐾), and the Values vector (𝑉 ),
and then obtains the attention vector according to Equation (1):

Attention(𝑄,𝐾, 𝑉 ) = Softmax(
𝑄𝐾T

√
𝑑𝑘

)𝑉 (1)

where 𝑑𝑘 denotes the dimension of the vector (𝐾).
The multi-head attention mechanism feeds the input vectors to multiple parallel attention

mechanisms for computation, splices the output vectors, and then maps them back to the space
of the original input vectors to obtain the final attention vectors. The specific calculation is
shown in the following equations (2) and (3):

MultiHead(𝑄,𝐾, 𝑉 ) = Concat(head1, · · · , headℎ)𝑊 0 (2)

head𝑖(𝑄,𝐾, 𝑉 ) = Attention(𝑄𝑊𝑄
𝑖 ,𝐾𝑊𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ) (3)

where Concat denotes the splicing of multiple matrices in a certain dimension, h denotes the
number of parallel Attention operations, head𝑖 denotes the computation of the 𝑖 Attention, and
𝑊𝑄

𝑖 , 𝑊𝐾
𝑖 and 𝑊 𝑉

𝑖 are the mapping matrices in the 𝑖 head.
Without introducing an attention mechanism, we first encode the pulse signal to obtain a

feature vector 𝑉 and then decode this feature vector 𝑉 to generate the optimised pulse signal.
After introducing the attention mechanism, we first encode the pulse signal to obtain the

feature vector 𝑉 . Next, we multiply 𝑉 with the attention score 𝐴 computed from the product
of 𝑄 and 𝐾 to obtain the weighted feature vector 𝐴𝑉 . Finally, we decode 𝐴𝑉 to generate
the optimised pulse signal. Since the attention mechanism assigns a higher weight 𝐴𝑖 to the
segment 𝑉 𝑖 with periodicity, while the distorted segment 𝑉 𝑗 is assigned a lower weight 𝐴𝑗,
the pulse signal obtained by decoding 𝐴𝑉 is usually better than the one obtained by decoding
𝑉 directly.

2.3. Heart Rate Measurement

An interpolation Fourier transform (IFT) [19] is implemented on the reconstructed iPPG signals
to obtain its high-resolution frequency spectrum, from which the average heart rate can be
detected using a peak detecting procedure. This process can be formulated as follows,

𝐻𝑅Hz = argmax
𝑓

𝜃(𝑓) (4)



where 𝜃(𝑓) stands for IFT of the reconstructed iPPG signal. Finally, 𝐻𝑅HZ is multiplied by 60
to obtain 𝐻𝑅bpm, a heart rate measurement in the standard unit.

3. Experiments

3.1. Dataset

The model was trained on the UBFC-rPPG dataset, which records video at 30 frames per second,
640x480 resolution, in uncompressed 8-bit RGB format, while reference data, such as PPG
waveforms and heart rate, were recorded using a CMS50E Transmissive Pulse Oximeter.

For testing, the model was evaluated on two datasets provided by the challenge (OBF and
VIPL-HR-V2).The OBF dataset contains 500 videos of 100 subjects, 10 seconds each, with a
resolution of 1080p and a frame rate of 30 frames per second, all recorded in static scenes, with
the main challenge being the difference in subjects’ skin colour. The VIPL- HR-V2 dataset also
contains 500 videos of 100 subjects, each video is 10 seconds long, with a resolution of 720p and
a frame rate of 13-25 fps, the videos are recorded in dynamic scenes where subjects perform
actions such as talking and shaking their heads.

3.2. Set up

This work utilizes a Transformer model for training, with 20% of the training set reserved for
validation. The model’s input and output lengths are set to 150, capturing half of the signal
spectrum. Each attention head of the Transformer has 15 hidden units, employing a multi-head
self-attention mechanism with ReLU activation. Training parameters are optimized using Adam
optimizer with an initial learning rate of 0.1 and updated via backpropagation over 100 epochs.
Training iterations involve batches of 64 samples. The experimental setup utilizes Tensorflow
2.0 and Matlab 2022b for data processing.

