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Abstract
Heart rate measurements based on remote physiological signals could significantly facilitate health
monitoring in daily life. However, the ground-truth labels of the physiological signals are expensive and
hard to collect. In this paper, we present a contrastive self-supervised learning framework to extract
discriminative remote physiological features by leveraging periodic signal priors without ground-truth
labels in the pre-training stage. Specifically, a ranking loss and a contrastive learning loss are constructed
to extract knowledge with resampling of the video clips. In addition, data augmentation and ensemble
learning strategies are designed to fine-tune the pre-trained model and fuse the results to improve the
heart rate measurement. Our final solution achieves the 1𝑠𝑡 place in track 1 of the 3𝑟𝑑 Vision-based Remote
Physiological Signal Sensing (RePSS) Challenge.
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1. Introduction

Remote photoplethysmography (rPPG) has emerged as a promising technology in the pursuit of
non-invasive methods of monitoring vital signs. By leveraging the principles of light absorption
and reflection, rPPG enables the extraction of vital sign information, such as heart rate [1, 2],
respiratory rate [3, 4], and blood pressure [5, 6], remotely and without physical contact with the
subject. Traditional vital sign monitoring is confined to clinical settings with cumbersome wired
sensors, the rPPG heralds a paradigm shift by allowing remote physiological signal measurement
with common cameras. This freedom from physical attachments opens avenues for continuous
monitoring in scenarios where traditional sensors are impractical or uncomfortable. This
revolutionary technology holds immense potential for applications of telemedicine, health
monitoring, fitness tracking, and driver monitoring.

Pioneer studies propose developing skin models to predict the rPPG signals [7, 8] or through
mathematical analysis to decompose the rPPG signals [9]. Recently, some studies have shown
that deep learning algorithms are promising in rPPG prediction [10, 11]. Compared with wrist
and leg, the facial rPPG signals were typically stronger, especially on the forehead [12]. However,
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the collection of facial videos with ground-truth labels for these methods is time-consuming
and expensive.

In this study, we propose a contrastive self-supervised method to extract physiological signals
from unlabeled facial videos in the pre-training stage. As rPPG signals are periodic signals, the
heart rate will vary if the frame rate is changed. Based on this consideration, a ranking loss for
heart rate and a contrastive learning loss are designed to extract physiological signals based
on the resampling of the video clips without ground-truth labels. In the fine-tuning stage, we
formulate the heart rate prediction into a classification problem. Moreover, data augmentation
and ensemble learning strategies are adopted to reduce the prediction error. The experimental
results demonstrate that our proposed method can achieve the average root mean squared error
(RMSE) of 19.84 on VIPL-HR-V2 and our final solution achieves the average RMSE of 8.50693,
indicating the effectiveness of our proposed solution.

2. Related Work

Recent self-supervised learning methods have achieved remarkable results in estimating heart
rate on the rPPG public datasets. Among self-supervised methods, contrastive learning meth-
ods have been increasingly popular. Some contrastive methods leverage spatial and temporal
characteristics to extract the invariant features. For instance, Wang et al. [13] proposed a
self-supervised representation method using spatiotemporal augmentation. The spatial aug-
mentation is based on the seven regions of interest (ROIs) on faces that represent similar heart
rates. Several frame strides are used to extract video frames to augment each video along the
time axis. A contrastive learning loss is constructed to attract the spatiotemporal augmented
clips from the same sample and resist the clips from different samples. Additional spatial and
temporal classifiers are designed to constrain the learning process.
Another notable contrastive-based unsupervised remote physiological measurement frame-

work is Contrast-Phys [14], which extracts physiological signals from facial videos. The model
generates positive pairs from different spatiotemporal locations of the same video and negative
pairs from two different videos. Based on contrastive learning of positive and negative pairs,
Contrast-Phys achieves comparable results to supervised methods.

Moreover, some contrastive methods are based on periodic signal characteristics. For example,
Gideon and Stent [15] introduced a multi-view triplet loss for contrastive training. The positive
samples are taken from subset views of anchor samples. The negative samples are generated
through a trilinear resampler. This method achieves comparable results on four rPPG datasets
when compared to several supervised deep-learning methods.

In addition to contrastive learning methods, Speth et al. proposed a non-contrastive unsuper-
vised deep learning method [16]. It learns the rPPG features by shaping the frequency spectrum
through three loss functions: 1) The bandwidth loss forces the model to focus on the bandlimits
between 0.66Hz-3Hz, which corresponds to a heart rate of 40 bpm to 180 bpm; 2) The sparsity
loss penalizes the model if power spectral density is not near the spectral peak; and 3) The
variance loss is utilized to enforce diverse outputs to prevent model collapse.



