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Abstract
Vision-based remote non-contact physiological measurements are crucial for detecting indicators (such
as heart rate and blood pressure) that reflect important vital signs. This paper introduces the approach
proposed by PCA Lab in the third challenge on Vision-based Remote Physiological Signal Sensing (RePSS)
organized within IJCAI 2024. Specifically, we design an end-to-end self-supervised contrastive learning
network for remote heart rate detection, which can generalize light reflection changes caused by cardiac
activity in subcutaneous capillaries based on unlabeled facial videos. At the same time, we optimize the
facial skin region of interest extraction method and remove most of the irrelevant content and redundant
information. In addition, we construct the hybrid pipeline temporal attention module and spatiotemporal
reconstruction pretraining paradigm to improve the network’s ability to model long-distance sequence
features. Our network is tested on 1000 samples from 200 participants provided by the Track 1 of this
challenge, and it achieve the root mean squared error of 8.96941. The codes and model are publicly
available at https://github.com/Sachiel0916/repss-track1-top3/.
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1. Introduction

Heart rate (HR), blood pressure (BP), and respiratory frequency are important human vital
signs [1, 2]. The accurate detection and analysis of these physiological signals is crucial for the
assessment of human health, the prevention of cardiovascular diseases, and the identification
of emotions [3, 4, 5, 6]. At present, the widely utilized detection technology is skin-invasive
measurement, which requires professional equipment and the sensor probe is in direct contact
with the measured personal object. Therefore, these manners not only have limitations in terms
of convenience and portability of operation, but long-term wearing will also cause the individual
subject to feel uncomfortable. They are not suitable for subjects with low cooperation, such as

IJCAI 2024: International Joint Conference on Artificial Intelligence, August 3–9, 2024, Jeju, South Korea
*Corresponding author.
" shaohang@njust.edu.cn (H. Shao); cslluo@njust.edu.cn (L. Luo); csjqian@njust.edu.cn (J. Qian);
weizhuo@njust.edu.cn (W. Zhuo); cfhu@seu.edu.cn (C. Hu); csjyang@njust.edu.cn (J. Yang)
~ https://github.com/Sachiel0916/ (H. Shao)
� 0000-0002-2452-6985 (H. Shao); 0000-0002-9976-0442 (L. Luo); 0000-0002-0968-8556 (J. Qian);
0009-0007-3109-1290 (W. Zhuo); 0000-0003-1669-9429 (C. Hu); 0000-0003-4800-832X (J. Yang)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/Sachiel0916/repss-track1-top3/
mailto:shaohang@njust.edu.cn
mailto:cslluo@njust.edu.cn
mailto:csjqian@njust.edu.cn
mailto:weizhuo@njust.edu.cn
mailto:cfhu@seu.edu.cn
mailto:csjyang@njust.edu.cn
https://github.com/Sachiel0916/
https://orcid.org/0000-0002-2452-6985
https://orcid.org/0000-0002-9976-0442
https://orcid.org/0000-0002-0968-8556
https://orcid.org/0009-0007-3109-1290
https://orcid.org/0000-0003-1669-9429
https://orcid.org/0000-0003-4800-832X
https://creativecommons.org/licenses/by/4.0


Figure 1: The whole framework of our self-supervised remote physiological signal sensing network.

the elderly, children, and people with limited mobility and movement disorders, as well as those
with skin sensitivities such as burns and rashes. For scenarios where practical deployment
difficulties, it is not enough to realize the needs for daily physical sign detection [7, 8]. Through
computer vision systems and machine learning algorithms, based on facial videos, remote
non-contact detection and analysis of HR, BP, and other physical signs are realized, which has
very important practical significance and research value [9, 10].

In order to solve the issues of non-contact biosignal detection, researchers have made a lot of
efforts [11, 12, 13, 14, 15]. The workshop and challenge on the Vision-based Remote Physiological
Signal Sensing (RePSS)1 held in conjunction with the International Joint Conference on Artificial
Intelligence (IJCAI) 2024, aiming to target this emerging topic. This is the 3rd time RePSS has
been organized, after the 1st one in CVPR 2020 [16] and the 2nd one in ICCV 2021 [17], which
were oriented towards to learn the cardiac activity and respiratory information contained in
videos and images. This workshop will discuss the subtle color and movement changes in the
face caused by heartbeat, revealing physiological signals such as remote photoplethysmography
(rPPG) [18, 19]. In addition, this challenge is divided into two Tracks: self-supervised HR
measurement using unlabeled facial videos and remote BP detection to design more powerful
computer vision algorithms and biomedical signal processing methods.

