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Abstract
Remote photoplethysmography (rPPG) is a non-contact method that estimates multiple physiological
parameters according to facial videos. Although existing supervised rPPGmethods have achieved remark-
able performance, the success mainly benefits from massive and expensive annotated data. Fortunately,
many unsupervised rPPG methods have emerged recently to solve this issue. However, we find that
existing unsupervised rPPG methods are learn-from-scratch. Many downstream tasks in deep learning
have achieved great success using fine-tuning strategies in the past decade. Inspired by this, we explore
the effect of prior knowledge in unsupervised rPPG and proposed UP-Phys. Moreover, to regulate the
backbone to prioritize regions rich in rPPG information, we propose a plug-and-play representation
augmentation module (RAM). RAM dynamically enhances salient temporal-spatial information derived
from extracted features, effectively reducing the effect of noise brought by lighting, motion, etc. Exper-
iments on two widely used rPPG datasets UBFC-rPPG and PURE demonstrate the superiority of our
proposed method. In addition, our method achieves 15.79 RMSE accuracy in the 3rd RePSS.
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1. Introduction

Remote photoplethysmography (rPPG) estimates multiple physiological parameters that are
important for healthcare including heart rate (HR), respiration frequency (RF), and heart rate
variability (HRV) through videos captured by cameras [1]. Compared with traditional HR
estimation approaches like electrocardiogram (ECG) [2] and photoplethysmography (PPG) [3]
that require skin contact with subjects, rPPG is non-contact, thus avoiding discomfort and skin
irritation caused by skin-contact sensors. To this end, rPPG technology has become intensively
researched in recent years and plays an increasingly pivotal role in remote healthcare [1],
affective computing [4, 5], spoof detection [6, 7], etc.
Existing rPPG methods [8, 9, 10, 11] have achieved remarkable performance with deep

learning methods. However, the success mainly profits from supervised learning over massive
human-labeled data. In fact, the process of collecting and annotating such data is prohibitively

The 3rd Vision-based Remote Physiological Signal Sensing (RePSS) Challenge & Workshop
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open jiangyan@nuist.edu.cn (Y. Jiang); cmy@nuist.edu.cn (M. Cao); yuhao@nuist.edu.cn (H. Yu);
xingyu@nuist.edu.cn (X. Liu); xcheng@nuist.edu.cn (X. Cheng)
Orcid 0009-0002-2031-5627 (Y. Jiang); 0009-0005-7796-7484 (M. Cao); 0000-0002-8298-7181 (H. Yu);
0009-0009-6064-9104 (X. Liu); 0000-0003-2355-9010 (X. Cheng)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jiangyan@nuist.edu.cn
mailto:cmy@nuist.edu.cn
mailto:yuhao@nuist.edu.cn
mailto:xingyu@nuist.edu.cn
mailto:xcheng@nuist.edu.cn
https://orcid.org/0009-0002-2031-5627
https://orcid.org/0009-0005-7796-7484
https://orcid.org/0000-0002-8298-7181
https://orcid.org/0009-0009-6064-9104
https://orcid.org/0000-0003-2355-9010
https://creativecommons.org/licenses/by/4.0


Face Videos rPPG Signal

learn-from-scratch

3DCNN

fine-tuning

（a）existing training strategy  （b）ours 

Face Videos rPPG Signal

prior knowledge

3DCNN

Figure 1: Motivation of our proposed method. Existing methods adopt the learn-from-scratch strategy,
which may introduce potential issues such as limited generalization, overfitting, reliance on the scale of
data, etc. To solve this issue, our method adopts a fine-tuning strategy that introduces prior knowledge
in rPPG, enhancing the robustness and efficacy of the learning process.

