
[COR: Number] [FN: Number]

Development and Evaluation of a FIWARE-based Digital
Twin Prototype for Road Systems
Juliana Hildebrandta,∗,1, Ludwig Maximilian Leibla, Dirk Habicha,1 and Wolfgang Lehnera

aDresden University of Technology (TUD), Database Research Group, Germany

Abstract
The mobility of people and goods is a central basis of our modern society with increasingly global and diverse
networked processes. In its present form, mobility, especially with regard to road traffic, is currently confronted
with global challenges (durability, safety, efficiency, ecology, costs, automation, etc.) that urgently require
fundamental solutions. In particular, we have to revise the way we plan and build roads and increasingly take
the potential of technical innovations (digitalization or sensors) into account. To enable a more sustainable,
safer, and more efficient construction and operation of roads in the future, a digital twin for the road of the
future is currently under development in the Collaborative Research Center 339 at TU Dresden and RWTH
Aachen. This paper describes an initial comprehensive case study we conducted on such a digital twin road
using the open-source platform FIWARE.

Keywords
Digital twin, Road system, FIWARE

1. Introduction

The road system is a backbone of the entire transportation infrastructure and it is currently facing
a multitude of problems and critical challenges. One key issue is that the road system is at its limit
and availability is often restricted, although road-based passenger and freight traffic has increased
significantly in recent years. Other challenges include climate change, the goal and need to conserve
resources, and the mobility transition with regard to automated driving. Therefore, the question
arises how the road system of the future can be optimally designed and operated. With reference to
a Chinese proverb One generation builds the road on which the next will drive, this question must be
researched and answered now.

The Collaborative Research Center 3392 at TU Dresden and RWTH Aachen addresses this question
and envisions a solution based on the concept of the digital twin of the road system [1]. As illustrated
in Figure 1, our vision of a digital twin road introduces interactions between the physical road system
and its virtual representation through real time monitoring and optimization of the traffic flow [1].
While the virtual representation (models of the reality in space and time) contains physical and data-
driven models of the road-tire-vehicle system, the physical road system objects (e.g., road structure,
tires, vehicles, and surrounding objects) are equipped with sensors measuring diverse parameters

DiDiT 2024 (1st International Workshop on Distributed Digital Twins), June 17, 2024, Groningen, the Netherlands
∗Corresponding author.

$ juliana.hildebrandt@tu-dresden.de (J. Hildebrandt); dirk.habich@tu-dresden.de (D. Habich);
wolfgang.lehner@tu-dresden.de (W. Lehner)
� 0000-0001-7198-8552 (J. Hildebrandt); 0000-0002-8671-5466 (D. Habich); 0000-0001-8107-2775 (W. Lehner)

1These authors contributed equally.
© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2Website: https://www.sfbtrr339.de/en/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:juliana.hildebrandt@tu-dresden.de
mailto:dirk.habich@tu-dresden.de
mailto:wolfgang.lehner@tu-dresden.de
https://orcid.org/0000-0001-7198-8552
https://orcid.org/0000-0002-8671-5466
https://orcid.org/0000-0001-8107-2775
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Vision on a digital twin road: interaction between the real road system and its virtual twin by real
time monitoring and optimization of the traffic flow [1].

such as load, pressure, deformation, temperature, or humidity. That means, the digital twin road
continuously collects and provides real time as well as precise traffic data, information on locations
with critical driving maneuvers, and information on state changes such as road damage or changing
friction conditions [1]. Based on that, our digital twin road will allow for more precise forecasts
of road status and durability, optimization of maintenance intervals, as well as optimization of the
loading of the road (e.g., by influencing the tire load distribution on the road surface by prescribing a
lateral displacement for autonomous vehicles) [1].

From a technical point of view, there is no consensus with regard to the implementation of digital
twins in general and for road systems in particular [2, 3]. Generally, there is a wide range of possible
infrastructures [4] and usable technologies [5] to choose from to build a digital twin.

Our Research Question and Contribution: So, our research question is: How suitable is the
open-source platform FIWARE3 [6, 7] for implementing a digital twin for road infrastructure in terms
of scalability and handling a large volume of data and sensors?To answer this research question,
we present a case study of a digital twin road using FIWARE in this paper. The goal of this case
study was to conduct an initial evaluation of the application potential of the FIWARE platform for
the technical implementation of a comprehensive digital twin road system. Fundamentally, FIWARE
provides a rather simple yet powerful set of APIs (Application Programming Interfaces) and combines
components enabling the connection to the Internet of Things with Context Information Management
and Big Data services in the Cloud. Specifically, the Next Generation Service Interfaces Linked Data
API (NGSI-LD API) [8, 9] is used as the standardized programming interface.