The reason why remote HR monitoring has been able to achieve technological leaps in recent
years is due to the rapid development of deep learning, convolutional neural network (CNN)
[20, 21], and vision transformer (ViT) [22]. Compared with traditional methods based on facial
colorimetric analysis and blind source separation [23, 24], learning-based approaches are driven
by large-scale data and over complex scenes and dynamic illuminance to extract and condense
color rhythms from facial videos [25]. However, these approaches usually require appropriate
labeling. Once the labels are incomplete or incorrect, the learned features will be seriously
dissolved. In addition, the above process not only requires a lot of manpower and computing
power costs, but also because video and HR tags are obtained from different devices (cameras
and electronic sensors), the temporal domain registration issue between multiple devices and
the various types of inevitable interference and noise during the tag acquisition process have

1https://repss-w.github.io/

 https://repss-w.github.io/


Table 1
Landmark configuration information for facial spatiotemporal mapping construction.

R Node R Node R Node R Node R Node R Node R Node R Node
0 M.(L0:27) 10 M.(L2:48) 20 M.(L4:43) 30 M.(L9:61) 40 M.(L12:37) 50 M.(L14:41) 60 M.(L20:23) 70 M.(M.(L1:40):40)
1 M.(L0:43) 11 M.(L3:40) 21 M.(L4:48) 31 M.(L10:38) 41 M.(L12:38) 51 M.(L14:47) 61 M.(L21:22) 71 M.(M.(L2:41):2)
2 M.(L0:48) 12 M.(L3:41) 22 M.(L5:31) 32 M.(L10:54) 42 M.(L12:47) 52 M.(L14:54) 62 M.(L40:41) 72 M.(M.(L2:41):41)
3 M.(L1:40) 13 M.(L3:43) 23 M.(L5:32) 33 M.(L10:60) 43 M.(L12:54) 53 M.(L15:40) 63 M.(L42:41) 73 M.(M.(L3:43):3)
4 M.(L1:41) 14 M.(L3:48) 24 M.(L5:48) 34 M.(L11:37) 44 M.(L13:40) 54 M.(L15:41) 64 M.(L43:49) 74 M.(M.(L13:47):13)
5 M.(L1:43) 15 M.(L4:17) 25 M.(L6:31) 35 M.(L11:38) 45 M.(L13:41) 55 M.(L15:47) 65 M.(L44:50) 75 M.(M.(L14:41):14)
6 M.(L2:17) 16 M.(L4:27) 26 M.(L6:48) 36 M.(L11:54) 46 M.(L13:47) 56 M.(L16:36) 66 M.(L45:51) 76 M.(M.(L14:41):41)
7 M.(L2:40) 17 M.(L4:30) 27 M.(L6:64) 37 M.(L12:26) 47 M.(L13:54) 57 M.(L16:47) 67 M.(L46:52) 77 M.(M.(L15:40):15)
8 M.(L2:41) 18 M.(L4:31) 28 M.(L7:63) 38 M.(L12:33) 48 M.(L14:26) 58 M.(L16:54) 68 M.(L47:53) 78 M.(M.(L15:40):40)
9 M.(L2:43) 19 M.(L4:32) 29 M.(L8:62) 39 M.(L12:36) 49 M.(L14:40) 59 M.(L19:24) 69 M.(M.(L1:40):1) 79-127 Global face

also been plaguing researchers to further promote and deepen applications.
To solve the above problems, our team at the PCA Lab proposes a novel remote HR mea-

surement network based on self-supervised contrastive learning in this paper to realize the
mining of faint color changes with the blood volume pulse feedback in unlabeled facial videos.
Specifically, first, to overcome the redundant skin information, we design a new facial region of
interest extraction method that focuses on areas rich in facial muscles and capillaries, while
ignoring the interference of explicit edges, corners, and texture changes. Second, we convert the
input video segments into spatiotemporal mappings to guide contrastive learning between and
within instances through the vast enrichment of positive and negative sample pairs in the pre-
training stage. Third, we improve the traditional rPPG waveform regression into spatiotemporal
reconstruction to further improve the robustness of our model by focusing on the interaction of
temporal features between different sub-regions of the face during the fine-tuning stage.

