
An Optimized Path Planning of Manipulator with Spline
Curves Using Real Quantifier Elimination Based on
Comprehensive Gröbner Systems⋆

Yusuke Shirato1, Natsumi Oka1, Akira Terui2,∗ and Masahiko Mikawa3

1Master’s Program in Mathematics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
2Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
3Institute of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Japan

Abstract
This paper presents an advanced method for addressing the inverse kinematics and optimal path planning
challenges in robot manipulators. The inverse kinematics problem involves determining the joint angles for a
given position and orientation of the end-effector. Furthermore, the path planning problem seeks a trajectory
between two points. Traditional approaches in computer algebra have utilized Gröbner basis computations to
solve these problems, offering a global solution but at a high computational cost. To overcome the issue, the
present authors have proposed a novel approach that employs the Comprehensive Gröbner System (CGS) and
CGS-based quantifier elimination (CGS-QE) methods to efficiently solve the inverse kinematics problem and
certify the existence of solutions for trajectory planning. This paper extends these methods by incorporating
smooth curves via cubic spline interpolation for path planning and optimizing joint configurations using shortest
path algorithms to minimize the sum of joint configurations along a trajectory. This approach significantly
enhances the manipulator’s ability to navigate complex paths and optimize movement sequences.

Keywords
Gröbner basis, Comprehensive Gröbner Systems, Quantifier Elimination, Robotics, Inverse kinematics problem,
Path planning, Trajectory planning

1. Introduction

This paper discusses a method for solving the inverse kinematics problem and the optimal path planning
problem for a robot manipulator. A manipulator is a robot with links corresponding to human arms
and joints corresponding to human joints, and the tip is called the end-effector. The inverse kinematics
problem for manipulators is to find the angle of each joint, given the position and orientation of the
end-effector. The path planning problem is to find a path to move the end-effector between two specified
positions [1].
When operating the manipulator, one needs to solve the inverse kinematics problem (or the path

planning problem, respectively) for the desired end-effector position (or the series of positions, respec-
tively).

Methods of solving inverse kinematics problems for manipulators by reducing the inverse kinematics
problem to a system of polynomial equations and using the Gröbner basis has been proposed [2, 3, 4, 5, 6].
Solving the inverse kinematics problem using the Gröbner basis computation has an advantage that the
global solution of the inverse kinematics problem can be obtained before the end-effector will actually
be “moved” by simulation or other means. On the other hand, the Gröbner basis computation has
the disadvantage of relatively high computational cost compared to local solution methods such as
the Newton method. Furthermore, when solving a path planning problem using the Gröbner basis

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28–30, 2024, Tokyo, Japan
⋆
This work was partially supported by JKA and its promotion funds from KEIRIN RACE.
∗Corresponding author.
Envelope-Open terui@math.tsukuba.ac.jp (A. Terui); mikawa@slis.tsukuba.ac.jp (M. Mikawa)
GLOBE https://researchmap.jp/aterui (A. Terui); https://mikawalab.org/ (M. Mikawa)
Orcid 0000-0003-0846-3643 (A. Terui); 0000-0002-2193-3198 (M. Mikawa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

105

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:terui@math.tsukuba.ac.jp
mailto:mikawa@slis.tsukuba.ac.jp
https://researchmap.jp/aterui
https://mikawalab.org/
https://orcid.org/0000-0003-0846-3643
https://orcid.org/0000-0002-2193-3198
https://creativecommons.org/licenses/by/4.0/deed.en

computation, it is necessary to solve the inverse kinematics problem for each point on the path, which
is even more computationally expensive.

