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Abstract
Two confluent rewriting systems in noncommutatives polynomials are constructed using the equations allowing

the identification of the local coordinates (of second kind) of the graphs of the 𝜁 polymorphism as being (shuffle

or quasi-shuffle) characters and bridging two algebraic structures of polyzetas.

In each system, the left side of each rewriting rule corresponds to the leading monomial of the associated

homogeneous in weight polynomial while the right side is canonically represented on the algebra generated by

irreducible terms which encode an algebraic basis of the algebra of polyzetas.

These polynomials are totally lexicographically ordered and generate the kernels of the 𝜁 polymorphism

meaning that the free algebra of polyzetas is graded and the irreducible polyzetas are transcendent numbers,

algebraically independent.
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1. Introduction

For any 𝑟 ≥ 1 and (𝑠1, . . . , 𝑠𝑟) ∈ N≥1, for any 𝑧 ∈ ˜︂C ∖ {0, 1} and 𝑛 ≥ 1, let

Li𝑠1,...,𝑠𝑟(𝑧) :=
∑︁

𝑛1>...>𝑛𝑟>0

𝑧𝑛1

𝑛𝑠1
1 . . . 𝑛𝑠𝑟

𝑟
and H𝑠1,...,𝑠𝑟(𝑛) :=

𝑛∑︁
𝑛1>...>𝑛𝑟>0

1

𝑛𝑠1
1 . . . 𝑛𝑠𝑟

𝑟
. (1)

which are respectively called polylogarithm and harmonic sum.

Let ℋ𝑟 be {(𝑠1, . . . , 𝑠𝑟) ∈ N𝑟
≥1, 𝑠1 > 1}. Then, for any (𝑠1, . . . , 𝑠𝑟) belonging to ℋ𝑟, by a Abel’s

theorem, the following limits exist and are called polyzetas1
[9, 10]

𝜁(𝑠1, . . . , 𝑠𝑟) := lim
𝑧→1

Li𝑠1,...,𝑠𝑟(𝑧) = lim
𝑛→+∞

H𝑠1,...,𝑠𝑟(𝑛) =
∑︁

𝑛1>...>𝑛𝑟>0

𝑛−𝑠1
1 . . . 𝑛−𝑠𝑟

𝑟 . (2)

Euler earlier studied polyzetas, in particular {𝜁(𝑠1, 𝑠2)}𝑟≥1
𝑠1>1,𝑠2≥1 in classic analysis. He stated that

𝜁(6, 2) can not be expressed on 𝜁(2), ..., 𝜁(8) and proved [6]

𝜁(2, 1) = 𝜁(3) and 𝜁(𝑠, 1) =
1

2

(︁
𝑠𝜁(𝑠+ 1)−

𝑠−2∑︁
𝑗=1

𝜁(𝑗 + 1)𝜁(𝑠− 𝑗)
)︁
, 𝑠 > 1. (3)

The {𝜁(𝑠1, . . . , 𝑠𝑟)}𝑟≥1
𝑠1>1,𝑠2,...,𝑠𝑟≥1 are also called multi zeta values (MZV for short) [13] or Euler-

Zagier sums [2] and the numbers 𝑟 and 𝑠1+ . . .+ 𝑠𝑟 are, respectively, depth and weight of 𝜁(𝑠1, . . . , 𝑠𝑟).
One can also found in their biographies some recent applications of these special values in algebraic

geometry, Diophantine equations, knots invariants of Vassiliev-Kontsevich, modular forms, quantum

electrodynamic, . . . .

Many new linear relations for polyzetas are detected using LLL type algorithms in high performance

computing and the truncations of {𝜁(𝑠1, . . . , 𝑠𝑟)}𝑟≥1
𝑠1>1,𝑠2,...,𝑠𝑟≥1, i.e. {H𝑠1,...,𝑠𝑟(𝑛)}

𝑟≥1
𝑠1>1,𝑠2,...,𝑠𝑟≥1 [1,

2]. In this approach, the main problem is to detect with near certainty which polyzetas can not be
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Polyzeta is the contraction of polymorphism and of zeta (see (5)–(6) below).
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expressed on {𝜁(2), . . . , 𝜁(𝑠+ 𝑘)} and are qualified as new constants (as for Euler’s 𝜁(6, 2)) [2]. Such

polyzetas could be Q-algebraically independent on these zeta values (see Example 1 below) and the

polyzetas could be transcendent numbers (see [9, 10] for proof). Checking linear relations among

