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Abstract
This paper addresses the problem of embedding curves, represented qualitatively as sequences of primitive
segments, onto a two-dimensional plane. These primitive segments are directed curved segments with intrinsic
direction and convexity. We define a symbolic expression to each segment, and by connecting these segments, we
can derive a symbolic expression that represents an abstract shape of a smooth continuous curve. There are an
infinite number of embeddings of the derived curve on a two-dimensional plane, since precise information such as
coordinates are missing. However, for some shape of curves, any embedding forms a spiral, which is undesirable
when the curve represents the boundary of a natural object. We propose a method for judging whether it is
possible to draw a curve not in a spiral form on a two-dimensional plane by checking the segment orientation.
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1. Introduction

Qualitative Spatial Reasoning (QSR) is a method that gives a symbolic expression to a spatial object or
the relationships between objects, focusing on a specific aspect of the spatial data, and that conducts
reasoning on this expression [1, 2, 3]. The approach requires no big data and has less computational
complexity, since it does not treat the numerical data. It also enables reasoning that suits human
recognition. The focused aspects involve relative location, direction, size, distance of objects, the shapes
of an object, and so on. Systems that combine more than one aspect are also proposed.

Previously, we proposed a qualitative representation that describes the outline of a curve as a sequence
of segments [4]. There, we defined the connection rule of curved primitive segments to obtain a smooth
continuous curve. On the other hand, there are an infinite number of embeddings of the obtained curve
on a two-dimensional plane, since precise information such as coordinates are missing. If an embedding
forms a spiral, it is not realistic as a boundary of an object in nature.

In this paper, we discuss whether there exists a way to embed a curve so that it does not form a spiral
and show the judgment method by introducing the reduction rules on the sequence of orientations of a
curve.

This paper is organized as follows. In Section 2, we describe fundamental concepts. In Section 3,
we discuss the embedding of a curve in a qualitative representation on a two-dimensional plane. In
Section 4, we propose the method of judging whether there exists an embedding that does not form a
spiral. In Section 5, we compare our work with the related works. Finally, in Section 6, we show our
concluding remarks.
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2. Fundamental Concepts

Let CURVES be a set of directed curved segments with a unique direction and curvature on a two-
dimensional plane. For 𝑋 ∈ CURVES , we represent the qualitative shape of 𝑋 focusing on its intrinsic
direction and convexity, ignoring the precise size and the exact curvature.

Let 𝑆𝑣 = {𝑛, 𝑠}, 𝑆ℎ = {𝑒, 𝑤}, 𝐶𝑜𝑛𝑣 = {𝑐𝑥, 𝑐𝑐} and 𝐷𝑖𝑟 = 𝑆𝑣 ∪ 𝑆ℎ. The symbols 𝑛, 𝑠, 𝑒 and 𝑤
indicate the north, south, east and west directions, respectively, and 𝑐𝑥 and 𝑐𝑐 indicate convex and
concave, respectively. The direction exactly in the middle between north and south (east and west) is
regarded as either 𝑛 or 𝑠 (𝑒 or 𝑤, resp.). Straight lines are not considered. For 𝑋 ∈ CURVES , 𝑋 =
(𝑉,𝐻,𝐶) is said to be the qualitative representation of 𝑋 where 𝑉 ∈ 𝑆𝑣, 𝐻 ∈ 𝑆ℎ and 𝐶 ∈ 𝐶𝑜𝑛𝑣. 𝑉,𝐻
and 𝐶 show the vertical direction, horizontal direction and the convexity of 𝑋 . For 𝑋,𝑌 ∈ CURVES ,
let 𝑋 = (𝑉,𝐻,𝐶) and 𝑌 = (𝑉 ′, 𝐻 ′, 𝐶 ′) be qualitative representations of 𝑋 and 𝑌 , respectively. We
define the relation ∼ on CURVES as follows: 𝑋 ∼ 𝑌 iff 𝑉 = 𝑉 ′, 𝐻 = 𝐻 ′ and 𝐶 = 𝐶 ′. Then ∼ is an
equivalence relation on CURVES . As a result, CURVES is classified into eight equivalence classes
which are jointly exhaustive and pairwise disjoint. We denote the set of these equivalence classes as 𝒮 ,
that is, 𝒮 = CURVES/ ∼. Then, 𝑋 ∈ CURVES is mapped to 𝑋 ∈ 𝒮 .

In this paper, a smooth continuous curve without a self-intersection is called an scurve. We connect
multiple segments in 𝒮 to create an scurve.