Outline: In the following section, we present two representative use cases of the digital twin road
in more detail that are decisive for our FIWARE-based use case study. Afterwards, we briefly introduce
FIWARE in Section 3, while Section 4 describes the implementation of our digital twin road prototype
for the representative use cases applying FIWARE. Then, we present selective experimental results in
Section 5. Finally, we conclude the paper with a short conclusion in Section 6.

2. Digital Twin Road and Representative Use Cases

Generally and also specifically for road systems, digital twins can and should be applied over the whole
life cycle of the physical counterpart (planning, construction, operation, and maintenance). For our

3FIWARE Website: https://www.fiware.org

initial case study, we mainly focus on the life cycle aspects of operation and maintenance. In particular,
we assume a sensor-based (or IoT-based) physical road system as a starting point, whereby a road is
hierarchically subdivided into road segments, each of which can have any number of lanes. Moreover,
several sensors as stand-alone IoT-devices are permanently installed near the road or integrated into
the road surface for each road segment and these sensors can be used to continuously record data
about the road system itself and its environment. For interaction with the physical road system, we
assume that traffic signs are installed on each segment as actuators.

2.1. Representative Use Cases

Based on an IoT-based physical road system, we present two representative use cases for a digital
twin road corresponding to the operation and the maintenance of the road system in the following.

Operation Use Case: The operational life cycle aspect is usually characterized as a real time ap-
plication by monitoring a road to automatically influence the physical twin by its virtual counterpart.
One representative example is the warning of slippery conditions. For this, we require an appropri-
ate computational model for assessing the risk of slippery conditions as e.g., presented in [10]. To
apply this model, the approach requires sensors measuring the road surface temperature, the air tem-
perature, dew point temperature — or alternatively the air humidity — and a sensor measuring the
condition of the road surface (dry, humid, or wet). Based on the most current values, the model is reg-
ularly updated and the output of the model is used to activate or deactivate a slippery road warning
signal as actuator.

Maintenance Use Case: A use case for a long-term maintenance application is, e.g., to give a
forecast of road conditions (from intact to deteriorated). Here, we also need a model that might be
physical or a data-driven model [1]. Our case study focuses on a data-driven forecast. That means, to
assess road conditions, an established performance indicator, such as the Pavement Condition Index
(PCI) [11] or other indexes, can be utilized. To create data-driven forecasting models for the mate-
rial condition of roads, machine learning methods have been successfully employed [12, 11]. These
methods can take into account several factors such as the most recent information about the road
condition and about signs of road pavement fatigue, the structure and material of the road pavement,
as well as (historical) weather data such as the number of freeze-thaw cycles per year and traffic data
as suitable input parameters. Moreover, these approaches might be used to forecast the road condi-
tions for an assumed traffic load, such that an actuator would inform the maintainers about current
or future damages to be expected and divert traffic or reduce the traffic density for individual roads
for example to minimize sum of the future repair costs.

2.2. Challenges of a Digital Twin Road

The complexity of designing and implementing digital twins for roads that are able to deal with the
introduced use cases implies various challenges, such as the highly distributed environment. The
sensors themselves often have to be integrated in the road surface to determinate slippery conditions
or pavement for physical models to assess the material fatigue [1]. In order to use a simple slippery
warning sign as an actuator, the data collected on the roadside does not necessarily have to be collated
and processed centrally (cloud computing), but might be consolidated on site (edge and fog comput-
ing) to switch the actuator on site with low latency. However, we have a different situation when it
comes to predicting the material fatigue of a road depending on the traffic load, as the latter depends
on environmental conditions, such as closures of other roads. Similarly, long-term traffic diversions
can only be implemented in a central node for an entire road network. In this use case, (pre-processed)

sensor data must be consolidated and processed at a central location in the twin architecture.
A second challenge is data heterogeneity. The combination of sensor data (also called data in

motion) from road-level sensors measuring temperature, traffic density, and other parameters with
diverse data sets such as weather conditions poses a challenge due to the inherent data heterogeneity.
Here, robust methods to harmonize and reconcile disparate data for accurate prediction of future road
conditions are required. In addition, we have to face scalability as a third challenge. The monitoring
and the road condition estimation for a single road segment is a completely different scenario com-
pared to the monitoring and the road condition prediction of an entire city or at a nation-wide level.
Thus, it is necessary to employ a scalable digital twin infrastructure to be able to manage and process
high data volumes (data in motion as well as data in rest).