The third and fourth authors have also previously proposed methods for solving inverse kinematics
problems using Gröbner basis computations [7, 8, 9]. The authors’ contributions in their previous work
[9] are as follows. We have proposed a method for solving the inverse kinematics problem and the
trajectory planning problem of a 3 Degree-Of-Freedom (DOF) manipulator using the Comprehensive
Gröbner System (CGS) [10]. In the proposed method, the inverse kinematic problem has been expressed
as a system of polynomial equations with the coordinates of the end-effector as parameters and the CGS
is calculated in advance to reduce the cost of Gröbner basis computation for each point on the path. In
addition, we have proposed a method for solving the inverse kinematics problems using the CGS-QE
method [11], which is a quantifier elimination (QE) method based on CGS computations, to certify the
existence of a (real) solution. Furthermore, we have proposed a method to certify the existence of a
solution to the whole trajectory planning problem using the CGS-QE method, where the points on the
trajectory are represented by parameters.
This paper proposes the following method as an extension of the previous work [9].

1. Extension of paths used in path planning problems: while the previous work has used straight
lines, this paper uses smooth curves generated by the cubic spline interpolation passing through
given points. Using a curved path allows us to plan paths that avoid obstacles, for example.

2. Optimization of the joint configuration obtained as the solution to the path planning problem:
when solving the path planning problem, there can be multiple solutions to the inverse kinematics
problem at each point on the path. In this case, the question is which of the solutions for adjacent
points can be connected to minimize the sum of the configurations of the entire sequence of the
joints. In this paper, we reduce this problem to the shortest path problem of a weighted graph
and propose a method to compute the optimal sequence of joint configurations using shortest
path algorithms.

2. Solving path planning problems in 3-DOF manipulators

The manipulator used in this paper is myCobot 280 [12] from Elephant Robotics, Inc. (hereafter referred
to simply as “myCobot”). Although myCobot is a 6-DOF manipulator, we treat it as a 3-DOF manipulator
by operating only the three main joints used to move the end-effector while the remaining joints are
fixed, due to the computational costs for solving the inverse kinematic problem by using the CGS and
the CGS-QE method.

2.1. Formulation of the forward and the inverse kinematics problems

Figure 1 shows the components and the coordinate systems of myCobot. The forward kinematics prob-
lem for myCobot is derived using the modified Denavit-Hatenberg convention (hereafter abbreviated
as “D-H convention”), which is standard in robotics [1]. Let be the Cartesian coordinate system with
the origin at the manipulator’s base, and let (𝑥, 𝑦 , 𝑧) be the coordinates of the end-effector in . Let 𝑖 be
the coordinate system with the origin at the joint 𝑖. Note that Joint 0 represents the base and Joint 8
represents the end-effector.
Let 𝜃1, 𝜃3, 𝜃4 be the configuration of the joints 1, 3, 4, respectively, to be operated in this paper, and

let 𝑠𝑖 = sin 𝜃𝑖, 𝑐𝑖 = cos 𝜃𝑖 for 𝑖 = 1, 3, 4. In the following, for a set of polynomials 𝐹 = {𝑓1, … , 𝑓𝑚} ⊂
ℝ[𝑐1, 𝑠1, 𝑐3, 𝑠3, 𝑐4, 𝑠4], The system of polynomial equations 𝑓1 = ⋯ = 𝑓𝑚 = 0 is denoted by 𝐹 = 0. In this
case, the inverse kinematics problem is to find the solution 𝑐1, 𝑠1, 𝑐3, 𝑠3, 𝑐4, 𝑠4 to the system of polynomial

106

Figure 1: Components and the coordinate systems of myCobot.

equations 𝐹 = 0 with 𝐹 = {𝑓1, … , 𝑓6}, where

𝑓1 = −16918𝑠1𝑠3𝑐4 − 16918𝑠1𝑐3𝑠4 − 4360𝑠1𝑠3𝑠4 + 4360𝑠1𝑐3𝑐4 − 11040𝑠1𝑠3
− 6639𝑐1 + 100𝑥,

𝑓2 = 16918𝑐1𝑠3𝑐4 + 16918𝑐1𝑐3𝑠4 + 4360𝑐1𝑠3𝑠4 − 4360𝑐1𝑐3𝑐4 + 11040𝑐1𝑠3
− 6639𝑠1 + 100𝑦,

𝑓3 = −16918𝑐3𝑐4 + 16918𝑠3𝑠4 − 4360𝑐3𝑠4 − 4360𝑠3𝑐4 − 11040𝑐3
− 13156 + 100𝑧,

𝑓4 = 𝑠21 + 𝑐21 − 1, 𝑓5 = 𝑠23 + 𝑐23 − 1, 𝑓6 = 𝑠24 + 𝑐24 − 1.