For 𝑋 ∈ 𝒮 , its initial and terminal points are indicated by 𝑖𝑛𝑖𝑡(𝑋) and 𝑡𝑒𝑟𝑚(𝑋), respectively. For
𝑋,𝑌 ∈ 𝒮 , if an scurve is obtained by considering that 𝑖𝑛𝑖𝑡(𝑌 ) and 𝑡𝑒𝑟𝑚(𝑋) are identical, then 𝑋 and
𝑌 are said to be directly connectable, and the outcome of the connection is represented as 𝑋 · 𝑌 . For
𝑋,𝑌 ∈ 𝒮 , if 𝑋 = 𝑌 , then they are directly connectable and the result is regarded as a single segment
without a cusp, since the precise curvatures of 𝑋 and 𝑌 are ignored. When 𝑋 and 𝑌 are directly
connectable, and 𝑋 ̸= 𝑌 , the connection of 𝑋 and 𝑌 create inflection or extremum points via direct
connections.

For 𝑋1, . . . , 𝑋𝑛 ∈ 𝒮 (𝑛 ≥ 2), if for each 𝑗 such that 1 ≤ 𝑗 ≤ 𝑛 − 1, 𝑋𝑗 and 𝑋𝑗+1 are directly
connectable, then we obtain an scurve by directly connecting 𝑋𝑗 and 𝑋𝑗+1, and the outcome of the
connections is represented as 𝑋1 · . . . ·𝑋𝑛. As a result, scurve is a sequence of qualitative representations
of curved segments.

For example, 𝑋 = (𝑛, 𝑒, 𝑐𝑥) and 𝑌 = (𝑛, 𝑒, 𝑐𝑐) are directly connectable (Figure 1(a)), and 𝑋 =
(𝑛, 𝑒, 𝑐𝑥) and 𝑌 = (𝑠, 𝑒, 𝑐𝑥) are directly connectable (Figure 1(b)). On the other hand, 𝑋 = (𝑛, 𝑒, 𝑐𝑥)
and 𝑌 = (𝑠, 𝑒, 𝑐𝑐) are not, since a cusp is created at their connection (Figure 1(c)); but if we insert
𝑍 = (𝑠, 𝑒, 𝑐𝑥) between 𝑋 and 𝑌 , then we get an scurve 𝑋 · 𝑍 · 𝑌 (Figure 1(d)).

(a) (b) (c) (d)

Figure 1: Connection of segments.

3. Embedding on a Two-Dimensional Plane

In the following, ‘embedding of 𝑋’ means an assignment of one 𝑋 ∈ CURVES to 𝑋 ∈ 𝒮 . It is defined
as follows:

1. Let 𝑋 ∈ CURVES be a curved segment on a two-dimensional plane of which 𝑋 ∈ 𝒮 is its
qualitative representation. (Note that there are infinite number of 𝑋’s.) Then 𝑋 is said to be
an embedding of 𝑋 . 𝑖𝑛𝑖𝑡(𝑋) and 𝑡𝑒𝑟𝑚(𝑋) represent the locations of the initial point and the
terminal point of 𝑋 on a two-dimensional plane, respectively.
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2. Let 𝑋1 · . . . ·𝑋𝑛 be an scurve 𝑋1 · . . . ·𝑋𝑛, and 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛) be an embedding of 𝑋𝑖. For all
𝑖 such that 1 ≤ 𝑖 ≤ 𝑛− 1, if 𝑡𝑒𝑟𝑚(𝑋𝑖) and 𝑖𝑛𝑖𝑡(𝑋𝑖+1) are located in the same position, then
𝑋1 · . . . ·𝑋𝑛 is said to be an embedding of an scurve 𝑋1 · . . . ·𝑋𝑛.

For example, Figure 2 shows two kinds of embeddings of 𝑋 · 𝑌 where 𝑋 = (𝑛, 𝑒, 𝑐𝑥) and 𝑌 =
(𝑠, 𝑒, 𝑐𝑥). The relative directions of the locations of 𝑡𝑒𝑟𝑚(𝑌 ) regarding 𝑖𝑛𝑖𝑡(𝑋) are (𝑛, 𝑒) and (𝑠, 𝑒)
in Figure 2(a) and Figure 2(b), respectively.

If an embedding of an scurve forms a spiral, it is not desirable, when an scurve corresponds to a
boundary of an actual object. However, there exists an scurve which cannot be drawn in a non-spiral
form, no matter how it is drawn. Here, we introduce a concept of an orientation of an scurve on a
symbolic expression, and discuss the shape of its embedding by checking the orientation. We show
how to determine whether there exists an embedding that does not form a spiral on a two-dimension
plane, for a given scurve. For this purpose, we introduce a concept of open/closed embedding.