3. Our Proposed Method

Our proposed solution includes two stages, as shown in Fig. 1. During the pre-training stage,
we propose a contrastive deep learning method called RankContrast to extract the rPPG-related
features. In the fine-tuning stage, a supervised method with data augmentation and ensemble
learning is utilized to train the model based on a limited number of labeled facial videos.

Unlabeled face videos

Labeled face videos
and rPPG signal
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Fine-tuned models
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Figure 1: The framework of our proposed solution. It includes two stages: the pre-training stage and
the fine-tuning stage. In the pre-training stage, the model is trained with a self-supervised RankContrast
method. In the fine-tuning stage, the pre-trained model is fine-tuned with labeled VIPL-HR-V2 dataset
with data augmentation and ensemble learning techniques.

3.1. Data Pre-processing

Many existing rPPG learning methods convert the face clips into ST-maps [17, 18, 19] for further
feature extraction. In contrast, our solution presents an end-to-end framework where a sequence
of face frames is fed directly into the deep learning model. We use multiple datasets with highly
complex backgrounds to train the model during the pre-training stage. To minimize noise, only
the face area reflecting the rPPG signal is cropped for training. The human faces are detected
by MTCNN [20] on the first frame, and then the whole video is cropped by a larger bounding
box based on the detected face with a scale factor of 1.3. The cropped image frames are resized
to 128 × 128.

3.2. Pre-training with Self-supervised Learning

A RankContrast self-supervised learning method that integrates the ranking loss and the
contrastive learning loss is proposed in this work, as shown in Fig. 2. Since the rPPG signal is
periodic, the heart rate varies by resampling the video clips. Upsample the clips will reduce
the heart rate and downsample the clips will increase the heart rate [21]. According to these



Figure 2: The overview of our proposed RankContrast self-supervised learning method. 𝑡 represents
the 𝑡-th frame, Δ𝑡 is the shifted frame number, 𝑇 is the temporal length of the trained video clip, 𝑓𝑢𝑝 is
the upsampling factor, 𝑓𝑑𝑠 is the downsampling factor.

characteristics, a ranking loss function is designed to extract features with upsampling and
downsampling video clips. A random upsampling factor is selected between 1 and 1.1 and a
downsampling factor is selected between 0.9 and 1.0. The ranking loss 𝐿𝑟 is defined as:

𝐿𝑟 = 𝑚𝑎𝑥(𝐻𝑅𝑢𝑠 − 𝐻𝑅𝑎, 0) + 𝑚𝑎𝑥(𝐻𝑅𝑎 − 𝐻𝑅𝑑𝑠, 0) (1)

where 𝐻𝑅𝑢𝑠, 𝐻𝑅𝑑𝑠, and 𝐻𝑅𝑎 are the heart rate of the upsampled clip, downsampled clip, and
anchor clip, respectively.

The heart rate is calculated by multiplying the one-hot vector of the power spectral density
(PSD) with the vector of frequency bins. The one-hot vector is conducted by a Gumbel softmax
operation.
The contrastive learning loss is to compare similar (positive) clips and dissimilar (negative)

clips with the anchor clips through the attracting and resisting strategy. As the heart rate is
relatively stable for an individual in a short time, the positive pairs are constructed by shifting
the training clip for some frames in the same video. The resampled samples from the anchor
sample are considered negative pairs. Based on this idea, the contrastive learning loss 𝐿𝑐 is
formulated as:

𝐿𝑐 = 𝑀𝑆𝐸(𝑃𝑆𝐷𝑡𝑠 − 𝑃𝑆𝐷𝑎) − 𝑀𝑆𝐸(𝑃𝑆𝐷𝑢𝑠 − 𝑃𝑆𝐷𝑎) − 𝑀𝑆𝐸(𝑃𝑆𝐷𝑑𝑠 − 𝑃𝑆𝐷𝑎) (2)

where 𝑃𝑆𝐷𝑢𝑠, 𝑃𝑆𝐷𝑑𝑠, 𝑃𝑆𝐷𝑎, 𝑃𝑆𝐷𝑡𝑠 are the power spectral density of the upsampled clip, down-
sampled clip, anchor clip, and temporal shift clip, respectively. 𝑀𝑆𝐸 denotes the mean squared
error.