(1)

Note that the system of equations 𝐹 = 0 has parameters 𝑥, 𝑦 , 𝑧 in the coefficients.
With our previously proposed method [9], before solving 𝐹 = 0, we calculate the CGS of ⟨𝑓1, … , 𝑓6⟩.

Then, for a given end-effector coordinate (𝑥, 𝑦 , 𝑧) = (𝛼, 𝛽, 𝛾) ∈ ℝ3, determine the feasibility of such a
configuration using the CGS-QE method. If the configuration is feasible, we solve 𝐹 = 0 numerically
after substituting parameters 𝑥, 𝑦 , 𝑧 with 𝛼, 𝛽, 𝛾, respectively, to obtain the inverse kinematic solution.

2.2. Generating trajectories using cubic spline interpolation

In the path planning problem, a finite number of points through which the path passes are given in
advance, and a trajectory is generated on the smooth path passing through these points. In our previous
study, a straight line was used as the path, but in this paper, a path is generated using cubic spline
interpolation [13].
Let (𝑥0, 𝑦0, 𝑧0), (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3) be four different points given in ℝ3. For 𝑗 =

0, 1, 2, calculate a curve 𝐶𝑗 passing through (𝑥𝑗, 𝑦𝑗, 𝑧𝑗) and (𝑥𝑗+1, 𝑦𝑗+1, 𝑧𝑗+1) in the form of a function
(𝑋𝑗(𝑠), 𝑌𝑗(𝑠), 𝑍𝑗(𝑠)) with 𝑠 ∈ [𝑗, 𝑗 + 1] as a parameter. In cubic spline interpolation, 𝑋𝑗(𝑠), 𝑌𝑗(𝑠), 𝑍𝑗(𝑠) are
cubic polynomials, respectively, satisfying the following conditions.

(𝑋𝑗(𝑗), 𝑌𝑗(𝑗), 𝑍𝑗(𝑗)) = (𝑥𝑗, 𝑦𝑗, 𝑧𝑗), 𝑗 = 0, 1, 2,
(𝑋𝑗(𝑗 + 1), 𝑌𝑗(𝑗 + 1), 𝑍𝑗(𝑗 + 1)) = (𝑥𝑗+1, 𝑦𝑗+1, 𝑧𝑗+1), 𝑗 = 0, 1, 2,

(𝑋 ′
𝑗 (𝑗 + 1), 𝑌 ′

𝑗 (𝑗 + 1), 𝑍 ′
𝑗 (𝑗 + 1)) = (𝑋 ′

𝑗+1(𝑗 + 1), 𝑌 ′
𝑗+1(𝑗 + 1), 𝑍 ′

𝑗+1(𝑗 + 1)), 𝑗 = 0, 1,
(𝑋″

𝑗 (𝑗 + 1), 𝑌″
𝑗 (𝑗 + 1), 𝑍″

𝑗 (𝑗 + 1)) = (𝑋″
𝑗+1(𝑗 + 1), 𝑌″

𝑗+1(𝑗 + 1), 𝑍″
𝑗+1(𝑗 + 1)), 𝑗 = 0, 1.

(2)

107

Table 1
Test points for the inverse kinematics problem. The unit of the coordinates is [mm].