3. FIWARE Platform

From a technical perspective, the FIWARE platform [13] offers a curated framework of open-source
software components that can be assembled and combined with other third-party platform compo-
nents to accelerate the development of smart solutions in different domains such as cities, manu-
facturing, or utilities [6]. Central building blocks are generic enablers (software components) and
NGSI-LD [8], standardized by ETSI ISG CIM [14], as API for the integration of generic enablers [6].
The NGSI-LD API and the corresponding information model has been developed (i) to give applica-
tion simple access to real-world information by specifying what information they need and (ii) to
support various deployment architectures on different scales. As described in [6], the NGSI-LD API
is composed of three main parts:
Core-API: has the functionality for synchronously requesting information or for subscribing to rel-

evant changes and asynchronously receiving respective notifications.
Registry API: enables distributed operations and has functionalities for registration and discovery

of NGSI-LD context sources.
Temporal API: allows accessing history information by specifying the time interval of interest.
All these properties are very interesting for the development of a digital twin for roads. Moreover, a
vibrant global FIWARE community has formed since the FIWARE Foundation was established at the
end of 2016.

4. FIWARE-based Digital Twin Road Prototype

Figure 2 shows the developed platform architecture for our case study of a digital twin road. This
three-layer architecture follows the reference architecture of a FIWARE-based vertical smart solu-
tion [6, 15]. As illustrated at the bottom of this figure, the physical IoT-based road system forms the
foundation of the digital twin road. This is followed by the subsequent layers: data acquisition, context
broker, and application. The individual components for the layers of data acquisition and context broker
are introduced next, subsequently we describe the implementation of the chosen use case application
in more detail.

4.1. Platform Architecture Components

The central component of our three-layer architecture is the context broker that is responsible for
the integration of data from multiple systems and for creating a holistic view of information/data.

IoT Agent JSON

Scorpio Context Broker

FogFlow-System

NGSI-LD Agent
(Glätteüberwachung)

NGSI-LD Agent
(Verkehrsstärke)

Straße 1

Verkehrsschild Proxy*

...

Zustandsschätzung
Glättegefahr

MQTT Broker

Kontextmanagement

Applikation

Datenintegration

Physische Realität

Andere
Datenquellen

Straßenseitige SensorikVerkehrsschild

Straße n

*Nicht implementiert

Dienst zur Prognose
der Straßen-

beschaffenheit*

application

data and context
management

data acquisition

physical reality

traffic sign

road 1 road n

 Service for
predicting road

conditions

 NGSI-LD agent
(slippery

monitoring)

 service for
predicting road

conditions

 NGSI-LD agent
(traffic load)

 Scorpio context broker

 IoT agent JSON traffic sign proxy*

MQTT broker

other data
sources

*not implemented

FogFlow system

estimating the risk
of icy conditions

roadside sensors

Figure 2: FIWARE-based platform architecture.

This component can be set up as centralized or decentralized system. For our prototype, we basically
opted for a centralized system using the NGSI-LD compliant context broker Scorpio4.

To virtually represent the physical reality of a road system within this context broker, we designed
an appropriate NGSI-LD-based data model as schematically depicted in Figure 3. Our road system
(cf. Section 2) is primarily based on the Road Smart Data Model [16], which introduces the NGSI-
LD entity type Road as shown in Figure 3. According to this model, a road is made up of a number
of road segments. From this road model, we selected specific NGSI-LD properties and relationships
relevant to our case study. Thus, the virtual road is only characterized by its name (name) and by the
subdivision into individual segments (refRoadSegment) in our digital twin. To enable referencing
from a road entity to several road segment entities, the corresponding NGSI-LD relationship must be
represented as a so-called multi-attribute of an NGSI-LD entity for such a set-based structure.

For the virtual representation of a road segment, the data model for the NGSI-LD entity type
RoadSegment is modified and extended in accordance with the Road Segment Smart Data Model (cf.