The total loss function for our self-supervised learning 𝐿𝑢𝑛 is:

𝐿𝑢𝑛 = 𝜆𝐿𝑟 + 𝐿𝑐 (3)

where 𝜆 is a hyperparameter to trade off the contributions of the two terms.

3.3. Fine-tuning

The pre-trained model is then fine-tuned on the VIPL-HR-V2 dataset that consists of 400 subjects
in a supervised learning manner. The ground truth of blood volume pulse (BVP) wave and
heart rate are provided in the VIPL-V2 dataset. We adopt two supervised loss functions: the
classification loss 𝐿𝑐𝑒 and the Pearson loss 𝐿𝑝 to guide the learning process. Given that the
typical resting heart rate for humans falls within the range of 40-180 beats per minute, each
heart rate is mapped to a class label ranging from 0 to 140. The classification loss is defined as:

𝐿𝑐𝑒 = 𝐶𝐸(𝑃𝑆𝐷( ̂𝑦), e𝐻𝑅) (4)

where 𝐶𝐸 is the cross-entropy loss, ̂𝑦 is the predicted BVP, 𝑃𝑆𝐷( ̂𝑦) represents the power spectral
density of ̂𝑦, and e𝐻𝑅 denotes the one-hot encoding of the class of the ground-truth heart rate
𝐻𝑅.
Since the ground-truth BVP signal is available, we impose a Negative Pearson correlation

coefficient loss 𝐿𝑝 to constrain the model’s output as:

𝐿𝑝 = 1 −
∑𝑇

𝑖=1( ̂𝑦𝑖 − �̂�)(𝑦𝑖 − 𝑦)

√∑
𝑇
𝑖=1( ̂𝑦𝑖 − �̂�)2√∑

𝑇
𝑖=1(𝑦𝑖 − 𝑦)2

(5)

where 𝑦 is the ground-truth BVP, ̂𝑦 is predicted BVP, �̂� is the average value of the predicted BVP,
𝑦 is average value of ground-truth BVP, 𝑇 is the length of the BVP signal, and 𝑦𝑖 and ̂𝑦𝑖 are the
𝑖-th element of 𝑦 and ̂𝑦, respectively.
The total loss for the fine-tuning stage 𝐿𝑠 is:

𝐿𝑠 = 𝐿𝑐𝑒 + 𝜇𝐿𝑝 (6)

where 𝜇 is a hyperparameter to trade off the contributions of the two terms.

4. Experiments

4.1. Dataset

In the pre-training phase, the model is trained using datasets from VIPL-HR-V2, VIPL-HR,
PURE, UBFC-rPPG, COHFACE, and VSIGN without labels. Following this, the model undergoes
fine-tuning on VIPL-HR-V2, which includes data from 400 participants. The test set comprises
data from 200 individuals drawn from the VIPL-HR-V2 and OBF datasets.

VIPL-HR-V2 [22] offers 2500 RGB videos featuring 500 subjects. Each subject has five clips of
10 seconds which are cut from a thirty-second long video with a five-second stride.



VIPL-HR [23] is a database with face videos of 107 subjects and the corresponding heart rate,
SpO2, and BVP wave. The data is collected under 9 scenarios under various illumination and
motion conditions with three camera devices. This database has 2,378 visible light videos (VIS)
and 752 near-infrared (NIR) videos. We only use visible light videos for training.
PURE [24] comprises recordings of 10 subjects, each recorded for one minute across six

different scenarios. These videos are captured at 30 fps with a resolution of 640 × 480 pixels.
Pulse rate waveforms and SpO2 readings, sampled at 60 Hz, are recorded alongside the videos.

UBFC-rPPG [25] includes 42 subjects, recorded at 30 fps with image frames of 640× 480 pixels
in uncompressed RGB format for each subject. Simultaneously, the ground-truth PPG waveform
is collected.
COHFACE [26] features 160 one-minute videos from 40 subjects, with synchronized heart

rate and breathing rate data. These videos are recorded with image frames of 640 × 480 pixels
and a frame rate of 20 Hz.
The VSIGN dataset is a facial video dataset collected by our team (Face AI) at A*STAR for

research purposes. It encompasses signals including BVP, blood pressure, respiratory rate, and
SpO2. In this work, facial videos from 90 subjects have been amassed. Each subject is captured
using six RGB cameras across six distinct scenarios. The video frame rate is around 30 fps.