{𝜁(𝑠1, . . . , 𝑠𝑟)}𝑟≥1
𝑠1>1,𝑠2,...,𝑠𝑟≥1
2≤𝑠1+...+𝑠𝑟≤12

, Zagier stated that the Q-module generated by MZV is graded (see [9, 10]

for proof) and guessed (see [7, 8, 12] for other algebraic checks)

Conjecture 1 ([13]). Let 𝑑𝑘 := dim𝒵𝑘 and 𝒵𝑘 := spanQ{𝜁(𝑤)}
𝑟≥1
𝑠1>1,𝑠2,...,𝑠𝑟≥1

𝑠1+...+𝑠𝑟=𝑘

, for 𝑘 ≥ 1. Then

𝑑1 = 0, 𝑑2 = 𝑑3 = 1 and 𝑑𝑘 = 𝑑𝑘−3 + 𝑑𝑘−2, for 𝑘 ≥ 4.

Studying Conjecture 1, in continuation with [3, 5] by a symbolic approach, this work provides more

explanations and consequences regarding the algorithm LocalCoordinateIdentification, partially

implemented in [3] and briefly described in [4].

It applies an Abel like theorem concerning the generating series of {H𝑠1,...,𝑠𝑟}
𝑟≥1
𝑠1,...,𝑠𝑟≥1 (resp.

{Li𝑠1,...,𝑠𝑟}
𝑟≥1
𝑠1,...,𝑠𝑟≥1) [5], over the alphabet 𝑌 = {𝑦𝑘}𝑘≥1 (resp. 𝑋 = {𝑥0, 𝑥1}) generating the free

monoid (𝑌 *, 1𝑌 *) (resp. (𝑋*, 1𝑋*)) with respect to the concatenation (denoted by conc and omitted

when there is no ambiguity), the set of Lyndon words ℒ𝑦𝑛𝑌 (resp. ℒ𝑦𝑛𝑋) and the set of polynomials,

Q⟨𝑌 ⟩ (resp. Q⟨𝑋⟩). This theorem exploits the indexations of polylogarithms and harmonic sums in (1)

by words, i.e. [9, 10]

Li𝑥𝑟
0
(𝑧) = log𝑟(𝑧)/𝑟!, Li

𝑥
𝑠1−1
0 𝑥1...𝑥

𝑠𝑟−1
0 𝑥1

= Li𝑠1,...,𝑠𝑟 , H𝑦𝑠1 ...𝑦𝑠𝑟
= H𝑠1,...,𝑠𝑟 . (4)

It follows that the isomorphism of algebras H∙ : (Q⟨𝑌 ⟩, ) −→ (Q{H𝑤}𝑤∈𝑌 * ,×) (resp. Li∙ :
(Q⟨𝑋⟩, ⊔⊔) −→ (Q{Li𝑤}𝑤∈𝑋* ,×)), mapping 𝑢 (resp. 𝑣) to H𝑢 (resp. Li𝑣), induce the following

surjective polymorphism [9, 10]

𝜁 :
(Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1, ⊔⊔ , 1𝑋*)

(Q1𝑌 * ⊕ (𝑌 ∖ {𝑦1})Q⟨𝑌 ⟩, , 1𝑌 *)
−↠ (𝒵,×, 1), (5)

𝑥0𝑥
𝑠1−1
1 . . . 𝑥0𝑥

𝑠𝑘−1
1

𝑦𝑠1 . . . 𝑦𝑠𝑘
↦−→ 𝜁(𝑠1, . . . , 𝑠𝑟), (6)

where 𝒵 is the Q-algebra generated by polyzetas (not linearly free [13]) and the product (resp. ⊔⊔ )

is defined, for any 𝑢, 𝑣, 𝑤 ∈ 𝑌 *
(resp. 𝑋*

) and 𝑦𝑖, 𝑦𝑗 ∈ 𝑌 (resp. 𝑥, 𝑦 ∈ 𝑋), by

𝑤 1𝑌 * = 1𝑌 * 𝑤 = 𝑤 and 𝑦𝑖𝑢 𝑦𝑗𝑣 = 𝑦𝑖(𝑢 𝑦𝑗𝑣) + 𝑦𝑗(𝑦𝑖𝑢 𝑣) + 𝑦𝑖+𝑗(𝑢 𝑣), (7)

