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Abstract
We are interested in employing argumentation for intelligence analysis due to its obvious potential
for real-world impact. The Analysis of Competing Hypotheses, a well-known technique for multiple
hypothesis evaluation from the intelligence community, includes sensitivity analysis as a task which helps
analysts identify diagnostic information. We draw upon this notion of sensitivity analysis in this paper
to set out a novel algorithm, called the Diagnostic Argument Identifier, that is able to identify diagnostic

arguments. We employ a labelling-based approach to compute acceptance probabilities between partitions
of arguments, which are then used to calculate the mutual information between the labels of each partition
before and after the sequential removal of each argument from a framework. We present the results from
one experiment on an abstract framework to assess whether our method can identify diagnostic arguments,
and thus aid intelligence analysts. We argue that our algorithmic approach systematises and, therefore,
reduces the subjectivity of sensitivity analysis; thus, yielding benefits to intelligence analysts – or any
other expert working within a decision or deliberation setting – who need to objectively reevaluate the
dependence of their set of conclusions on observed data present within an analysis.
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1. Introduction

Our work is conducted within the setting of intelligence analysis where one of the most well-
known techniques within the intelligence community is the Analysis of Competing Hypotheses
(ACH) [1]. The ACH provides a systematic approach to hypothesis evaluation. In short, the
procedure starts with: hypothesis generation; listing of evidence; instantiation of a matrix with
hypotheses (as column headers) and information, evidence and assumptions (as row headers);
analysis of the consistency or otherwise of each row entry with each hypothesis; refinement of
the matrix, removing or combining superfluous or overlapping hypotheses, respectively; drawing
tentatively-held conclusions; sensitivity analysis to identify diagnostic row entries; and finally,
reporting the probability of hypotheses and diagnostic row entries to stakeholders.

Sensitivity analysis forces intelligence analysts to think diagnostically in that they must
establish whether the likelihood of their conclusions changes after the removal of a row entry.
A diagnostic data point is one where its removal from the analysis changes the conclusions
drawn. Although the ACH does its best to formalise hypothesis evaluation, sensitivity analysis is
a challenging and subjective task because it is difficult to remove an observed data point and act
as though it never existed when reevaluating.
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To this end, we make two contributions. The first is an evaluation-based approach to prob-
abilistic argumentation which uses the set of labellings discovered by a semantics to calculate
joint and marginal argument acceptance probabilities of partitions of arguments and their labels.
Second, we introduce the Diagnostic Argument Identifier (DAI), a novel algorithm, which applies
the equations from the first contribution to quantify diagnosticity scores of arguments within an
argumentation framework (AF), measuring the change in evaluation after the sequential removal
of each argument from a framework. Our algorithm emulates the task of sensitivity analysis and
should alleviate the reliance on human effort, through use of an algorithmic approach. In [2],
we presented an application which executes the DAI and visualises the results output from the
algorithm. The goal of this paper is to introduce the formal details underpinning the application.

The remainder of this paper is structured as follows. We begin by providing a brief overview of
abstract argumentation in Section 2. In Section 3, we present our two main contributions: the joint
and marginal argument acceptance probability equations and the DAI, which is accompanied by
the relevant pseudo-code in Section 3.4. We present and discuss a result from a single experiment
on an abstract example in Section 4. In Section 5, we relate the DAI to others’ work, and Section
6 concludes with some avenues for future research.

2. Preliminaries

We consider (finite) Dung AFs (A ,R) containing a set of arguments A and attack relations
R ✓A ⇥A [3]. For an AF G with arguments {a,b}✓A , we say that a attacks b if and only
if (a,b) 2 R. The set of arguments that attack the argument a 2 A is denoted by Att(a) =
{b | (b,a) 2R}. An admissible set of arguments has to satisfy conflict-freeness and acceptability.
A set of arguments S✓A is conflict-free if and only if @(a,b) 2 R where a,b 2 S. An argument
a 2 S ✓A is acceptable with respect to S if and only if 8b 2 A such that (b,a) 2 R, then
9c 2 S such that (c,b) 2 R.

We employ a labelling-based approach for this work because the set of labellings resulting
from semantic evaluation enabled the computation of probabilities. A labelling L of a set
of arguments S ✓ A within an AF G is a total function L (S) : S! LAB that assigns all the
arguments a 2 S to a label l 2 LAB, where LAB = {IN,OUT,UND} in the case of complete
semantics. We only consider complete labellings in this work as they are the foundation upon
which all other semantics can be defined [4]. Let G = (A ,R) be an AF and L (A ) : A ! LAB
be a labelling function. A labelling is a complete labelling if and only if 8ai 2A , it holds that:

1. L (ai) = IN if and only if L (a j) = OUT, 8a j such that a j 2 Att(ai);
2. L (ai) = OUT if and only if 9a j such that a j 2 Att(ai) and L (a j) = IN.