4https://github.com/ScorpioBroker/ScorpioBroker

4.1 Datenmanagement

controlledAsset

HumiditySensor
id

 location
 category
 relativeHumidity

 observedAt
 unitCode

controlledAsset

RoadSign
id

 location
 category
 warningActive

 observedAt
 commands
 warningOn
 warningOff

controlledAsset

TrafficFlowSensor
id

 location
 category
 laneId
 updateInterval

 unitCode
 carTrafficFlow

 observedAt
 truckTrafficFlow

 observedAt

refRoadSegment
TrafficFlowObserved

id
 dateOberservedFrom
 dateObservedTo
 laneId
 intensity
 vehicleType

refRoadSegment

Road
id

 name

controlledAsset

AirTemperatureSensor
id

 location
 category
 airTemperature

 observedAt
 unitCode

controlledAsset

SurfaceTemperatureSensor
id

 location
 category
 surfaceTemperature

 observedAt
 unitCode

controlledAsset

RoadSurfaceConditionSensor
id

 location
 category
 roadSurfaceCondition

 observedAt

impactsRoadSegment
RoadWork

id
 startDate
 endDate

refRoad

RoadSegment
id

 name
 startPoint
 endPoint
 constructionDate
 totalLaneNumber
 pavementType
 totalPavementThickness

 observedAt
 unitCode

 roadSlipperyRisk
 observedAt

 airTemperature
 observedAt
 unitCode

 surfaceTemperature
 observedAt
 unitCode

 roadSurfaceCondition
 observedAt

 relativeHumidity
 observedAt
 unitCode

providedBy

providedBy

providedBy

providedBy

providedBy

△ remedialAction

Abbildung 4.1 Schematische Darstellung der NGSI-LD-basierten Datenmodelle für denDigitalen Zwilling einer Straße
Zur Interaktion mit der NGSI-LD API wird für die Datenmodelle der JSON-LD @context gemäßQuelltext A.11 verwendet. Dieser enthält alle URIs der, über den NGSI-LD Core @context hin-aus in den Datenmodellen für den DZ einer Straße verwendeten, NGSI-LD Entity Types, Pro-perties und Relationships. Um dabei die in dieser Arbeit ad hoc de�nierten Konzepte hervorzu-heben, werden im @context dafür URIs mit dem Pre�x https://example.com verwendet. Fürdie aus den Smart Data Models übernommenen Konzepte werden die URIs gemäß dem JSON-LD @context1, welcher bei den Spezi�kationen der Smart Data Models jeweils angegeben ist,gewählt.
4.1.1.1 Modellierung der Straßeninfrastruktur
Die Modellierung der im Rahmen der Fallstudie angenommenen Straßeninfrastruktur baut indieser Arbeit primär auf dem Road Smart Data Model [Sma22g], durch welches der NGSI-LDEntity Type Road (vgl. Anhang A.1) eingeführt wird, sowie dem Road Segment Smart Data Mo-del [Sma22f], welches den NGSI-LD Entity Type RoadSegment (vgl. Anhang A.2) de�niert, auf.Zusätzlich wird für den DZ einer Straße zur virtuellen Repräsentation einer Erhaltungsmaß-nahme an der Straßeninfrastruktur der ad hoc de�nierte NGSI-LD Entity Type RoadWork (vgl.Anhang A.4) verwendet.
StraßeDer NGSI-LD Entity Type Road gemäß dem Road Smart Data Model dient in dieser Arbeit alsAusgangspunkt für den DZ einer Straße. Nach diesem Modell setzt sich eine Straße aus einer

1Beispiel für den JSON-LD @context für das Smart Data Models Transportation Subject aus der Smart CitiesAnwendungsdomäne: https://github.com/smart-data-models/dataModel.Transportation/blob/a1268
33aad5b905e4da20258840aa0c159917dd9/context.jsonld (besucht am 18.11.2022)

29

Figure 3: Schematic representation of the NGSI-LD-compliant data model for the developed digital twin road.

Figure 3) for our case study. For example, the geographical start (startPoint) and end position
(endPoint), a name (name), the total number of lanes (totalLaneNumber) and a reference to
the higher-level road entity (refRoad) are taken unchanged for road segments from the Road Seg-
ment Data Model. Moreover, additional NGSI-LD properties (e.g., airTemperature, humidity,
surfaceTemperature, or roadSurfaceCondition) are directly integrated into the road segment
for modeling weather and environmental observations. This simplification makes it easier to consider
the data correlation when implementing the specific use cases.