Test (𝑥0, 𝑦0, 𝑧0) (𝑥1, 𝑦1, 𝑧1) (𝑥2, 𝑦2, 𝑧2) (𝑥3, 𝑦3, 𝑧3)
1 (−100, −100, 100) (0, −150, 50) (50, −100, 50) (100, 0, 0)
2 (−150, −100, 150) (0, −100, 100) (100, −50, 50) (100, 100, 0)
3 (−250, 0, 0) (−150, 0, 50) (−150, 100, 150) (250, 100, 100)
4 (100, 50, 0) (50, 100, 150) (−150, 150, 100) (−150, 50, 50)
5 (100, 100, −50) (50, 100, 0) (−100, 100, 50) (−150, −50, 100)
6 (150, 150, 0) (50, 50, 100) (−50, −50, 100) (−150, −150, 50)

In this paper, in addition to the conditions in eq. (2), we find the natural cubic Spline interpolation that
satisfies

𝑋″
0 (0) = 𝑋″

3 (3) = 𝑌″0 (0) = 𝑌″3 (3) = 𝑍″
0 (0) = 𝑍″

3 (3) = 0. (3)

2.3. Solving the inverse kinematics problem

For the trajectory 𝐶 obtained in the previous section, we solve the inverse kinematics problem using
the following procedure.
First, using the CGS-QE method, we determine the existence of solutions to the inverse kinematics

problem for each curve 𝐶𝑗 (𝑗 = 0, 1, 2) that constitutes the path to move the end-effector. In eq. (1), replace
𝑥, 𝑦 , 𝑧 in each equation by 𝑋𝑗(𝑠), 𝑌𝑗(𝑠), 𝑍𝑗(𝑠), respectively, to obtain a system of polynomial equations
with 𝑠 as parameter. Let 𝐹 ′𝑗 (𝑠) be the result.

Next, we apply the CGS-QE method to 𝐹 ′𝑗 (𝑠) to determine whether the system of equations 𝐹 ′𝑗 (𝑠) = 0
has real solutions within the parameter 𝑠 ∈ [𝑗, 𝑗 + 1]. If 𝐹 ′𝑗 (𝑠) = 0 has real solutions within the parameter
𝑠 ∈ [𝑗, 𝑗 + 1] (i.e., within 𝑠 ∈ [0, 3] throughout for 𝑠), we calculate the trajectory of the end-effector’s
position for time 𝑡. Let 𝑇 = 3𝑢 (where 𝑢 is a positive integer) and, for time 𝑡 = 0, … , 𝑇, let 𝑠 = 𝑓 (𝑡)
where 𝑓 is a continuous function of [0, 𝑇] → [0, 3]. To ensure that the end-effector has no velocity and
acceleration at the beginning and end of the trajectory, we obtain 𝑓 as a polynomial of the smallest
degree possible to satisfy 𝑓 ′(𝑡) = 𝑓 ″(𝑡) = 0 at 𝑡 = 0 and 𝑇. Then, we obtain 𝑓 (𝑡) = 3 (18𝑡

5

𝑇 5 − 45𝑡4
𝑇 4 + 30𝑡3

𝑇 3)
[14].

Finally, we solve the inverse kinematics problem 𝑡 = 0, … , 𝑇. For 𝑗 = 0, 1, 2 and 𝑡 = 𝑗𝑢, … , (𝑗 + 1)𝑢, the
configuration of the joints is obtained by solving the system of polynomial equations

𝐹 ′𝑗 (𝑓 (𝑡)) = 0. (4)

Assuming that the time required to solve the inverse kinematics problem (4) at each value of 𝑡 is constant,
then the computation time for trajectory planning is expected to be proportional to 𝑇.

2.3.1. Experimental results

We have implemented the above method and conducted experiments. The implementation of the
inverse kinematics computation was performed as follows: the CGS computation was performed using
an algorithm by Kapur et al. [15] with the implementation by Nabeshima [16] on the computer algebra
system Risa/Asir [17]. The existence of the root of the inverse kinematics problem by the CGS-QE
method was verified using Risa/Asir with accompanying Wolfram Mathematica 13.1 [18] for simplifying
the expression.