As a consequence of a labelling being a total function, arguments that are neither labelled IN nor
OUT are labelled UND.

Arguments labelled IN, OUT, or UND for one or all labellings are referred to as credulously or
sceptically IN, OUT, or UND, respectively.
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3. Diagnostic Argument Identifier

We now introduce our main contributions: the labelling-based argument acceptance probability
equations for partitions of argument labels, derived from a set of probability spaces (Sec. 3.1),
and then the DAI, which is an algorithm that is capable of identifying the most critical arguments
within a Dung AF. We explain how to calculate the mutual information (MI) between partitions
of labelling vectors (Sec. 3.2) and show how to conduct sensitivity analysis on an AF (Sec. 3.3).
The section closes with our second contribution, the pseudo-code for the DAI (Sec. 3.4).

3.1. Probability Spaces

We let G = (A ,R) be an AF which contains a set of N arguments A . We order the set of
arguments using a function f (A ) : A ! A, where A = (a1, ...,aN) is an ordered vector of
arguments. We assume we have a function g(A) : A!LM which assigns all arguments ai 2 A

to a set of labelling vectors, such that

LM = {Li}M

i=1 (1)

where M is the number of labelling vectors, and Li is the i-th labelling vector containing N

argument labels, such that Li = (l1, ..., lN), where l j 2 Li is the label of the argument a j 2 A and
l j 2 LAB (Sec. 2).

We now partition the set of arguments into two sets, named Af and Ay .

Definition 3.1. For an AF G = (A ,R), let the partitions of A be Af ✓A and Ay ✓A , where
Af [Ay = A and Af \Ay = /0, and the dichotomous sets A c

f and A c

y are complements such
that A c

f = A \Ay and A c

y = A \Af .

Both the sets Af and Ay are mapped to argument vectors through the function f , such that

f (Af ) : Af ! Af = {(a1, ...,a|Af |) | 8ai 2A where ai 62Ay} and (2)

f (Ay) : Ay ! Ay = {(a1, ...,a|Ay |) | 8a j 2A where a j 62Af}, (3)

respectively, where i 6= j.
The partitions Af and Ay are mapped to a corresponding set of labelling vectors through the

same function g, such that g(Af ) : Af !Lf and g(Ay) : Ay !Ly , respectively, such that

Lf = {Lf ,i}
Mf
i=1 and (4)

Ly = {Ly,i}
My
i=1 (5)

where Mf M, My M, Lf ✓LM , Ly ✓LM , and Lf ,i and Ly,i are the i-th labelling vectors
for the partitions Af and Ay , respectively.

Example 3.1. Consider a Dung AF G with arguments A = {p,q,r,s, t} and relations R =
{(q, p),(r,q),(s,q),(r,s),(s,r),(r, t),(t,r),(s, t),(t,s)} (Fig. 1a). Evaluating the AF G under
complete semantics produces four distinct labellings (Tab. 1). Following Def. 3.1, we partition
the set of arguments A into dichotomous sets, where Af = {p,q} and Ay = {r,s, t}. Using the
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Figure 1: Example of a Dung AF

Table 1
The complete labellings of the AF displayed in Figure 1a.

Labellings, L (A ) p q r s t

L1(A ) �� ��� �� ��� ���
L2(A ) �� ��� ��� �� ���
L3(A ) ��� �� ��� ��� ��
L4(A ) ��� ��� ��� ��� ���

function f , we map the sets of arguments A , Af and Ay to the argument vectors A = (p,q,r,s, t),
Af = (p,q) and Ay = (r,s, t), which enables the creation of sets of labelling vectors LM, Lf
and Ly , as shown in Eqs. 6, 7 and 8, respectively.

g(A) : A!LM =

(
0

BBBB@

IN
OUT

IN
OUT
OUT

1

CCCCA
,

0

BBBB@

IN
OUT
OUT

IN
OUT

1

CCCCA
,

0

BBBB@

OUT
IN

OUT
OUT

IN

1

CCCCA
,

0

BBBB@

UND
UND
UND
UND
UND

1

CCCCA

)
(6)

g(Af ) : Af !Lf =

(✓
IN

OUT

◆
,

✓
OUT

IN

◆
,

✓
UND
UND

◆)
(7)

g(Ay ) : Ay !Ly =

(0

@
IN

OUT
OUT

1

A ,

0

@
OUT

IN
OUT

1

A ,

0

@
OUT
OUT

IN

1

A ,

0

@
UND
UND
UND

1

A
)

(8)

We let (Wf ,Ff ,Pf ) and (Wy ,Fy ,Py) be probability spaces, where Wf and Wy are sample
spaces, Ff and Fy are event spaces, and Pf and Pf are functions such that Pf : Ff ! (0,1] and
Py : Fy ! (0,1], respectively. We consider two random variables Xf and Xy that are real-valued
measurable functions Xf : Wf ! R and Xy : Wy ! R that map results from from the sample
spaces Wf and Wy to numerical values; thus, modelling a random experiment which, in our case,
is the resulting set of labellings output from semantic evaluation of an AF.