As we are assuming an IoT-based road system, we use the Device Smart Data Model [17] for
the virtual representation of an IoT device. The Device Smart Data Model is a generic data
model with which sensors and actuators can be represented. Based on this Device Smart Data
Model, independent NGSI-LD entity types are defined for each of the roadside sensors considered
in the case study (AirTemperatureSensor, SurfaceTemperatureSensor, HumiditySensor,
RoadConditionSensor and TrafficDetector) and the traffic sign, as shown in Figure 2. In addi-
tion, based on the Device Smart Data Model, each sensor is assigned to a corresponding geoposition
(location), a device type (category) and a reference to the road segment (controlledAsset) on
which the sensor is installed. Moreover, instead of modeling each sensor measurement value as a
separate NGSI-LD entity, e.g., based on the Device Measurement Smart Data Model [18], each sensor
data model is also assigned an NGSI-LD property relating to the measured variable recorded by the
sensor, including metadata for the time of measurement (observedAt) and the unit of measurement
(unitCode).

With the help of the presented NGSI-LD-compliant data model, information can now be integrated
into a holistic virtual representation of the road. To achieve that, data from the roadside sensors

1 "device_id": "airTemperatureSensor1",
2 "entity_name": "urn:ngsild:AirTemperatureSensor:airTemperatureSensor1",
3 "entity_type": "AirTemperatureSensor",
4 "timestamp": true,
5 "static_attributes":
6 [{"name": "location", "type": "GeoProperty",
7 "value": {"type": "Point","coordinates": [13.742511,51.113057]}},
8 {"name": "category", "type": "Property", "value": ["sensor"]},
9 {"name": "controlledAsset", "type": "Relationship",

10 "value": "urn:gsild:RoadSegment:roadSegment1",
11 "link": {"attributes": ["airTemperature"],
12 "name": "providedBy","type": "RoadSegment"}}],
13 "attributes":
14 [{"object_id": "temperature", "name": "airTemperature",
15 "type": "Property",
16 "metadata": {"unitCode": {"type": "Text", "value": "CEL"}}}]

Figure 4: Example configuration for provisioning an air temperature sensor IoT agent.

as well as other data sources have to be collected by the context broker. For this, the lower layer
named data acquisition of our three-layer architecture is responsible. To connect IoT-devices to
a FIWARE-based platform, the provided IoT Agent JSON within the FIWARE-framework can be
used, although an additional MQTT (Message Queuing Telemetry Transport) broker is required. The
IoT Agent specifies certain MQTT topics that an IoT device can use to provide measured values. The
virtual representation of the roadside sensors according to the presented NGSI-LD data model can be
fully configured via the IoT Agent during device provisioning. Assuming that the roadside sensors
can provide their measurement data in a JSON-based format, such as "temperature": 20.0, via MQTT,
Figure 4 shows an example configuration for registering an air temperature sensor via the IoT Agent.
In this example, an AirTemperatureSensor entity (lines 2-3) is created with NGSI-LD properties for
the geoposition of the sensor (lines 6-7), the device type (line 8), and an NGSI-LD relationship
with the road segment (lines 9-12) for which the sensor is installed. In addition, the mapping rule
for the device messages received via MQTT in JSON format is defined for an NGSI-LD property (line
13-16) so that the IoT agent can update the virtual representation of the sensor in the context broker
accordingly for each received measurement value.

Moreover, a dynamic traffic sign is considered as an actuator within the road system as part of our
case study. The IoT agents within the FIWARE framework natively support a forwarding model for
command execution via the NGSI-LD API, whereby the available commands for the IoT device can be
configured when provisioning the devices via the IoT agent. In addition to sensor and actuators, data
from other sensors (e.g., road construction data) have to be integrated. For this, our context broker
Scorpio offers rich support via so-called context producers.