(resp. 𝑤 ⊔⊔ 1𝑋* = 1𝑋* ⊔⊔ 𝑤 = 𝑤 and 𝑥𝑢 ⊔⊔ 𝑦𝑣 = 𝑥(𝑢 ⊔⊔ 𝑦𝑣) + 𝑦(𝑥𝑢 ⊔⊔ 𝑣)). (8)

The graphs of the 𝜁 polymorphism in (5)–(6) are expressed as (resp. ⊔⊔ )-group like series as

follows [9, 10]

𝑍𝛾 = 𝑒𝛾𝑦1
↘∏︁

𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}

𝑒𝜁(Σ𝑙)Π𝑙
and 𝑍⊔⊔ =

↘∏︁
𝑙∈ℒ𝑦𝑛𝑋∖𝑋

𝑒𝜁(𝑆𝑙)𝑃𝑙 , (9)

where {Π𝑤}𝑤∈𝑌 * (resp. {𝑃𝑤}𝑤∈𝑋* ) is the PBW-Lyndon basis (of the Lie polynomilas {Π𝑙}𝑙∈ℒ𝑦𝑛𝑌 (resp.

{𝑃𝑙}𝑙∈ℒ𝑦𝑛𝑋 ) basis) in duality with {Σ𝑤}𝑤∈𝑋* (resp. {𝑆𝑤}𝑤∈𝑋* ) (containing the basis {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 (resp.

{𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑌 )), on the (resp. ⊔⊔ )-bialgebra [9, 10]. Finally, the identification of their local coordinates

(of second kind in the group of group like series) in the equations bridging the lagebraic structures of

polyzetas, i.e. [5]

𝑍𝛾 = 𝑒𝛾𝑦1−
∑︀

𝑘≥2 𝜁(𝑘)(−𝑦1)𝑘/𝑘𝜋𝑌 𝑍⊔⊔ and 𝑍⊔⊔ = 𝑒−𝛾𝑥1+
∑︀

𝑘≥2 𝜁(𝑘)(−𝑥1)𝑘/𝑘𝜋𝑋𝑍𝛾 , (10)

provides the algebraic relations among {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1} (resp. {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 ), independent on

𝛾, leading to the algebraic bases for Im 𝜁 and the homogenous polynomials generating ker 𝜁 [9, 10] (see

[3] for examples), with
2

the morphism of monoids 𝜋𝑌 : 𝑋*𝑥1 −→ 𝑌 *
(resp. 𝜋𝑋 : 𝑌 * −→ 𝑋*𝑥1) maps

𝑦𝑘 to 𝑥𝑘−1
0 𝑥1 (resp. 𝑥𝑘−1

0 𝑥1 to 𝑦𝑘).

2

There are one-to-one correspondences over the above monoids and that generated by N≥1, i.e 𝑥𝑠1−1
0 𝑥1 . . . 𝑥

𝑠𝑟−1
0 𝑥1 ∈

𝑋*𝑥1 ⇌
𝜋𝑌
𝜋𝑋 𝑦𝑠1 . . . 𝑦𝑠𝑟 ∈ 𝑌 * ↔ (𝑠1, . . . , 𝑠𝑟) ∈ N*

≥1
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2. Rewriting among {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1} and among {𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋

For convenience, 𝒳 denotes 𝑋 or 𝑌 and if 𝒳 = 𝑋 then gDIV = 𝑋 and CONV = 𝑥0𝑋
*𝑥1 else

gDIV = {𝑦1} and CONV = (𝑌 ∖ {𝑦1})𝑌 *
. It follows that ℒ𝑦𝑛𝒳 ∖ gDIV ⊂ CONV.

Expressing, i.e replacing “=” by “→”, the relations among polyzetas in [3] become the rewriting rules

among polyzetas and yield the following increasing sets of irreducible polyzetas (see Example 1 below)

𝒵𝒳 ,≤2
𝑖𝑟𝑟 ⊂ · · · ⊂ 𝒵𝒳 ,≤𝑝

𝑖𝑟𝑟 ⊂ · · · ⊂ 𝒵𝒳 ,∞
𝑖𝑟𝑟 (11)

and their images by a section of 𝜁 (see Example 2 below)

ℒ𝒳 ,≤2
𝑖𝑟𝑟 ⊂ · · · ⊂ ℒ𝒳 ,≤𝑝

𝑖𝑟𝑟 ⊂ · · · ⊂ ℒ𝒳 ,∞
𝑖𝑟𝑟 , (12)

such that the following restriction is an isomorphism of algebras [9, 10]