We have given the set of test points as shown in Table 1, whose unit of the coordinates is [mm]. The
experiments were conducted in the following environment: Intel Xeon Silver 4210 3.2 GHz, RAM 256
GB, Linux Kernel 5.4.0, Risa/Asir Version 20230315, Wolfram Mathematica 13.1.
Table 2 shows the results of the experiments for 𝑇 = 10 and 𝑇 = 50. The comprehensive Gröbner

system for eq. (1) uses precomputed values. If any part of the generated spline for the given coordinates
falls outside the feasible region of myCobot, an error is displayed. The average computation time does

108

Table 2
Results of path planning time in seconds.

Test 𝑇 = 10 [s] 𝑇 = 50 [s]
1 1.293 7.836
2 1.342 6.940
3 1.296 8.049
4 1.574 7.616
5 1.265 7.155
6 Fail Fail

Average 1.354 7.429

not consider the computation time of tests that resulted in an error. The experimental results show that
the computation time is considered to be approximately proportional to 𝑇. In Test 6, it appears that part
of the path exceeds the feasible region, causing the computation to terminate with an error.

2.4. Solving optimal path planning problem

The system of equations (4) may have several different solutions at each time 𝑡. For time 𝑡 = 0, … , 𝑇,
suppose that there exist 𝑘𝑗,𝑡 solutions to the configuration 𝜃𝑗 of joint 𝑗 (𝑗 = 1, 3, 4) at 𝑡 such that

𝜃(1)𝑗,𝑡 , … , 𝜃
(𝑘𝑗,𝑡)
𝑗,𝑡 . The sum of the configuration changes of the joints from time 𝑡 = 1 to 𝑇 differs de-

pending on the choice of the solution from 𝜃(1)𝑗,𝑡 , … , 𝜃
(𝑘𝑗,𝑡)
𝑗,𝑡 at each time 𝑡. In order to move each joint more

smoothly, it is desirable to select a solution that minimizes the sum of the configuration changes of
the joints on the path. For this purpose, for 𝑗 = 1, 3, 4, we define a weighted graph 𝐺𝑗 = (𝑉𝑗, 𝐸𝑗), where
𝑉𝑗 = {𝜃(𝑘)𝑗,𝑡 ∣ 𝑡 ∈ {0, … , 𝑇 }, 𝑘 ∈ {1, … , 𝑘𝑗,𝑡}} is the set of vertices corresponding to the joint configuration

at each time 𝑡, and 𝐸𝑗 = {(𝜃(𝑘1)𝑗,𝑡 , 𝜃(𝑘2)𝑗,𝑡+1) ∣ 1 ≤ 𝑘1, 𝑘2 ≤ 𝑘𝑗,𝑡, 𝑡 ∈ {0, … , 𝑇 − 1}} is the set of edges connecting
the vertices at adjacent times. Then, in 𝐺𝑗, we reduce the problem of finding the optimal path to the

one of finding the shortest path from 𝜃(𝑘)𝑗,0 to 𝜃(𝑘)𝑗,𝑇 . We have solved the shortest path problem using the
following methods.

Method 1 For 𝑡 = 0, … , 𝑇 − 1, find the sequence of joint configurations {𝜃(𝑘)𝑗,𝑡 ∣ 𝑡 = 0, … , 𝑇 } satisfying

the minimum distance between adjacent joint configurations such that min{|𝜃(𝑘1)𝑗,𝑡 − 𝜃(𝑘2)𝑗,𝑡+1| ∣ 1 ≤
𝑘1 ≤ 𝑘𝑡 ,𝑘𝑗,𝑡 , 1 ≤ 𝑘2 ≤ 𝑘𝑡+1,𝑘𝑗,𝑡+1}.