4.2. Use Case Implementations

Generally, the application implementation of the described operation use case requires (i) the imple-
mentation of the computational model for the condition estimation of the risk of slipperiness as well
as (ii) the realization of the condition monitoring itself, which automatically derives operational deci-
sions regarding the switching of slipperiness warnings on traffic signs based on the virtual represen-
tation of roads and applies them in physical reality by controlling corresponding IoT devices (traffic
signs). Thus, the technical implementation of this use case requires the integration of components
for data analysis into a FIWARE-based platform. The same applies also for our maintenance use case,

as a data-driven model also has to be calculated there.
Due to the large number of FIWARE components, various implementation approaches for the in-

tegration of data analysis are possible here. As part of our use case study, we took a closer look
at the following solution approaches: (i) implementation as a stream processing pipeline in a big
data framework, (ii) implementation as an individual NGSI-LD agent and (iii) implementation in
FogFlow [19, 20]. From the considered approaches for a FIWARE-based implementation of calculation
models of roads, FogFlow emerged as the most promising approach and we therefore used it within
our prototype. FogFlow is a standard-based IoT fog computing framework that supports serverless
computing and edge computing with advanced programming models [19, 20]. Similar to the other
approaches, current context information of e.g., RoadSegment entities can be imported from Scorpio
into the FogFlow system using the subscription/notification mechanism of the NGSI-LD API. When
implementing the condition estimation as a FogFunction, the risk of slipperiness for a road segment
e.g., is determined as soon as a RoadSegment entity is imported into the FogFlow system. Generally,
a computational model for state estimation must be implemented accordingly as a FogFlow operator.
By configuring several FogFunctions, each with its own operator, different computational models can
be implemented and thus an individualization of the condition estimation with regard to the risk of
slipperiness on road segments can be achieved. Moreover, FogFlow offers the option of assigning
FogFunctions to specific road segments, e.g., by limiting the geographical region. In addition, by se-
lecting the granularity of a FogFunction, the number of specific task instances can be configured up
to an individual task instance per RoadSegment entity. Therefore, the same computational model in
an operator can be used for different segments and individualization can be carried out within the
task instance, e.g., through a segment specific parameterization.

Important to note, even if the FogFlow system holds its own virtual representation of the road
segments within the IoT brokers, the management of historical context information is not natively
supported by the FogFlow system. Therefore, historical data required for state estimation must either
be managed independently by a task instance or alternatively retrieved from Scorpio via the NGSI-LD
Temporal API.

5. Evaluation

To evaluate our developed digital twin road prototype, we used a cloud deployment using Amazon
Web Services (AWS)5. To ensure the reproducibility of the entire test environment via Infrastructure
as Code, the cloud deployment is carried out using Terraform [21]. The individual components such as
the Scorpio Context Broker, the IoT Agents, and the Fog Flow System were each placed in a separate
container, which supports the execution of the components within a scalable cloud environment. Due
to space restrictions, we will mainly focus on the operation use case below.

In a series of experimental tests, we investigated the scaling behavior of our FIWARE-based pro-
totype by examining the system behavior when integrating an increasing number of roads. For this
purpose, we constructed a reference road and by replicating this reference road, the number of roads
can be varied as desired. The reference road is subdivided into ten identical reference road segments
and each road segment is equipped with four sensors and one traffic sign as actuator as required for
the operation use case. Moreover, we simulated the values per sensor using jMeter [22] and we con-
figured jMeter to produce every minute a value to generate a corresponding load in our experiments.
The currently measured sensor values are published via MQTT. Then, the FogFlow system determines

5https://aws.amazon.com/de/

 Number of simulated roads
(n: Number of evaluated road segments)

La
te

nc
y

[s
]

La
te

nc
y

[s
]

Number of simulated roads
(n: Number of evaluated road segments)

Figure 5: Latency of the calculation of the risk of slipperiness using one context broker.

the risk if slipperiness per segment and the corresponding commands are triggered on the traffic sign
via the NGSI-LD agent.

Figure 5 shows initial results for this specific experiment, where the right-hand diagram is a zoom
into the left-hand diagram. The diagrams show the latency behavior for the calculation of the risk of
slipperiness depending on the number of roads. In this experiment, we deployed one Scorpio context
broker and four FogFlow worker each on its own EC2-instance. As we can see in Figure 5, the scaling
is very good up to 50 roads, but after that the latency increases disproportionately. In particular, this
system configuration can process the current sensor values for up to 50 roads before the new sensor
values arrive in the system and promptly issue a warning accordingly. When evaluating the system
metrics, Scorpio showed an increasing CPU and RAM utilization depending on the number of roads,
with a maximum of up to 100% when simulating 100 roads.