𝜁 : Q[ℒ∞
𝑖𝑟𝑟(𝒳 )] −→ Q[𝒵𝒳 ,∞

𝑖𝑟𝑟 ] = 𝒵. (13)

Note that one also has

ℒ𝒳 ,∞
𝑖𝑟𝑟 =

⋃︁
𝑝≥2

ℒ𝒳 ,≤𝑝
𝑖𝑟𝑟 and ℒ𝒳 ,∞

𝑖𝑟𝑟 =
⋃︁
𝑝≥2

ℒ𝒳 ,≤𝑝
𝑖𝑟𝑟 . (14)

Now, let us describe the algorithm LocalCoordinateIdentification below which brings aditional

results to [3]. It provides the rewriting systems (Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1,ℛ𝑋
𝑖𝑟𝑟) and (Q1𝑌 * ⊕ (𝑌 ∖

{𝑦1})Q⟨𝑌 ⟩,ℛ𝑌
𝑖𝑟𝑟) which are without critical pairs, noetherian, confluent and precisely contains the

above sets (see (11)–(12)) and, on the other hand, the set of homogenous in weight polynomials, be-

longing to Q[ℒ𝑦𝑛𝒳 ∖ gDIV], which are image by a section of the surjective 𝜁 polymorphism from

{𝜁(𝑄𝑙) = 0}𝑙∈ℒ𝑦𝑛𝒳∖gDIV. It is denoted by 𝒬𝒳 :

𝒬𝒳 = {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝒳∖gDIV (15)

and generates the shuffle or quasi-shuffle ideal ℛ𝒳 inside ker 𝜁 as follows

ℛ𝒳 := spanQ𝒬𝒳 ⊆ ker 𝜁. (16)

For any 𝑝 ≥ 2 and 𝑙 ∈ ℒ𝑦𝑛𝑝𝒳 := {𝑙 ∈ ℒ𝑦𝑛𝒳|(𝑙) = 𝑝}, any nonzero homogenous in weight

polynomial (belonging to 𝒬𝒳 ) 𝑄𝑙 = Σ𝑙 − Υ𝑙 (resp. 𝑄𝑙 = 𝑆𝑙 − 𝑈𝑙) is led by Σ𝑙 (resp. 𝑆𝑙) being

transcendent over Q[ℒ𝒳 ,≤𝑝
𝑖𝑟𝑟 ] and Υ𝑙 = 𝑄𝑙 − Σ𝑙 (resp. 𝑈𝑙 = 𝑄𝑙 − 𝑆𝑙) is canonically represented in

Q[ℒ𝒳 ,≤𝑝
𝑖𝑟𝑟 ]. Then let Σ𝑙 → Υ𝑙 and 𝑆𝑙 → 𝑈𝑙 be the rewriting rules, respectively, of

ℛ𝑌
𝑖𝑟𝑟 := {Σ𝑙 → Υ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1} and ℛ𝑋

𝑖𝑟𝑟 := {𝑆𝑙 → 𝑈𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 . (17)

On the other hand, the following assertions are equivalent (see Example 2 below)

1. 𝑄𝑙 = 0

2. Σ𝑙 ∈ ℒ𝑌,≤𝑝
𝑖𝑟𝑟 (resp. 𝑆𝑙 ∈ ℒ𝑋,≤𝑝

𝑖𝑟𝑟 ),

3. Σ𝑙 → Σ𝑙 (resp. 𝑆𝑙 → 𝑆𝑙).

In the other words, the ordering over ℒ𝑦𝑛𝒳 induces the ordering over ℒ𝒳 ,∞
𝑖𝑟𝑟 ,ℛ𝒳 ,ℛ𝒳

𝑖𝑟𝑟 and, in the

systems (Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1,ℛ𝑋
𝑖𝑟𝑟) and (Q1𝑌 * ⊕ (𝑌 ∖ {𝑦1})Q⟨𝑌 ⟩,ℛ𝑌

𝑖𝑟𝑟),

1. each irreducible term, in ℒ𝒳 ,∞
𝑖𝑟𝑟 , is an element of the algebraic basis {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1} of (Q1𝑌 * ⊕

(𝑌 ∖ {𝑦1})Q⟨𝑌 ⟩, ) (resp. {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 of (Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1, ⊔⊔)),
2. each rewriting rule, in ℛ𝒳