Method 2 In the graph 𝐺𝑗, find the shortest path starting at 𝜃(𝑘)𝑗,0 (𝑘 = 1,… , 𝑘𝑗,0) using the Dijkstra
method [19], then find the shortest path with the minimum length among 𝐺𝑗s.

The arithmetic complexity of each method above is estimated as follows. Let 𝑇 be the number of points
in the trajectory, and assume that the number of solutions to the inverse kinematics problem at each
point is constant at 𝑑. The complexity of Method 1 is 𝑂(𝑇𝑑). On the other hand, the complexity of
Method 2, using a binary heap, is estimated to be 𝑂(𝑇𝑑2 log(𝑇 𝑑)).

2.4.1. Experimental results

We have implemented the above method and conducted experiments. The implementation of each
procedure was based on an implementation [20] in the Python programming language. The experiments
were conducted in the following environment: A virtual machine with RAM 13.2 GB, Ubuntu 22.04.3 LTS,
Python 3.10.2 on VMware Workstation 16 Player, on the host environment with Intel Core i7-1165G7,
RAM 16 GB, Windows 11 Home.
The test points are composed of a total of 𝑇 = 15 points, obtained by dividing each segment of the

cubic spline curve passing through each point in Table 3 into 5 parts. The number of solutions to the
inverse kinematics problem at each point in each test segment is 𝑑 = 4.

109

Table 3
Test points for the optimal path planning problem. The unit of the coordinates is [mm].

Test (𝑥0, 𝑦0, 𝑧0) (𝑥1, 𝑦1, 𝑧1) (𝑥2, 𝑦2, 𝑧2) (𝑥3, 𝑦3, 𝑧3)
1 (−100, −100, 100) (0, −150, 50) (50, −100, 50) (100, 0, 0)
2 (−150, −100, 150) (0, −100, 100) (100, −50, 50) (100, 100, 0)
3 (−250, 0, 0) (−150, 0, 50) (−150, 100, 150) (250, 100, 100)
4 (100, 50, 0) (50, 100, 150) (−150, 150, 100) (−150, 50, 50)
5 (100, 100, −50) (50, 100, 0) (−100, 100, 50) (−150, −50, 100)

Table 4
The sum of the joint variations [rad].

Test Method 1 [rad] Method 2 [rad]
1 8.3142 4.4013
2 11.5985 9.8986
3 15.0005 13.6731
4 8.5828 6.3277
5 7.1897 5.7108

Average 10.1371 8.0023

Table 5
Computing time of the optimal path computation [10−4s].

Test Method 1 [10−4s] Method 2 [10−4s]
1 1.96 39.4
2 2.16 42.8
3 2.90 33.0
4 2.90 40.1
5 4.44 36.4

Average 2.87 31.3

Table 4 shows the sum of the joint variations [rad]. From the average values of each result, we see
that Method 2 (with the Dijkstra method) reduces the total amount of joint rotation.
Table 5 shows the computation time for each method. From the average computation times, it

can be seen that Method 1 is approximately 10 times faster than Method 2. Compared to the overall
computation time for route planning shown in Table 2, the computation time for optimal route selection
is considered sufficiently short, even for using Method 2 (Dijkstra method).

3. Concluding remarks

We have proposed a method for trajectory planning of robot manipulators using computer algebra,
where the path is provided by cubic spline interpolation. Furthermore, we have proposed a method to
optimize the joint configuration of the manipulator by solving the shortest path problem in a weighted
graph. The experimental results have shown that the proposed methods can be used to plan the
trajectory of the manipulator and optimize the joint configuration.
Future work includes the following.

1. Regarding path planning using cubic splines, it has been pointed out that some parts of the
generated path may deviate from the feasible region. In the future, it is necessary to consider
methods that ensure the generated trajectory stays within the feasible region while meeting given
constraints, such as avoiding obstacles. In response to this, the authors are currently proposing a
path-planning method that uses Bézier curves to generate trajectories that remain within the
feasible region [21].