expensive, requiring not only the deployment of subjects equipped with contact PPG or ECG
sensors but also careful consideration of various potential environmental factors such as lighting
changes, motion, gestures, and so on while capturing data. In addition, existing supervised
rPPG methods struggle to break through the bottleneck posed by unlabeled data due to their
performance being positively corresponded to the scale of annotated data available, resulting in
less applicability in real scenarios. Fortunately, some unsupervised rPPG methods have been
proposed recently to solve this issue of expensive rPPG data annotations.
Existing unsupervised rPPG methods [12, 13, 14, 15] can be roughly divided into two cate-

gories: contrastive and non-contrastive. In the former category, Sun et al. [13] pioneered the
introduction of contrastive learning into unsupervised rPPG methods with their proposal of
Contrast-Phys. This method was developed based on four key observations: spatial similarity in
rPPG signals, temporal similarity in rPPG signals, dissimilarity in rPPG signals across different
videos, and HR range constraint. Crucially, Contrast-Phys eliminates the reliance on annotated
data and achieves state-of-the-art in publicly available academic datasets. For the latter category,
Speth et al. [14] extended unsupervised methods based on contrastive learning research lines
into non-contrastive and proposed SiNC by discovering periodic signals in video data. SiNC
considers that periodicity suffices for learning minuscule visual features corresponding to the
blood volume pulse from unlabeled face videos, which brings novel inspirations into the rPPG
community.

Despite achieving encouraging progress, the aforementioned unsupervised rPPG methods are
learn-from-scratch, as shown in Fig.1 (a). This training strategy may introduce potential issues
such as limited generalization, overfitting, and reliance on the scale of data. Moreover, the
quality of predicted rPPG signals by the deep neural network has emerged as a pivotal challenge
in elevating the performance ceiling of unsupervised rPPG, as it lacks effective supervision by
label information. During the past decade, many downstream tasks in computer vision adopted
the fine-tuning strategy [16, 17, 18] and achieved significant success. This success is attributed
to the prior knowledge acquired through pretraining, which enables the network to adapt to
various datasets more efficiently and attain superior performance. Inspired by this, in this paper,
we explore the effect of prior knowledge in unsupervised rPPG and propose UP-Phys, as shown
in Fig.1 (b). Specifically, we utilize the Contrast-Phys pre-trained on the MMSE-HR [19] dataset



and fine-tune other datasets. Compared with the official training protocol of 30 epochs, our
UP-Phys undergoes only 1 epoch of fine-tuning, resulting in significant time savings during
training. Furthermore, we design a plug-and-play representation augmentation module (RAM)
that dynamically enhances salient temporal-spatial information derived from extracted features.
This augmentation empowers the network to prioritize regions abundant in rPPG information,
consequently reducing the effect of noise brought by lighting, motion, etc. Generally, the main
contributions of this paper can be summarized as follows:

• We introduce a novel solution for unsupervised rPPG, termed UP-Phys, which leverages
prior knowledge to reduce training time notably.

• We design a plug-and-play representation augmentation module (RAM) that dynami-
cally enhances salient temporal-spatial information derived from extracted features for
unsupervised rPPG.

• Experiments on PURE and UBFC-rPPG datasets demonstrate that our UP-Phys signif-
icantly outperforms existing unsupervised rPPG methods, and even surpasses some
supervised counterparts. In addition, UP-Phys achieves 15.79 RMSE accuracy in 3rd
RePSS.
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Figure 2: The pipeline of the proposed UP-Phys. RAM is our proposed Representation Augmentation
Module.

2. Methodology

The overview of our proposed UP-Phys is shown in Fig.2.



Table 1
Experiments on different prior knowledge. V denotes the number of pre-training videos.