𝑖𝑟𝑟 , admits the left side being transcendent over Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ] and the right

side being canonically represented in Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ]. The difference of these two sides belongs to the

ordered ideal ℛ𝒳 of Q[ℒ𝑦𝑛𝒳 ∖ gDIV].
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LocalCoordinateIdentification
𝒵𝒳 ,∞
𝑖𝑟𝑟 := {};ℒ𝒳 ,∞

𝑖𝑟𝑟 := {};ℛ𝒳
𝑖𝑟𝑟 := {};𝒬𝒳 := {};

for 𝑝 ranges in 2, . . . ,∞ do
for 𝑙 ranges in the totally ordered ℒ𝑦𝑛𝑝𝒳 do
identify ⟨𝑍𝛾 |Π𝑙⟩ in 𝑍𝛾 = 𝐵(𝑦1)𝜋𝑌 𝑍⊔⊔ and ⟨𝑍⊔⊔ |𝑃𝑙⟩ in 𝑍⊔⊔ = 𝐵(𝑥1)

−1𝜋𝑋𝑍𝛾;
by elimination, obtain equations on {𝜁(Σ𝑙′)} 𝑙′∈ℒ𝑦𝑛𝑝𝑌

𝑙′⪯𝑙

and on {𝜁(𝑆𝑙′)} 𝑙′∈ℒ𝑦𝑛𝑝𝑋
𝑙′⪯𝑙

;

express3 the equations led by 𝜁(Σ𝑙) and by 𝜁(𝑆𝑙) as rewriting rules;
if 𝜁(Σ𝑙) → 𝜁(Σ𝑙) then 𝒵𝑌,∞

𝑖𝑟𝑟 := 𝒵𝑌,∞
𝑖𝑟𝑟 ∪ {𝜁(Σ𝑙)} and ℒ𝑌,∞

𝑖𝑟𝑟 := ℒ𝑌,∞
𝑖𝑟𝑟 ∪ {Σ𝑙}

else ℛ𝑌
𝑖𝑟𝑟 := ℛ𝑌

𝑖𝑟𝑟 ∪ {Σ𝑙 → Υ𝑙} and 𝒬𝑌 := 𝒬𝑌 ∪ {Σ𝑙 −Υ𝑙};
if 𝜁(𝑆𝑙) → 𝜁(𝑆𝑙) then 𝒵𝑋,∞

𝑖𝑟𝑟 := 𝒵𝑋,∞
𝑖𝑟𝑟 ∪ {𝜁(𝑆𝑙)} and ℒ𝑋,∞

𝑖𝑟𝑟 := ℒ𝑋,∞
𝑖𝑟𝑟 ∪ {𝑆𝑙}

else ℛ𝑋
𝑖𝑟𝑟 := ℛ𝑋

𝑖𝑟𝑟 ∪ {𝑆𝑙 → 𝑈𝑙} and 𝒬𝑋 := 𝒬𝑋 ∪ {𝑆𝑙 − 𝑈𝑙}
end_for

end_for

With the notations introduced in (11)–(17), on also has
4

Proposition 1 ([9, 10]). 1. ℛ𝒳 = ker 𝜁 and Q[𝒵𝒳 ,∞
𝑖𝑟𝑟 ] = 𝒵 = Im 𝜁 .

2. Q[{𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 ] = ℛ𝑋 ⊕Q[ℒ𝑋,∞
𝑖𝑟𝑟 ] and Q[{Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}] = ℛ𝑌 ⊕Q[ℒ𝑌,∞

𝑖𝑟𝑟 ].

Proof –

1. Let 𝑄 ∈ ker 𝜁, ⟨𝑄|1𝒳 *⟩ = 0. Then 𝑄 = 𝑄1 +𝑄2 (with 𝑄2 ∈ Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ] and 𝑄1 ∈ ℛ𝒳 ). Hence,

decomposing in {𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 (resp. {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}) and reducing by ℛ𝒳
𝑖𝑟𝑟 , it follows that

𝑄 ≡ℛ𝒳
𝑖𝑟𝑟

𝑄1 ∈ ℛ𝒳 and then the expected result.

Let 𝑤 ∈ CONV. Decomposing in {𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 (resp. {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}) and reducing by ℛ𝒳
𝑖𝑟𝑟 ,

𝑤 ∈ Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ]. Applying (13) and (5)–(6), 𝜁(𝑤) ∈ Q[𝒵𝒳 ,∞

𝑖𝑟𝑟 ] = 𝒵 and 𝒵 = Im 𝜁 . Extending by

linearrity, it follows the expected result.