110

2. Instead of representing the trajectory on the path, it is desired to express any point on the path
using parameters and ensure the solution to the inverse kinematics problem for that point. For
linear paths, a method has already been proposed by the authors [9], and this will be extended to
curves given by cubic splines.

3. Regarding optimal path planning using shortest path calculations on graphs, we have used an
implementation of Dijkstra’s algorithm using a binary heap in this paper. However, one method
to further improve computational efficiency is to use Dijkstra’s algorithm with a Fibonacci
heap [22]. For example, using an implementation of Dijkstra’s algorithm with a Fibonacci heap
can be considered to improve computational efficiency.

4. To extend the proposed method to a 6-DOF manipulator. Although myCobot is operated with
3 Degree-Of-Freedom in this paper, it originally had 6 Degree-Of-Freedom, so it is desirable to
implement methods for motion planning and path planning with 6 Degree-Of-Freedom.

References

[1] B. Siciliano, O. Khatib, Springer Handbook of Robotics, 2nd ed., Springer, 2016. doi:10.1007/
978-3-319-32552-1.

[2] J.-C. Faugère, J.-P. Merlet, F. Rouillier, On solving the direct kinematics problem for parallel robots,
Research Report RR-5923, INRIA, 2006. URL: https://hal.inria.fr/inria-00072366.

[3] C. M. Kalker-Kalkman, An implementation of Buchbergers’ algorithmwith applications to robotics,
Mech. Mach. Theory 28 (1993) 523–537. doi:10.1016/0094-114X(93)90033-R.

[4] S. Ricardo Xavier da Silva, L. Schnitman, V. Cesca Filho, A Solution of the Inverse Kinematics
Problem for a 7-Degrees-of-Freedom Serial Redundant Manipulator Using Gröbner Bases Theory,
Mathematical Problems in Engineering 2021 (2021) 6680687. doi:10.1155/2021/6680687.

[5] T. Uchida, J. McPhee, Triangularizing kinematic constraint equations using Gröbner bases for
real-time dynamic simulation, Multibody System Dynamics 25 (2011) 335–356. doi:10.1007/
s11044-010-9241-8.

[6] T. Uchida, J. McPhee, Using Gröbner bases to generate efficient kinematic solutions for the dynamic
simulation of multi-loop mechanisms, Mech. Mach. Theory 52 (2012) 144–157. doi:10.1016/j.
mechmachtheory.2012.01.015.

[7] N. Horigome, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse Kinematics Com-
putation in Robotics Using Gröbner Bases, in: A. M. Bigatti, J. Carette, J. H. Davenport, M. Joswig,
T. de Wolff (Eds.), Mathematical Software – ICMS 2020, Springer International Publishing, Cham,
2020, pp. 3–13. doi:10.1007/978-3-030-52200-1_1.

[8] S. Otaki, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse Kinematics Compu-
tation in Robotics Using Real Quantifier Elimination based on Comprehensive Gröbner Systems,
Preprint, 2021. doi:10.48550/arXiv.2111.00384, arXiv:2111.00384.

[9] M. Yoshizawa, A. Terui, M. Mikawa, Inverse Kinematics and Path Planning of Manipulator Using
Real Quantifier Elimination Based on Comprehensive Gröbner Systems, in: Computer Algebra in
Scientific Computing. CASC 2023, volume 14139 of Lecture Notes in Computer Science, Springer,
2023, pp. 393–419. doi:10.1007/978-3-031-41724-5_21.

[10] V. Weispfenning, Comprehensive Gröbner Bases, J. Symbolic Comput. 14 (1992) 1–29. doi:10.
1016/0747-7171(92)90023-W.

[11] R. Fukasaku, H. Iwane, Y. Sato, Real Quantifier Elimination by Computation of Comprehensive
Gröbner Systems, in: Proceedings of the 2015 ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC ’15, Association for Computing Machinery, New York, NY, USA,
2015, pp. 173–180. doi:10.1145/2755996.2756646.