Index V Pretrain
UBFC-rPPG

MAE ↓ RMSE ↓ R ↑

1 0 0.64 1.00 0.99
2 25 0.50 1.47 0.99
3 50 0.42 0.96 0.99
4 100 0.33 0.65 0.99

2.1. Preprocessing

To reduce background noise and interference from irrelevant areas, we adopt the OpenFace
toolkit to preprocess the video. Specifically, we begin by determining the minimum and
maximum horizontal and vertical coordinates of generated landmarks to pinpoint the central
facial point for each frame. The size of the bounding box is set to 1.2 times the range of
the vertical coordinates of landmarks from the first frame, and this size remains constant for
subsequent frames. Then, we crop the face from each frame and resize it to 128 × 128 according
to the central facial point of each frame and bounding box. To minimize I/O overhead during
training, we convert video files into Hierarchical Data Format (HDF5) format.

2.2. Prior Knowledge

Over the past decade, deep learning has achieved significant success, with many downstream
tasks showing impressive results through fine-tuning pre-trained weights. Inspired by this,
we introduce the fine-tuning strategy into unsupervised rPPG as existing methods are learn-
from-scratch. Specifically, we utilize Contrast-Phys, pre-trained on the MMSE-HR dataset, and
fine-tune it for just one epoch on the UBFC-rPPG dataset to investigate the impact of prior
knowledge, as shown in Tab. 1.

With 25 pre-training videos, the MAE accuracy improves by 0.14 but RMSE accuracy increases
by 0.47. This indicates that prior knowledge can help reduce the average error. The underlying
reason for bad RMSE stems from less prior knowledge. When we increase the pre-training
videos to 50, as shown in index 3, we can observe that both MAE and RMSE achieve significant
improvement. Moreover, the pre-training with 100 videos shows the best performance with
the lowest MAE of 0.33 and RMSE of 0.65. This indicates that larger prior knowledge signifi-
cantly enhances the model’s prediction accuracy and consistency. In summary, these results
demonstrate a clear trend that as the number of pre-training videos increases, the accuracy
of the model improves. This emphasizes the benefits of leveraging prior knowledge through
pre-training in enhancing the performance of rPPG models.

2.3. Representation Augmentation Module

Existing unsupervised rPPG methods mainly design refreshing strategies to achieve robust
training without annotated data. The quality of rPPG signal prediction by these methods heavily
relies on the features extracted by the backbone. These unsupervised methods rely solely on



3DCNN and cannot accurately focus on regions with rich rPPG signals in complex environments
such as headmovement and lighting, resulting in difficulty in improving performance. Therefore,
we propose a plug-and-play representation augmentation module (RAM) that dynamically
enhances salient temporal-spatial information, helping the backbone focus on regions rich in
rPPG information.
Specifically, given the input features F ∈ ℝ𝐶×𝑇×𝐻×𝑊, we first apply 3D AdaptiveMaxPool to

extract the most salient rPPG knowledge in both horizontal and vertical directions. Subsequently,
we utilize a softmax function to transform this rPPG knowledge into a distribution ranging from
0 to 1. This distribution is then used to create the augmentation mask through multiplication.
Finally, this augmented mask is added to the input features to enhance the rPPG information. It
is written as follows:

F̀ = F + Softmax(AMP𝑥(F)) ⊗ Softmax(AMP𝑦(F)), (1)

where AMP𝑥 and AMP𝑦 denote the 3D AdaptiveMaxPool with pooling kernels (𝑇 , 𝐻 , 1) and
(𝑇 , 1, 𝑊 ), respectively. ⊗ is the multiplication operation.

After that, the augmented features F̀ are processed by 3D AdaptiveAvgPool to attain the
directional rPPG knowledge. Then, we concatenate the two directional features along the spatial
dimension to investigate the spatial rPPG information. In addition, A basic 3D convolutional
block is employed to discover shared rPPG information and reduce channel dimension, which
can be expressed as:

̆F = Conv(Cat(AAP𝑥(F̀),AAP𝑦(F̀))), (2)

where AAP𝑥 and AAP𝑦 denote the 3D AdaptiveAvgPool with pooling kernels (𝑇 , 𝐻 , 1) and
(𝑇 , 1, 𝑊 ), respectively. Cat(⋅, ⋅) denotes the concatenation on the height dimension. Conv denotes
the basic 3D convolutional block consisting of a pointwise convolution, batch normalization,
and ELU activation.
Further, we split the F̆ along spatial dimension and get ̆Fℎ and F̆𝑤. Based on F̆ℎ and F̆𝑤, a

pointwise convolution is utilized to restore the channel dimension. Then, sigmoid normal-
ization and multiplication are employed to generate a mask that discriminates against rPPG
information. Finally, the mask is element-wise multiplicated with the input features to augment
the features, thereby regulating the backbone sensitively concentrating on the regions rich in
rPPG information.

F̂ = [𝜎(P1×1( ̆Fℎ)) ⊗ 𝜎(P1×1(F̆𝑤))] ⊙ F. (3)

where ̂F ∈ ℝ𝐶×𝑇×𝐻×𝑊 is the augmented features; 𝜎 denotes the sigmoid function; P1×1 denotes
the pointwise convolution; ⊙ is the element-wise multiplication.

3. Experiments

3.1. Experimental Setup and Evaluation Protocol

Datasets. We evaluate the proposed method on the two widely used rPPG datasets UBFC-
rPPG [20] and PURE [21]. In addition, we pretrain our method on the MMSE-HR [19] dataset.
UBFC-rPPG contains 42 videos where subjects manipulate their heart rates by engaging in



mathematical games. Each video is recorded at 30 frames per second (fps), has a resolution of
640×480, and runs for approximately one minute. Ground truth data is collected synchronously
using a CMS50E pulse oximeter at a sampling rate of 30 Hz. PURE records videos of 10 subjects
across 6 different scenarios, including those with head movements. Each video maintains a
one-minute duration, is captured at 30 fps, and boasts a resolution of 640×480. The ground
truth is accurately recorded using a fingertip pulse oximeter at 60 Hz, specifically to capture the
blood volume pulse (BVP) signal. MMSE-HR contains 102 videos from 40 subjects. Each video
is 25fps, and the subject’s emotional guidance ensures the heart rate changes. Physiological
data were collected by the Boipac Mp150 data acquisition system at 1khz.
Evaluation Protocol. Following previous works [13, 14], we adopt mean absolute error (MAE),
root mean squared error (RMSE), and person correlation coefficient (R) as the evaluation metrics.
Experimental Setup. We implement our UP-Phys on the PyTorch framework with two RTX
2080Ti GPUs. The Contrast-Phys [13] is utilized as our baseline. The proposed RAM is added
after encoder 1 and encoder 2 of the backbone. We initially pre-train our UP-Phys model on the
MMSE-HR dataset, utilizing the AdamW optimizer with a learning rate of 10−5 for 30 epochs.
Subsequently, we only fine-tune the UP-Phys 1 epoch on the dataset to be evaluated. All other
settings are maintained consistently with those of Contrast-Phys.
RePSS Setup. We first pre-train our UP-Phys on 209 videos collected by MMSE-HR and VIPL-
HR [22] datasets. Subsequently, we fine-tune our method on the UBFC-rPPG and PURE datasets
for 1 epoch. We finally achieve 15.79 RMSE accuracy on the 3rd RePSS.