2. For any 𝑤 ∈ CONV, decomposing in {𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 (resp. {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}) and reducing by

ℛ𝒳
𝑖𝑟𝑟, 𝜁(𝑤) ∈ Q[𝒵𝒳 ,∞

𝑖𝑟𝑟 ]. By linearity, if 𝑃 ∈ Q[{𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 ] (resp. Q[{Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}]) and

𝑃 /∈ ker 𝜁 ⊇ ℛ𝒳 then 𝜁(𝑃 ) ∈ Q[𝒵𝒳 ,∞
𝑖𝑟𝑟 ].

On the other hand, if 𝑄 ∈ ℛ𝒳 ∩ Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ] then, by (16), 𝜁(𝑄) = 0 and then, by (13), 𝑄 = 0

yielding the expected result.

□

Theorem 1 ([9, 10]). The Q-algebra 𝒵 is freely generated by 𝒵𝒳 ,∞
𝑖𝑟𝑟 and 𝒵 = Q1⊕

⨁︀
𝑘≥2𝒵𝑘.

Proof – By (13) and Proposition 1, 𝒵 is freely generated by 𝒵𝒳 ,∞
𝑖𝑟𝑟 and ker 𝜁 , being generated by the

homogenous in weight polynomials {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝒳∖gDIV, is graded. With the notations in Conjecture 1,

being isomorphic to Q1𝑌 * ⊕ (𝑌 ∖{𝑦1})Q⟨𝑌 ⟩/ ker 𝜁 and to Q1𝑋* ⊕𝑥0Q⟨𝑋⟩𝑥1/ ker 𝜁 , 𝒵 is also graded.

□

Corollary 1 ([9, 10]). Let 𝑃 ∈ ℒ𝒳 ,∞
𝑖𝑟𝑟 . Then 𝜁(𝑃 ) is a transcendent number.

Proof – Let 𝑃 ∈ Q⟨𝒳 ⟩ and 𝑃 /∈ ker 𝜁 , being homogenous in weight, or 𝑃 ∈ CONV. Since

𝒵𝑘𝒵𝑘′ ⊂ 𝒵𝑘+𝑘′ (𝑘, 𝑘′ ≥ 1) then each monomial (𝜁(𝑃 ))𝑘 (𝑘 ≥ 1) is of different weight and then, by

Theorem 1, 𝜁(𝑃 ) could not satisfy, over Q, an algebraic equation 𝑇 𝑘 + 𝑎𝑘−1𝑇
𝑘−1 + . . . = 0 meaning

that 𝜁(𝑃 ) is a transcendent number. Since any 𝑃 ∈ ℒ𝒳 ,∞
𝑖𝑟𝑟 is homogenous in weight then it follows the

expected result. □

3

This step and the following ones are not yet been achieved by the implementation in [3].

4

See also [11] for further information.
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Example 1 (irreducible polyzetas, [3]).

𝒵𝑋,≤12
𝑖𝑟𝑟 = {𝜁(𝑆𝑥0𝑥1), 𝜁(𝑆𝑥2

0𝑥1
), 𝜁(𝑆𝑥4

0𝑥1
), 𝜁(𝑆𝑥6

0𝑥1
), 𝜁(𝑆𝑥0𝑥2

1𝑥0𝑥4
1
), 𝜁(𝑆𝑥8

0𝑥1
),

𝜁(𝑆𝑥0𝑥2
1𝑥0𝑥6

1
), 𝜁(𝑆𝑥10

0 𝑥1
), 𝜁(𝑆𝑥0𝑥3

1𝑥0𝑥7
1
), 𝜁(𝑆𝑥0𝑥2

1𝑥0𝑥8
1
), 𝜁(𝑆𝑥0𝑥4

1𝑥0𝑥6
1
)}.

𝒵𝑌,≤12
𝑖𝑟𝑟 = {𝜁(Σ𝑦2), 𝜁(Σ𝑦3), 𝜁(Σ𝑦5), 𝜁(Σ𝑦7), 𝜁(Σ𝑦3𝑦51

), 𝜁(Σ𝑦9), 𝜁(Σ𝑦3𝑦71
),

𝜁(Σ𝑦11), 𝜁(Σ𝑦2𝑦91
), 𝜁(Σ𝑦3𝑦91

), 𝜁(Σ𝑦22𝑦
8
1
)}.