3.3. Assessment of indicators

In the RePSS challenge, the performance of the proposed method is evaluated using the Root
Mean Square Error (RMSE) as a metric to calculate the RMSE between the ground truth heart
rate, 𝑦, and the measured value, 𝑦′.The RMSE reflects the extent to which the measured data
is far away from the true value and measures the standard deviation of the residuals. The
calculation is shown below:

𝑟𝑚𝑠𝑒𝐻𝑅 =

⎯⎸⎸⎷ 1

𝑚

𝑚∑︁
𝑖=1

(𝑦 − 𝑦′)2 (5)

Where y is the true heart rate value and y’ is the detected value of heart rate.

3.4. Comparative Test

Table 1 presents the experimental results on the test set provided by the organizer. Our method
achieved a Root Mean Square Error (RMSE) of 11.77657 on the test set, which is 22.9% lower



Figure 2: The predicted pulse signal from the method. The blue curve is the predicted pulse signal and
the red curve is the original pulse signal.

Table 1
Comparison of the 13 teams in this challenge

Team 𝑟𝑚𝑠𝑒𝐻𝑅(bpm) Team 𝑟𝑚𝑠𝑒𝐻𝑅(bpm) Team 𝑟𝑚𝑠𝑒𝐻𝑅(bpm)

Face AI 8.50693 HFUT-VUT 8.85277 PCA_Vital 8.96941
Hash Brown 9.26198 AIIA 9.28902 SHDMIC 10.74201
HFUT-BCDH 11.77657 NeuroAI_KW 14.47930 NUIST 15.79680
SCUT_rPPG 15.88228 b7 19.06485 FulgenceWen 21.48006
Rhythm 24.02410

than the 8th place. Fig. 2 illustrates the experimental outcomes with six examples. Clearly, the
pulse signals, particularly in VIPL-HR-V2, exhibit enhanced regularity post-processing with
our method. In the static dataset (OBF dataset), the subject remains stationary, and the raw
pulse signals (red curve) show steady fluctuations. Our method accurately captures heart rate
variations and extracts periodic heart rate signals from the stable signal. In the dynamic dataset
(VIPL-HR-V2 dataset), movements such as head rotation and nodding induce disturbances in
the predicted pulse signal, resulting in larger fluctuations in the observed raw pulse signal (red
curve). However, our method effectively filters motion interference and accurately extracts the
heart rate signal, as evident from the predicted pulse signal (blue curve) in the figure.

3.5. Ablation Test

To verify the effectiveness of the model proposed in this article, we compared the test results
obtained directly using Fourier transform after preprocessing with the results obtained by
adding the model proposed in this article. As shown in Table 2, the proposed model method
performs better in this experiment, confirming the effectiveness of the model.



Table 2
Ablation test of the proposed method in this paper

Preprocessing 𝑟𝑚𝑠𝑒𝐻𝑅(𝑏𝑝𝑚)

Preprocessing-FFT 24.70581
Preprocessing-our model-FFT 11.77657

3.6. Limitation

(1) Nearly half of the videos in this test were recorded under dim or uneven lighting, which
increases the difficulty of pulse signal detection and makes the detection accuracy of this
paper’s method somewhat compromised. The approaches described in [20] and [21] offer
potential preprocessing steps to address light-related issues. In our future work, we will
also integrate a module into the proposed model to mitigate light-induced interference.

(2) Although the model was trained using the UBFC-rPPG dataset, there may be a problem
of insufficient dataset size. A smaller dataset size may cause the model to overfit and not
generalise well to new, unseen data, making the root mean square error (RMSE) larger.

(3) Although the dataset includes healthy individuals and patients with different diseases, there
may be insufficient data on some specific groups, such as people of different ages and ethnic
backgrounds. This may limit the applicability of the model on these groups.

4. Conclusions

We propose a method to address the challenges of VPPG in the face of violent motion distur-
bances using Transformer technology. By feeding the features extracted by the VPPG into the
Transformer model for sequence modelling, we are able to capture long distance dependencies
between input sequences. This approach promises to suppress motion interference in real-time
or offline scenarios, thereby improving the accuracy and stability of VPPG in detecting impulse
signals in face videos.
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