We pretrain the proposed model on the VFHQ [26], CelebV-HQ [27], and MAHNOB-HCI [28]
datasets using facial videos without any biosignal annotation, and fine-tune it on the VIPL-HR-
V2 dataset [16]. We test our model on 1000 video clips containing OBF [29] and VIPL-HR-V2
datasets provided by the organizer, with an average root mean squared error (RMSE) of 8.96941,
and achieve the top-3 result on the Track 1 of the 3rd RePSS challenge.

2. Methodology

The overall architecture of our self-supervised remote HR sensing network is shown in Figure 1.
In this section, we will introduce in detail three aspects: facial spatiotemporal mapping con-
struction (Sec. 2.1), pretraining stage based on contrastive learning (Sec. 2.2), and fine-tuning
stage based on spatiotemporal reconstruction (Sec. 2.3).

2.1. Facial spatiotemporal mapping construction

Early deep learning methods [30, 31, 32] for remote HR detection often directly utilized 3D CNN
to calculate facial video clips. However, such operations ignore the interactions between long-
range rhythms [33]. Inspired by RhythmNet [34] and NEST [35], we improve our input pattern
into the spatiotemporal mapping [36]. Furthermore, we find that simply calculating facial frames
or thresholded skin areas not only leads to redundant information, but also interference from
corner semantics invades the learning path. Inspired by THR-Net (HR-GCN) [37] and RADIANT



Figure 2: The illustration of our facial spatiotemporal mapping, which can feedback more rhythmic
information at the beginning of preprocessing than traditional augmentation manners.

[38], we divide the face into multiple sub-regions. The difference is that THR-Net only employs
four natural light regions and RADIANT algorithm adopts non-overlapping patches, while we
design 79 mutually entangled skin sub-region blocks to exploit the capillary-rich parts [39] of
the face as much as possible.

The specific selection of 79 skin sub-regions (R) is based on the 68 landmarks at positions
(0-59, 61-65, and 68-70, respectively) in the Python face recognition framework2. To impress, we
list the operable configurations in Table 1, where “M.” represents the midpoint of two landmarks
(L). Each sub-region is a rectangular block surrounded by 1/10 of the long side of the entire
facial corresponding to the point (Node). Moreover, in order not to lose too much spatially
discriminative pixels, we construct additional 49 global face downsampling blocks (that is, the
resolution is 7×7). We average each block within the frame, which can be converted into 128
RGB three-channel feature values for a single facial frame.

Afterwards, we convert a video segment into a spatiotemporal mapping based on the length
of the required input frames. We perform the temporal normalization independently on each
sub-patch feature dimension, and then perform YUV color space conversion which has been
proven to have the ability to enhance rPPG imaging beyond mappings such as YCrCb, HSV, and
raw RGB. Figure 2 is a visual comparison of our facial spatiotemporal construction approach and
the traditional method. It can be seen that our algorithm can harvest a certain degree of rhythm
and color change characteristics without relying on the learning model in this preprocessing
and augmentation stage.

2.2. Contrastive learning-based pretraining

The design idea based on self-supervision is an important means to solve the lack of data and
unstable labeling in learning-based remote physiological estimation tasks [40, 41]. Currently, a
widely used self-supervised strategy is contrastive learning [42], which builds different pairs

2https://github.com/ageitgey/face_recognition/
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of positive and negative samples to pull in the representations between samples with the
same attributes and separate them from those that are different. Based on the remarkable
achievements of contrastive learning in the rPPG task [43, 44], we design a novel self-supervised
HR sensing network and training paradigm.

Following Contrast-Phys+ [45], instead of constructing pairs of positive and negative samples
within the same object or between shifting sequences [46, 47], we build them between different
individual instances [48]. This is because pulse waveforms vary from subject to subject. Specifi-
cally, we randomly shuffle the arrangement of feature points in the spatiotemporal mapping to
increase topological diversity. After that, we randomly select one from the original mapping
and the 𝑚 newly generated mappings as a positive sample xpos, and perform partial block
extraction and size adjustment again for the other mappings as supplementary samples xsup

𝑚 .
Since the supplementary set and the positive sample differ only in space and not in time and
frequency domains, we combine the above as a positive set Xpos = {xpos,xsup