For 𝑋,𝑌 ∈ 𝒮 , let 𝐶 be an embedding of an scurve from 𝑋 to 𝑌 on a two-dimensional plane, where
𝑋 and 𝑌 be embeddings of 𝑋 and 𝑌 , respectively. And 𝐶 ′ be an infinite-length curve that is obtained
by extending 𝐶 in both directions in a manner such that the curvature of 𝑋 at 𝑖𝑛𝑖𝑡(𝑋) and that of 𝑌
at 𝑡𝑒𝑟𝑚(𝑌 ) are preserved. If 𝐶 ′ has a self-intersection point, then the embedding is said to be closed;
otherwise, it is open. Figure 3 shows open (a) and closed (b) embeddings of an scurve 𝑋 · 𝑍 · 𝑌 where
𝑋 = (𝑛, 𝑒, 𝑐𝑥), 𝑍 = (𝑠, 𝑒, 𝑐𝑥) and 𝑌 = (𝑠, 𝑤, 𝑐𝑐).

(a) (b)

Figure 2: Different embeddings of 𝑋 · 𝑌 .

(a) (b)

Figure 3: Open/closed embedding of 𝑋 · 𝑍 · 𝑌 .

If there is an open embedding of an scurve, then the scurve is said to be admissible. The empty
sequence 𝜖 is considered to be admissible.

4. Admissibility

4.1. Reduction

For 𝑋 ∈ 𝒮 , its orientation is defined either as clockwise (+) or anti-clockwise (−). Moreover, the
orientation of an scurve is defined as a sequence of orientations of the segments that configure it.

• For 𝑋 ∈ 𝒮 ,
𝑜𝑟𝑛(𝑋) = ′ + ′ iff 𝑋 = (𝑛, 𝑒, 𝑐𝑥), (𝑠, 𝑒, 𝑐𝑥), (𝑠, 𝑤, 𝑐𝑐) or (𝑛,𝑤, 𝑐𝑐); 𝑜𝑟𝑛(𝑋) = ′ − ′ iff 𝑋 =
(𝑠, 𝑤, 𝑐𝑥), (𝑠, 𝑒, 𝑐𝑐), (𝑛, 𝑒, 𝑐𝑐) or (𝑛,𝑤, 𝑐𝑥).

• For 𝑋1, . . . , 𝑋𝑛 ∈ 𝒮 ,
𝑜𝑟𝑛(𝑋1 · . . . ·𝑋𝑛) = 𝑜𝑟𝑛(𝑋1) . . . 𝑜𝑟𝑛(𝑋𝑛).

We define the function 𝑖𝑛𝑣 on the set {+,−} that assigns the opposite orientation: 𝑖𝑛𝑣(+) = − and
𝑖𝑛𝑣(−) = +.

For an scurve 𝑝, the difference of the numbers of + and − that appear in 𝑜𝑟𝑛(𝑝) is said to be rotation
difference of 𝑝.

Some specific subsequences in the orientation of an scurve do not affect the judgment of its admis-
sibility. We consider a shorter sequence by removing these parts. There are two reduction rules: the
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(a) (b)

Figure 4: Examples in which admissibility is not preserved.

subsequence +−+ (or −+−) is reduced to + (or −, resp.), and the subsequence ++−− (or −−++)
is reduced to the empty sequence 𝜖.
[Reduction rules]

Let 𝜎1 and 𝜎2 be sequences of orientations and 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ {+,−}.

(r1) If 𝑠1 = 𝑠3 = 𝑖𝑛𝑣(𝑠2), then 𝜎1𝑠1𝑠2𝑠3𝜎2 is reduced to 𝜎1𝑠1𝜎2.

(r2) If 𝑠1 = 𝑠2 = 𝑖𝑛𝑣(𝑠3) = 𝑖𝑛𝑣(𝑠4) and ( 𝜎1, 𝜎2 = 𝜖 or 𝜎1, 𝜎2 ̸= 𝜖 ), then 𝜎1𝑠1𝑠2𝑠3𝑠4𝜎2 is reduced to
𝜎1𝜎2.

For a sequence of orientations 𝜎, a sequence of orientations obtained by applying the reduction rules
as far as possible is said to be a reduced form of 𝜎.

Note that the condition on 𝜎1 and 𝜎2 in (r2) are necessary. It means that if only one of 𝜎1 and 𝜎2
is an empty sequence, then admissibility of 𝑝 is not always the same with that of 𝑝′. We show two
examples that illustrate this situation.

1. Assume that 𝑝 = 𝑋1 · . . . · 𝑋9 where 𝑜𝑟𝑛(𝑝) = + + + + − − − + +. If we reduce the part
−−++ to obtain 𝑝′ = 𝑋1 · . . . ·𝑋5, then 𝑜𝑟𝑛(𝑝′) = + + + +−. In this case, 𝑝 is admissible
whereas 𝑝′ is not (Figure 4(a)).