Therefore, the single Scorpio context appears to be a bottleneck. To evaluate this in more detail,
we also carried out the same experiments with two Scorpio instances. Although the latency for state
estimation for 100 simulated roads could be significantly reduced with a median of 31 seconds com-
pared to the previous experiments, the latencies are still not in a comparable order of magnitude as
for 10, 25 and 50 simulated roads with a median of less than 0.10 seconds in each case. In a further
experiment, we increased the number of Scorpio Context Brokers to four. With this configuration,
our FIWARE-based platform exhibits a similar system behavior for 100 roads as for the load of 10-50
roads, with a median of 0.11 seconds.

Therefore, it can be stated that load balancing is beneficial for a scalable behavior. In concrete
terms for the digital twin road, this would mean, for example, that roads should be distributed to
several independent broker instances within the FIWARE-based platform based on their geographical
location.

6. Conclusion

In this paper, we present a case study of a digital twin for road systems using the open-source platform
FIWARE. The goal of this case study was to conduct an initial evaluation of the application potential
of FIWARE for the technical implementation of a comprehensive digital twin road system. For this, we

 Number of simulated roads
(n: Number of evaluated road segments)

La
te

nc
y

[s
]

 Number of simulated roads
(n: Number of evaluated road segments)

La
te

nc
y

[s
]

Figure 6: Latency of the calculation of the risk of slipperiness using two context broker.

presented two specific use cases and explained the implementation challenges for such a system: the
distributed environment, the data heterogeneity, and the scalability issue. Then, we introduced our
common system design implemented in FIWARE for both use cases and the central role of the Scorpio
context broker, the used data model for road segments, and the configuration of sensors by example.
To evaluate our developed prototype, we used a cloud deployment using AWS for the investigation
of the scaling behavior when integrating an increasing number of roads. We observed, that with an
increasing number of road segments, the latency of the calculation of the risk of slipperiness increased
disproportionately and seems to be a bottleneck.

Returning to our research question formulated in Section 1, we can state the following: FIWARE
can indeed be used to build a digital twin for road systems. However, attention must be given to load
balancing when a large number of sensors and road segments are present by utilizing an appropri-
ate number of independent context broker instances. In particular, the number of employed broker
instances should be increased for increasing load to avoid high latencies.

Acknowledgments

The research work is supported by the German Research Foundation (SFB/TRR 339,
Project ID 453596084).

Disclosure of Interests.

The authors declare no competing interests.

References

[1] M. Kaliske, R. Behnke, I. Wollny, Vision on a digital twin of the road-tire-vehicle system for
future mobility, Tire Science and Technology 49 (2021) 2–18. doi:10.2346/tire.21.190223.

[2] O. El Marai, T. Taleb, J. Song, Roads infrastructure digital twin: A step toward smarter cities
realization, IEEE Network 35 (2020) 136–143.

http://dx.doi.org/10.2346/tire.21.190223

[3] R. Matchett, J. Wium, Digital twins for road infrastructure, in: 40th Annual Southern African
Transport Conference, 2022. URL: https://repository.up.ac.za/handle/2263/87359.

[4] E. Ferko, A. Bucaioni, M. Behnam, Architecting digital twins, IEEE Access 10 (2022) 50335–
50350. doi:https://doi.org/10.1109/ACCESS.2022.3172964.

[5] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, A. Nee, Enabling technologies and tools
for digital twin, Journal of Manufacturing Systems 58 (2021) 3–21. doi:https://doi.org/10.
1016/j.jmsy.2019.10.001.

[6] M. Bauer, FIWARE: standard-based open source components for cross-domain iot platforms, in:
8th IEEE World Forum on Internet of Things, WF-IoT 2022, Yokohama, Japan, October 26 - Nov.
11, 2022, IEEE, 2022, pp. 1–6.

[7] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B. Cheng, E. Kovacs, A standard-based open source
iot platform: FIWARE, IEEE Internet Things Mag. 2 (2019) 12–18.

[8] ETSI, Context information management (cim); ngsi-ld api, https://www.etsi.org/deliver/etsi_gs/
CIM/001_099/009/01.05.01_60/gs_cim009v010501p.pdf, 2024.