𝑚 }. Meanwhile,
we randomly select the 𝑛 instances in the training set, perform random feature space shuffling
and reselection as above, and let them enter a negative set Xneg = {xneg

𝑛 }.
Our pretrained module employs PhysNet [49] as the backbone, and embeds attention opera-

tions for long-distance temporal perception and interaction (as shown in Figure 1). The temporal
attention module is not limited to the hybrid scale of the input, but squeezes its features into a
one-dimensional vector related only to time, calculates the attention score and then expands it
to regress the backbone path. For the input mapping from the positive and negative sample
sets, the corresponding output is a one-dimensional vector related to time respectively. At this
stage, to guide the training, we calculate the power spectral densities and HR values between
different outputs respectively, where the frequency contrast loss ℒcf is expressed as:

ℒcf = log

(︂∑︀𝑚
𝑖1=1

∑︀𝑚
𝑖2=1
𝑖1 ̸=𝑖2

exp
(︁
𝑀(ypos

𝑖1
,ypos

𝑖2
)/𝜏

)︁
∑︀𝑚

𝑖=1

∑︀𝑛
𝑗=1 exp

(︁
𝑀(ypos

𝑖 ,yneg
𝑗 )/𝜏

)︁ + 1

)︂
(1)

where ypos and yneg correspond to the output of samples within positive and negative sets Xpos

and Xneg respectively, 𝜏 is the temperature hyperparameter (we set it to 0.08 in this paper), and
𝑀 is the frequency difference between the two output vectors. Correspondingly, the waveform
contrast loss function ℒcp is:

ℒcp = log

(︂∑︀𝑚
𝑖1=1

∑︀𝑚
𝑖2=1
𝑖1 ̸=𝑖2
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𝑗 )/𝜏

)︁ + 1

)︂
(2)

where 𝐷 represents the correlation of the two pulse waveforms (taking ypos
1 and ypos

2 as the
example):
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where 𝑇 represents the temporal dimension of our facial spatiotemporal mapping. Meanwhile,
the pretraining loss ℒP is expressed as:

ℒP = ℒcf + ℒcp (4)

2.3. Spatiotemporal reconstruction-based fine-tuning

As a complement to large-scale self-supervised pretraining, we design a supervised pipeline for
model fine-tuning in addition to the contrastive path mentioned above. Since the amount of
data in fine-tuning process is relatively small, to fully explore the spatiotemporal interaction
between different feature points, we improve the traditional signal regression into spatiotempo-
ral reconstruction supervision. Specifically, we construct a U-shaped structure [50] consisting
of encoder, latent module, and decoder. The encoder takes the downsampling part of PhysNet
as the backbone. The difference from the pretrained module is that the fine-tuned encoder
converts the input mapping of scale (3×𝑇×128) into a tensor of (512×𝑇/4×8), where the three
dimensions correspond to channel, time, and intra-frame feature scale respectively.

After that, there is a latent module that outputs pulse waveforms, HR values, and features
that will be fed to the decoder. For the decoder, it is the opposite of the encoder counterpart.
Meanwhile, we construct the grayscale ground truth mapping at the same scale as the input
facial spatiotemporal mapping of the ground truth pulse label. We use 𝐿1 loss as the constraints
for spatiotemporal mapping and HR (ℒfm and ℒfh). Since we randomly disrupt the spatial
relationship of the original input feature points and reselect the regions, each dimension is
considered an independent constraint process, and the same constraints can also be shared
between different dimensions. This greatly improves the robustness of our model. Moreover, we
embed a serial of temporal attention modules at the skip layer connections of the U structure.
They use a multi-head attention method (we set it to 8), which calculates the global self-attention
score within the features of the encoder and concatenates it with the main path features to the
decoder. Finally, the loss on predicted waveforms is the negative Pearson’s correlation ℒfp:

ℒfp = 1−
𝑇
∑︀𝑇

𝑡=1 𝑝(𝑡)𝑔(𝑡)−
∑︀𝑇

𝑡=1 𝑝(𝑡)
∑︀𝑇

𝑡=1 𝑔(𝑡)√︂(︁
𝑇
∑︀𝑇

𝑡=1

(︀
𝑝(𝑡)

)︀2 − (︀∑︀𝑇
𝑡=1 𝑝(𝑡)

)︀2)︁(︁
𝑇
∑︀𝑇

𝑡=1

(︀
𝑔(𝑡)