2. Assume that 𝑝 = 𝑋1 · . . . ·𝑋7 where 𝑜𝑟𝑛(𝑝) = + ++++−−. If we reduce the part ++−−
to obtain 𝑝′ = 𝑋1 ·𝑋2 ·𝑋3, then 𝑜𝑟𝑛(𝑝′) = +++. In this case, 𝑝 is not admissible whereas 𝑝′ is
(Figure 4(b)).

For any sequence of orientations 𝜎 and any of its reduced form, the following properties hold, which
are easily proved.

Proposition 1. 1. (termination)
The reduction procedure terminates.

2. (rotation difference preservation)
The rotation difference is preserved in the reduction.

3. (reduced form)
Let 𝑠 be either + or −. A reduced form is 𝜎1𝜎2𝜎3 where 𝜎2 is a nonempty sequence of 𝑠, and 𝜎1 and
𝜎3 are the sequences of at most two 𝑖𝑛𝑣(𝑠).

Generally, a reduced form of 𝜎 is not unique. For example, when 𝜎 = +++−−+−−, if we apply
(r2) first, then we get the reduced form 𝜖; whereas if we apply (r1) first, then we get the reduced form
+−. However, admissibility of these reduced forms are the same.

In addition to Proposition 1, reduction has a significant property of preserving admissibility.

Theorem 2 (admissibility preservation). An scurve is admissible if and only if its reduced form is
admissible.
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4.2. Judgment of Admissibility

For a given scurve 𝑝, we determine its admissibility by checking its orientation.
Let 𝑝 = 𝑋1 · . . . ·𝑋𝑛 be a reduced form of a given scurve, and 𝑘 be its rotation difference.
Generally it is known that if the rotation angle of a curve is greater than or equal to 2𝜋, then it forms

a spiral and may have a self-intersection point on a two-dimensional plane. If 𝑘 ≥ 4, the rotation angle
of an scurve is greater than or equal to 2𝜋; in this case, 𝑝 is not admissible. Therefore, it is enough to
investigate the admissibility in the cases for 𝑘 ≤ 3.

When 𝑛 is more than eleven, 𝑘 ≥ 4 always holds, since there exist at most two segments at each end
of a sequence that have the opposite orientation to those in the center of the sequence. It follows that
any embedding of 𝑝 is closed, and thus 𝑝 is not admissible. When 𝑛 is less than twelve, we investigate
the admissibility of all possible orientations for scurves [5, 6]. Due to the symmetry of the orientations
+ and −, and that of the order of the sequence, symmetric orientations need not be investigated. The
introduction of the reduction significantly decreases the number of sequences to be checked, since the
length is shortened and the reduced forms are restricted as is shown in Proposition 1. For example, we
should examine four cases when 𝑛 is six, and only one case when it is eleven. And we conclude that for
any scurve, its admissibility can be determined by the sequence of its orientation, and we have gotten
the following theorem.

Theorem 3. 𝑝 is admissible if and only if 𝑘 ≤ 3, where 𝑘 is the rotation difference of the orientation of 𝑝.

5. Related Works

Embedding of curves and their intersection are frequently handled in geometry or graph theory. In
geometry, shapes with strict curvatures are considered; and in graph theory, connectivity between
nodes is the main target to be discussed and convexity of an edge is out of focus. The QSR approach
taken in this paper treats these issues from yet another viewpoint; it is suitable for human’s recognition
of abstract shapes and reasoning on an abstract level.

Although there have been lots of research on QSR, few of them focus on shapes, especially on curves.
Several systems in these works divide the boundary of an object into segments and represent its shape
by lining up the symbols corresponding to the segments [7, 8, 9]. Segments are usually equipped with
information of its shape related to their subsequent segments. Additional information such as relative
length and angle may be added to each segment [10, 11].

Several QSR systems have been proposed which focus on relative directions. Moratz et al. proposed
OPRA that represents the relative direction of spatial entities as a ternary relation [12, 13]. In OPRA, a
primitive object is considered as a vector with its initial point and terminal point, which has a similar
feature with our formalization. However, the primitive object in OPRA does not have a convexity as an
attribute, which means that OPRA cannot be applied to the generation of a smooth curve by connecting
objects.

6. Conclusion

In this paper, we have discussed the treatment of curves in a symbolic expression, focusing on the
admissibility of the curves. In conclusion, we have shown that the admissibility of a curve can be
determined by its orientation sequence: if the rotation difference is less than or equal to three, the curve
is admissible. We have introduced reduction rules that significantly decreases the number of sequences
to be checked. This framework provides a novel approach for reasoning about the shapes of curves on
a two-dimensional plane, ensuring that they do not form spirals.

It is to be considered to improve the reasoning system by relaxing the conditions on the application
of the reduction rules. In addition, we are considering formalization of the obtained result as a QSR
system, and also verification using proof assistant systems to certify the proofs.
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