[12] Elephant Robotics Co., Ltd., myCobot 280 M5, 2023. URL: https://www.elephantrobotics.com/
mycobot-280-m5-2023, accessed 2024-05-04.

[13] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, The Morgan Kaufmann Series in Com-
puter Graphics, 5th ed., Morgan Kaufmann, 2002. doi:10.1016/B978-1-55860-737-8.X5000-5.

111

http://dx.doi.org/10.1007/978-3-319-32552-1
http://dx.doi.org/10.1007/978-3-319-32552-1
https://hal.inria.fr/inria-00072366
http://dx.doi.org/10.1016/0094-114X(93)90033-R
http://dx.doi.org/10.1155/2021/6680687
http://dx.doi.org/10.1007/s11044-010-9241-8
http://dx.doi.org/10.1007/s11044-010-9241-8
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.015
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.015
http://dx.doi.org/10.1007/978-3-030-52200-1_1
http://dx.doi.org/10.48550/arXiv.2111.00384
http://dx.doi.org/10.1007/978-3-031-41724-5_21
http://dx.doi.org/10.1016/0747-7171(92)90023-W
http://dx.doi.org/10.1016/0747-7171(92)90023-W
http://dx.doi.org/10.1145/2755996.2756646
https://www.elephantrobotics.com/mycobot-280-m5-2023
https://www.elephantrobotics.com/mycobot-280-m5-2023
http://dx.doi.org/10.1016/B978-1-55860-737-8.X5000-5

[14] K. M. Lynch, F. C. Park, Modern Robotics: Mechanics, Planning, and Control, Cambridge University
Press, 2017.

[15] D. Kapur, Y. Sun, D. Wang, An efficient method for computing comprehensive Gröbner bases, J.
Symbolic Comput 52 (2013) 124–142. doi:10.1016/j.jsc.2012.05.015.

[16] K. Nabeshima, CGS: a program for computing comprehensive Gröbner systems in a polynomial ring
[computer software], 2018. URL: https://www.rs.tus.ac.jp/~nabeshima/softwares.html, accessed
2024-05-04.

[17] M. Noro, T. Takeshima, Risa/Asir — A Computer Algebra System, in: ISSAC ’92: Papers from the
International Symposium on Symbolic and Algebraic Computation, Association for Computing
Machinery, New York, NY, USA, 1992, pp. 387–396. doi:10.1145/143242.143362.

[18] Wolfram Research, Inc., Mathematica, Version 13.1 [computer software], 2022. URL: https://www.
wolfram.com/mathematica, accessed 2024-05-04.

[19] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.
doi:10.1007/BF01386390.

[20] simonritchie, Compute the shortest path of a graph using Dijkstra method and Python (in Japanese),
2023. URL: https://qiita.com/simonritchie/items/216eae753fc393da52af, accessed: 2024-05-04.

[21] R. Hatakeyama, A. Terui, M. Mikawa, Towards Trajectory Planning of a Robot Manipulator with
Computer Algebra using Bézier Curves, in: SCSS 2024 Work-in-progress Proceedings, Open
Publishing Association, 2024. To appear.

[22] S.-L. Guo, J. Duan, Y. Zhu, X.-C. Li, T.-W. Chen, Improved dijkstra algorithm based on fibonacci heap
for solving the shortest path problem with specified nodes, in: Computer Science and Artificial
Intelligence: Proceedings of the International Conference on Computer Science and Artificial
Intelligence (CSAI2016), World Scientific, 2017, pp. 52–61. doi:10.1142/9789813220294_0008.

112

http://dx.doi.org/10.1016/j.jsc.2012.05.015
https://www.rs.tus.ac.jp/~nabeshima/softwares.html
http://dx.doi.org/10.1145/143242.143362
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
http://dx.doi.org/10.1007/BF01386390
https://qiita.com/simonritchie/items/216eae753fc393da52af
http://dx.doi.org/10.1142/9789813220294_0008