Example 2 (Rewriting on {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1} and {𝑆𝑙}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 , irreducible terms).
Rewriting on {Σ𝑙}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1} Rewriting on {𝑆𝑙}ℒ𝑦𝑛𝑋∖𝑋

3 Σ𝑦2𝑦1 → 3
2Σ𝑦3 𝑆𝑥0𝑥2

1
→ 𝑆𝑥2

0𝑥1

Σ𝑦4 → 2
5Σ

2
𝑦2 𝑆𝑥3

0𝑥1
→ 2

5𝑆
⊔⊔ 2
𝑥0𝑥1

4 Σ𝑦3𝑦1 → 3
10Σ

2
𝑦2 𝑆𝑥2

0𝑥
2
1

→ 1
10𝑆

⊔⊔ 2
𝑥0𝑥1

Σ𝑦2𝑦21
→ 2

3Σ
2

𝑦2 𝑆𝑥0𝑥3
1

→ 2
5𝑆

⊔⊔ 2
𝑥0𝑥1

Σ𝑦3𝑦2 → 3Σ𝑦3Σ𝑦2 − 5Σ𝑦5 𝑆𝑥3
0𝑥

2
1

→ −𝑆𝑥2
0𝑥1

𝑆𝑥0𝑥1 + 2𝑆𝑥4
0𝑥1

Σ𝑦4𝑦1 → −Σ𝑦3Σ𝑦2 +
5
2Σ𝑦5 𝑆𝑥2

0𝑥1𝑥0𝑥1
→ −3

2𝑆𝑥4
0𝑥1

+ 𝑆𝑥2
0𝑥1

𝑆𝑥0𝑥1

5 Σ𝑦22𝑦1
→ 3

2Σ𝑦3Σ𝑦2 − 25
12Σ𝑦5 𝑆𝑥2

0𝑥
3
1

→ −𝑆𝑥2
0𝑥1

𝑆𝑥0𝑥1 + 2𝑆𝑥4
0𝑥1

Σ𝑦3𝑦21
→ 5

12Σ𝑦5 𝑆𝑥0𝑥1𝑥0𝑥2
1

→ 1
2𝑆𝑥4

0𝑥1

Σ𝑦2𝑦31
→ 1

4Σ𝑦3Σ𝑦2 +
5
4Σ𝑦5 𝑆𝑥0𝑥4

1
→ 𝑆𝑥4

0𝑥1

Σ𝑦6 → 8
35Σ

3
𝑦2 𝑆𝑥5

0𝑥1
→ 8

35𝑆
⊔⊔ 3
𝑥0𝑥1

Σ𝑦4𝑦2 → Σ 2
𝑦3 − 4

21Σ
3

𝑦2 𝑆𝑥4
0𝑥

2
1

→ 6
35𝑆

⊔⊔ 3
𝑥0𝑥1 − 1

2𝑆
⊔⊔ 2

𝑥2
0𝑥1

Σ𝑦5𝑦1 → 2
7Σ

3
𝑦2 − 1

2Σ
2

𝑦3 𝑆𝑥3
0𝑥1𝑥0𝑥1

→ 4
105𝑆

⊔⊔ 3
𝑥0𝑥1

Σ𝑦3𝑦1𝑦2 → −17
30Σ

3
𝑦2 + 9

4Σ
2

𝑦3 𝑆𝑥3
0𝑥

3
1

→ 23
70𝑆

⊔⊔ 3
𝑥0𝑥1 − 𝑆

⊔⊔ 2

𝑥2
0𝑥1

Σ𝑦3𝑦2𝑦1 → 3Σ 2
𝑦3 − 9

10Σ
3

𝑦2 𝑆𝑥2
0𝑥1𝑥0𝑥2

1
→ 2

105𝑆
⊔⊔ 3
𝑥0𝑥1

6 Σ𝑦4𝑦21
→ 3

10Σ
3

𝑦2 − 3
4Σ

2
𝑦3 𝑆𝑥2

0𝑥
2
1𝑥0𝑥1

→ − 89
210𝑆

⊔⊔ 3
𝑥0𝑥1 +

3
2𝑆

⊔⊔ 2

𝑥2
0𝑥1

Σ𝑦22𝑦
2
1

→ 11
63Σ

3
𝑦2 − 1

4Σ
2

𝑦3 𝑆𝑥2
0𝑥

4
1

→ 6
35𝑆

⊔⊔ 3
𝑥0𝑥1 − 1

2𝑆
⊔⊔ 2

𝑥2
0𝑥1

Σ𝑦3𝑦31
→ 1

21Σ
3

𝑦2 𝑆𝑥0𝑥1𝑥0𝑥3
1

→ 8
21𝑆

⊔⊔ 3
𝑥0𝑥1 − 𝑆

⊔⊔ 2

𝑥2
0𝑥1

Σ𝑦2𝑦41
→ 17

50Σ
3

𝑦2 + 3
16Σ

2
𝑦3 𝑆𝑥0𝑥5

1
→ 8

35𝑆
⊔⊔ 3
𝑥0𝑥1

ℒ𝑋,≤12
𝑖𝑟𝑟 = {𝑆𝑥0𝑥1 , 𝑆𝑥2

0𝑥1
, 𝑆𝑥4

0𝑥1
, 𝑆𝑥6

0𝑥1
, 𝑆𝑥0𝑥2

1𝑥0𝑥4
1
, 𝑆𝑥8

0𝑥1
,

𝑆𝑥0𝑥2
1𝑥0𝑥6

1
, 𝑆𝑥10

0 𝑥1
, 𝑆𝑥0𝑥3

1𝑥0𝑥7
1
, 𝑆𝑥0𝑥2

1𝑥0𝑥8
1
, 𝑆𝑥0𝑥4

1𝑥0𝑥6
1
}.

ℒ𝑌,≤12
𝑖𝑟𝑟 = {Σ𝑦2 ,Σ𝑦3 ,Σ𝑦5 ,Σ𝑦7 ,Σ𝑦3𝑦51

,Σ𝑦9 ,Σ𝑦3𝑦71
,Σ𝑦11 ,Σ𝑦2𝑦91

,Σ𝑦3𝑦91
,Σ𝑦22𝑦

8
1
}.

3. Conclusion