3.2. Intra-Dataset Testing

We report 3 representative supervised and unsupervised methods for comparison.
Comparison with Unsupervised Methods. As reported in Tab. 2, the performance of our
method surpasses current leading unsupervised methods. More precisely, our UP-Phys achieves
0.18 and 0.48 MAE accuracy on UBFC-rPPG and PURE datasets, respectively. It significantly
outperforms SiNC [14] by 0.41 and 0.13 on these two datasets. Note that while our UP-Phys
is based on Contrast-Phys [13], it significantly outperforms Contrast-Phys. This success is
attributed to the pivotal role of prior knowledge and UP-Phys’s keen ability to focus on regions
abundant in rPPG information, simultaneously demonstrating the effectiveness of our proposed
method.
Comparisonwith SupervisedMethods. Supervised methods such as Dual-GAN [11] perform
well on both datasets, particularly achieving excellent results with an MAE of 0.44 and an RMSE
of 0.67 on UBFC-rPPG. This can be attributed to the ability of supervised methods to utilize
labeled information in the dataset for training, facilitating the model to learn accurate heart
rate estimation patterns. However, without the label information, our proposed UP-Phys
significantly surpasses Dual-GAN. The excellent performance of our method benefits from the
insightful design of the prior knowledge. Interestingly, our method shows the potential of
unsupervised rPPG methods, and we believe this design can bring new insights to the rPPG
community.



Table 2
Intra-dataset HR results. The best results are in bold. The Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Pearson Correlation Coefficient (R) are reported.

Method Types Methods
UBFC-rPPG PURE

MAE ↓ RMSE ↓ R ↑ MAE ↓ RMSE ↓ R ↑

Supervised
PhysNet [9] - - - 2.10 2.60 0.99

PulseGAN [10] 1.19 2.10 0.98 - - -
Dual-GAN [11] 0.44 0.67 0.99 0.82 1.31 0.99

Unsupervised

Gideon2021 [12] 1.85 4.28 0.93 2.30 2.90 0.99
Contrast-Phys [13] 0.64 1.00 0.99 1.00 1.40 0.99

SiNC [14] 0.59 1.83 0.99 0.61 1.84 1.00
UP-Phys (Ours) 0.18 0.45 0.99 0.48 0.69 1.00

Table 3
Ablation studies for different components of the proposed UP-Phys on UBFC-rPPG. RAM denotes the
proposed representation augmentation module. MAE, RMSE, and R are reported.

Index Pretrain RAM MAE ↓ RMSE ↓ R ↑
1 0.64 1.00 0.99
2 0.58 1.50 0.99
3 0.33 0.65 0.99
4 0.18 0.45 0.99

3.3. Ablation Study

To evaluate the contribution of the designed component, we conduct an ablation experiment on
the UBFC-rPPG dataset, as shown in Tab. 3.

Baseline in index 1 denotes that we directly train the Contrast-Phys [13]. It is observed that
the baseline only achieves 0.64 MAE accuracy and 1.00 RMSE accuracy, showing the limited
capability of the baseline to predict accurate HR.
Effectiveness of RAM. As shown in index 2, by only adding the RAM, the MAE slightly

decreases to 0.58, but the RMSE increases to 1.50, indicating that the RAM module improves the
prediction accuracy of the model on some samples but introduces large errors on other samples.
With the help of knowledge, as shown in index 4, the MAE further decreases to 0.18 and the
RMSE to 0.45, achieving a superior performance. This indicates that prior knowledge can help
RAM significantly reduce prediction errors.
Effectiveness of Prior Knowledge. As shown in index 3, only directly adopting the pre-

train can bring significant improvement. Specifically, the MAE drops from 0.64 to 0.33 and
RMSE drops from 1.00 to 0.65. Meanwhile, this accuracy even surpasses existing unsupervised
rPPG methods, showing the effectiveness of prior knowledge.

Generally, the above observation and analysis demonstrate the effectiveness of our proposed
components.



4. Conclusion

This paper introduces a novel unsupervised method termed UP-Phys that leverages prior knowl-
edge to reduce training time and improve HR estimate accuracy notably. Furthermore, we design
a plug-and-play representation augmentation module (RAM) that dynamically enhances salient
temporal-spatial information derived from extracted features. This augmentation empowers
the network to prioritize regions abundant in rPPG information, consequently reducing the
effect of noise brought by lighting, motion, etc. Experiments on PURE and UBFC-rPPG datasets
demonstrate the effectiveness of our method. In addition, our method achieves 15.79 RMSE
accuracy in the 3rd RePSS.
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