)︀2 − (︀∑︀𝑇
𝑡=1 𝑔(𝑡)

)︀2)︁ (5)

where 𝑝(𝑡) is the predicted pulse on the learning pipeline, and 𝑔(𝑡) is the ground truth label for
the fine-tuning phase. The fine-tuning loss ℒF is expressed as:

ℒF = 0.5× (ℒcf + ℒcp) + ℒfm + ℒfh + ℒfp (6)

3. Experiments

3.1. Datasets

We pretrain our network on three publicly available datasets: VFHQ [26], CelebV-HQ [27],
and MAHNOB-HCI [28]. Regarding them, VFHQ dataset contains over 16000 high-fidelity



Table 2
The public leaderboard for this challenge.

Rank Team Affiliation RMSE (bpm)
1 Face AI Agency for Science, Technology and Research of Singapore 8.50693
2 HFUT-VUT Hefei University of Technology 8.85277
3 PCA_Vital (Ours) Nanjing University of Science and Technology 8.96941
4 Hash Brown Beijing University of Posts and Telecommunications 9.26198
5 AIIA Harbin Institute of Technology 9.28902
6 SHDMIC Ruijin Hospital of Shanghai Jiao Tong University 10.74201
7 HFUT-BCDH Hefei University of Technology 11.77657
8 NeuroAI_KW Kwangwoon University 14.47930
9 NUIST Nanjing University of Information Science & Technology 15.79680
10 SCUT_rPPG South China University of Technology 15.88228

facial clips of different interview scenes, CelebV-HQ has 35666 videos, and MAHNOB-HCI
dataset consists of 527 videos of 30 objects. None of the three facial continuous frame datasets
involve rPPG labels for fine-tuning and supervised HR learning. We fine-tune our model on the
VIPL-HR-V2 [16] dataset, which contains 2000 videos of 400 objects.

3.2. Implement and evaluation metric

Our model is deployed based on the PyTorch framework and runs on a device equipped with
four GeForce RTX 4090 GPUs. The number of frames of the input video segment is 300 (that is,
the scale of the spatiotemporal mapping is (300×128)), the batch size is 20, the pretraining round
is 200, and the fine-tuning epoch is 50. Our model is optimized using AdaMax, the initially
learning rate is 1×10−5 and will drop to 0.5×10−5 at the 50th epoch. We use RMSE as the
evaluation metric to calculate the gap of beats per minute (bpm) between the ground truth
HRgt and the average predicted HRpred for each video segment (total number is 𝑁 ), which is:

RMSE =

√︃∑︀𝑁
𝑖=1(HRgt𝑖 −HRpred𝑖)

2

𝑁
(7)

3.3. Results

Our team (the name is PCA_Vital) won the third place on the 3rd Vision-based RePSS challenge
Track 1. We list the RMSE results published by the organizer3 of the top ten teams as shown in
Table 2, it can be seen that our score is 8.96941. Furthermore, we are just behind second place
0.11664 and significantly ahead of fourth place 0.29257.

In addition, we embed the contrastive loss in the fine-tuning stage. Regarding the contrastive
loss coefficient in the overall loss function (Equ. 6), we set it as 𝜉 and conduct an ablation
study with different hyperparameters to verify our settings. The RMSE results are shown in
Table 3. It can be seen that introducing contrastive loss in the overall loss can improve the
model performance to a certain extent. We analyze that this is due to the limited data scale of

3https://repss-w.github.io/Challenge.html
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Table 3
Ablation study on loss function hyperparameters.

Param. RMSE (bpm)
𝜉=2.0 9.99876
𝜉=1.5 9.79554
𝜉=1.0 9.10092
𝜉=0.5 8.96941
𝜉=0.2 8.99006

the fine-tuning dataset, adding contrastive discrimination on its basis can effectively prevent
overfitting and increase the network’s prediction ability for unseen samples.

4. Conclusion

Facial vision-based remote HR measurement has been booming over the past decade, but
its deployment is hampered by the lack of labels and incomplete learning paradigms. This
paper proposes a novel self-supervised approach to solve them. It uses facial spatiotemporal
reconstruction and contrast learning to mine commonalities of subtle changes in facial skin
color with heartbeats between different frames, thereby improving robustness and achieving
excellent results in the 3rd RePSS challenge. Although this challenge has ended, our research
will continue on the optimization of related rPPG learning processes and strategies.
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