4.2. Implementation Details

In this work, a 3D-CNN model of PhysNet-large is utilized as the backbone, which is modified
from the PhsNet [14]. A sequence of T frames is selected as input for the model. T is set as 280
in this study. Each image frame is revised to a size of 128 × 128. Since the common heart rate
falls between 40-180 bpm, the signals are filtered with a cutoff frequency of [0.66, 3]Hz to filter
out irrelevant noises. The Adam optimizer [27] with a learning rate of 1 × 10−5 is employed.
The number of training epochs is set as 50 for both pre-training and fine-tuning. The frame
rates of all the clips and BVP signals are resampled to 30 fps. The facial videos of subject no.
351-400 from VIPL-HR-V2 are used as the validation dataset.

4.3. Evaluation Metrics

The experimental results have been reported in terms of heart rate. The root mean square error
(RMSE) is utilized to evaluate the performance of the tested measurement methods as:

𝑅𝑀𝑆𝐸 =
√
∑𝑁

𝑖=1( ̂𝐻𝑅𝑖 − 𝐻𝑅𝑖)2

𝑁
(7)

where 𝐻𝑅𝑖 is ground-truth heart rate, ̂𝐻𝑅𝑖 is predicted heart rate of the 𝑖-th sample, and 𝑁 is
the total number of samples.

4.4. Experimental Results

The model is pre-trained on the merged dataset of VIPL-HR-V2, VIPL-HR, PURE, UBFC-rPPG,
COHFACE, and VSIGN. The results on the validation dataset of VIPL-HR-V2 are shown in Fig. 3.
The RMSE fluctuates initially and decreases drastically around the number of 40 epochs. The



minimum RMSE on the validation data with the RankContrast method is 19.84. The model with
the minimum RMSE is selected for further fine-tuning in the next stage.

Figure 3: The results of the pre-trained model from RankContrast. The model is pre-trained on the
merged dataset and evaluated on VIPL-HR-V2

The RankContrast method is compared with two self-supervised learning methods, i.e.,
Contrast-Phys [14] and Gideon2021 [15]. In this experiment, only the VIPL-HR-V2 dataset is
utilized for pre-training by considering the computational time costs. The results are reported
in Table 1, from which we can see that RankContrast demonstrates superior performance
compared to the other two self-supervised learning methods with a significant margin of 7.81.

Table 1
Comparsion of Self-supervised Methods Pre-trained and Evaluated on VIPL-HR-V2

Index Method RMSE

1 Contrast-Phys[14] 33.55
2 Gideon2021[15] 30.08
3 RankContrast 22.27

In the second stage, the pre-trained model is fine-tuned with labeled data from VIPL-HR-V2
using Equation 6. With data augmentation and ensemble learning techniques, our solution
achieves the RMSE of 8.50693 on the test dataset in the 3𝑟𝑑 RePPS Challenge, as shown in Table 2.
It outperforms the results from other teams by a large margin, indicating the effectiveness of
our solution.

4.5. Discussion

The Contrast-Phys and Gideon2021 methods perform well on small and simple datasets, such
as PURE and UBFC-rPPG, as reported in their original papers. However, VIPL-HR-V2 is much



Table 2
The Public Leaderboard of 3rd RePSS Challenge Track 1

Rank Team name RMSE

1 Face AI 8.50693
2 HFUT_VUT 8.85277
3 PCA_VItal 8.96941
4 Hash Brown 9.26198
5 AIIA 9.28902

more challenging due to complex backgrounds, diverse illumination conditions, and substantial
motions. Besides, the heart rates for VIPL-HR-V2 have a wide range of distribution. It is more
difficult to identify the specific category of the heart rate for a video clip with self-supervised
learning methods. RankContrast provides an additional ranking loss on heart rates besides
the contrastive learning loss to constrain the model learning, making it more effective on
VIPL-HR-V2.

5. Conclusion

In this paper, we introduced a self-supervised learning method called RankContrast, which
leverages periodic signal characteristics. RankContrast employs both a ranking loss and a
contrastive learning loss to extract physiological signals through the resampling of video clips.
We compared our method with two other peer methods on VIPL-HR-V2. Our results show
that RankContrast achieves the best performance. The pre-trained model using RankContrast
was then fine-tuned on VIPL-HR-V2 in a supervised learning manner. The final fine-tuned
model achieved an RMSE of 8.51 on the test dataset of the 3rd RePSS Challenge, significantly
outperforming other solutions.
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