[9] G. Privat, A. Medvedev, Guidelines for modelling with ngsi-ld, ETSI White Paper 42 (2021).
[10] Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV), Hinweise zur Erfassung und

Nutzung von Umfelddaten in Streckenbeeinflussungsanlagen (unfortunately only available in
German), ausgabe 2017 ed., FGSV Verlag GmbH, 2017.

[11] S. M. Piryonesi, T. E. El-Diraby, Data analytics in asset management: Cost-effective prediction of
the pavement condition index, Journal of Infrastructure Systems 26 (2020). doi:https://doi.
org/10.1061/(ASCE)IS.1943-555X.0000512.

[12] K. Chen, M. E. Torbaghan, M. Chu, L. Zhang, A. Garcia-Hernández, Identifying the most suit-
able machine learning approach for a road digital twin, Proceedings of the Institution of Civil
Engineers - Smart Infrastructure and Construction 174 (2021) 88–101. doi:https://doi.org/
10.1680/jsmic.22.00003.

[13] The FIWARE Foundation, Fiware, the open source platform for our smart digital future, https:
//www.fiware.org, 2024.

[14] ETSI, Context information management (cim); information model (mod0), https://www.etsi.org/
deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf, 2024.

[15] J. Hierro, FIWARE for Digital Twins, Position Paper, FIWARE Foundation, 2021. URL: https:
//www.fiware.org/wp-content/uploads/FF{_}PositionPaper{_}FIWARE4DigitalTwins.pdf.

[16] S. D. M. Initiative, Road smart data model, 2022. URL: https://github.com/smart-data-models/
dataModel.Transportation/blob/078fd868ab7b59bc87d2a0fb83d8b6ea7b01b49f/Road/doc/spec.
md.

[17] S. D. M. Initiative, Device smart data model, 2022. URL: https://github.com/smart-data-models/
dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/Device/doc/spec.md.

[18] S. D. M. Initiative, Device measurement smart data model, 2022. URL: https://github.com/
smart-data-models/dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/
DeviceMeasurement/doc/spec.md.

[19] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, A. Kitazawa, Fogflow: Easy programming
of iot services over cloud and edges for smart cities, IEEE Internet Things J. 5 (2018) 696–707.

[20] FogFlow, Github fogflow, https://github.com/smartfog/fogflow, 2024.
[21] HashiCorp, Terraform, 2022. URL: https://www.terraform.io.
[22] Apache Software Foundation, Apache jmeter, 2022. URL: https://jmeter.apache.org.

https://repository.up.ac.za/handle/2263/87359
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2022.3172964
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2019.10.001
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2019.10.001
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_cim009v010501p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_cim009v010501p.pdf
http://dx.doi.org/https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
http://dx.doi.org/https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
http://dx.doi.org/https://doi.org/10.1680/jsmic.22.00003
http://dx.doi.org/https://doi.org/10.1680/jsmic.22.00003
https://www.fiware.org
https://www.fiware.org
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/006/01.01.01_60/gs_CIM006v010101p.pdf
https://www.fiware.org/wp-content/uploads/FF{_}PositionPaper{_}FIWARE4DigitalTwins.pdf
https://www.fiware.org/wp-content/uploads/FF{_}PositionPaper{_}FIWARE4DigitalTwins.pdf
https://github.com/smart-data-models/dataModel.Transportation/blob/078fd868ab7b59bc87d2a0fb83d8b6ea7b01b49f/Road/doc/spec.md
https://github.com/smart-data-models/dataModel.Transportation/blob/078fd868ab7b59bc87d2a0fb83d8b6ea7b01b49f/Road/doc/spec.md
https://github.com/smart-data-models/dataModel.Transportation/blob/078fd868ab7b59bc87d2a0fb83d8b6ea7b01b49f/Road/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/Device/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/Device/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/DeviceMeasurement/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/DeviceMeasurement/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/9ce60e64de271a57931b18a340973c34b1a89672/DeviceMeasurement/doc/spec.md
https://github.com/smartfog/fogflow
https://www.terraform.io
https://jmeter.apache.org

	1 Introduction
	2 Digital Twin Road and Representative Use Cases
	2.1 Representative Use Cases
	2.2 Challenges of a Digital Twin Road

	3 FIWARE Platform
	4 FIWARE-based Digital Twin Road Prototype
	4.1 Platform Architecture Components
	4.2 Use Case Implementations

	5 Evaluation
	6 Conclusion