Thanks to a Abel like theorem and the equation bridging the algebraic structures of the Q-algebra 𝒵
generated by the polyzetas [5], the algorithm LocalCoordinateIdentification provides the algebraic

relations
5

among the local coordinates, of second kind on the groups of group-like series, of the

noncommutative series 𝑍⊔⊔ (i.e. {𝜁(𝑆𝑙)}𝑙∈ℒ𝑦𝑛𝑋∖𝑋 ) and 𝑍 (i.e. {𝜁(Σ𝑙)}𝑙∈ℒ𝑦𝑛𝑌 ∖{𝑦1}). These relations

constitute two confluent rewriting systems in which the irreducible terms, belonging to 𝒵𝒳 ,∞
𝑖𝑟𝑟 , represent

the algebraic generators for 𝒵 and, on the other hand, the ⊔⊔-ideal ℛ𝑋 and the -ideal ℛ𝑌 represent

the kernels of the 𝜁 polymorphism (Proposition 1). These ideals are generated by the polynomials, totally

ordered and homogenous in weight, {𝑄𝑙}𝑙∈ℒ𝑦𝑛𝒳∖gDIV and are interpreted as the confluent rewriting

systems in which the irreducible terms belong to ℒ𝒳 ,∞
𝑖𝑟𝑟 and, in each rewriting rule of ℛ𝒳

𝑖𝑟𝑟 , the left side

5

These are different from those among {𝜁(𝑙)}𝑙∈ℒ𝑦𝑛𝒳∖gDIV obtained by “double shuffle relations” [8], for which Conjecture 1

holds, up to weight 10.
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is the leading monomial of 𝑄𝑙, 𝑙 ∈ ℒ𝑦𝑛𝒳 ∖ gDIV and is transcendent over Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ] while the right

side is canonically represented on Q[ℒ𝒳 ,∞
𝑖𝑟𝑟 ]. It follows that 𝜁(Q[ℒ𝒳 ,∞

𝑖𝑟𝑟 ]), i.e. 𝒵 , as being isomorphic to

Q1𝑋* ⊕ 𝑥0Q⟨𝑋⟩𝑥1/ℛ𝑋 and to Q1𝑌 * ⊕ (𝑌 ∖ {𝑦1})Q⟨𝑌 ⟩/ℛ𝑌 , is Q-free and graded (Theorem 1) and

then irreducible polyzetas, being Q-algebraic independent, are transcendent numbers (Corollary 1). By

these results, up to weight 12, Conjecture 1 holds (see also
6

[7, 12]), i.e. 𝒵𝒳 ,≤12
𝑖𝑟𝑟 is Q-algebraically free

(Example 2).
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