Definition 3.2. (Random Vector). Let (W,F ,P) be a probability space where the random
vector X : W! R is a measurable function. The random vector X contains random variables
X = (Xf ,Xy) defined on two probability spaces Xf : Wf ! R and Xy : Wy ! R.

Before semantic evaluation and given the constraints of argumentation, the number of possible
elements (or labelling vectors) in the sample space W is the number of unique combinations of
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argument labels, such that

|W|= |LAB|N (9)

where |W| is the number of potential elements in the sample space W, N is the number of
arguments, and LAB is defined in Sec. 2. After semantic evaluation of an AF, the set of labelling
vectors in the sample space is reduced to a set of M labelling vectors, such that W = LM.

The probability spaces (Wf ,Ff ,Pf ) and (Wy ,Fy ,Py) are measurable spaces, where Ff⌦Fy
is the smallest s -field of potential subsets of Wf ⇥Wy ◆ W, containing all sets of the form
Lf ,i⇥Ly, j where Lf ,i 2Ff and Ly, j 2Fy , such that Ff ⌦Fy is the product s -field. Thus,
the event space F is a s -algebra containing the powerset of all elements in the product space
Ff ⌦Fy , including the empty set and the set of all events. However, after semantic evaluation,
the set of combinations of labelling vectors for each partition is, again, reduced to sets of realised
events such that Lf ⌦Ly ⇢ Ff ⌦Fy is the smallest subset of events from which we can
calculate non-zero probabilities, where Lf and Ly are shown in Eqs. 4 and 5, respectively.

The observation of the i-th outcome is denoted x
(i) 2 W which is the i-th labelling vector

x
(i) 2LM, such that x

(i) = (x(i)f ,x(i)y ) = (Lf ,i,Ly,i) 2 W. Similarly, we can observe outcomes

from different labellings, where x
(i)
f ,x( j)

y 2W are the i-th and j-th labelling vector for the partitions
Af and Ay , respectively, where i 6= j. With a slight abuse of notation, the probability of Af and
Ay ’s labelling vectors being contained in the i-th and j-th outcome in the sample space is denoted
as P(x(i)f ) or P(x( j)

y ) which refers to P(Xf = x
(i)
f ) or P(Xy = x

( j)
y ), respectively.

The joint and marginal probabilities of argument labels in each segment are the only probabili-
ties concern our calculation of the MI for each combination of Af and Ay .

3.1.1. Joint Probability

First, the joint probability of the labels of arguments in each partition measured across the i-th
and j-th outcome in the sample space W is computed using Eq. 10.

P(x(i)f , x
( j)
y ) =

1
M

M

Â
k=1

I
x
(i)
f =x

(k)
f ;x( j)

y =x
(k)
y

(10)

where IA is unity if A is true and zero otherwise.
Due to the distinct nature of labellings, there will only be one labelling vector in the sample

space W that contains the same arrangement of argument labels as the labels for arguments in
each partition. Thus, there will be M pairs of labellings vectors which produce non-zero joint
probabilities across the product space of realised argument labels in each segment. Consider
a list M containing |M | distinct i- j pairs, where |M |= Mf ⇥My , from the observed product
space Lf ⌦Ly , such that we compute |M | joint probabilities. Each joint probability across the
product space is the reciprocal of the number of labellings, if and only if both observed outcomes
feature in the same labelling vector across the sample space W, and for any other i- j pair the
probability is zero, as shown in Eq. 11.

P(x(i)f , x
( j)
y ) =

(
1
M
, iff 9m 2 {1, . . . ,M} such that i = i(m) and j = j(m)

0, otherwise.
(11)
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It follows that the list M contains M i- j pairs of labelling vectors with a joint probability
greater than zero, corresponding to the number of times that the sample space W contained those
distinct segments of argument labels, or outcomes x

(m) = (x(m)
f ,x(m)

y ) 2W.

Example 3.2. Continuing our running example, we employ the sets of labelling vectors Lf
and Ly , presented in Eqs. 7 and 8, to compute the joint probability of labels for arguments in
each partition. The product space Lf ⌦Ly contains |M |= Mf ⇥My combinations of potential
labelling vectors based on the unique vectors in each partition, where |M |= 12 in this example.
Using both Eqs. 10 and 11, it is easy to see that the first, second and last i- j pair from the product
space Lf ⌦Ly , shown in Eq. 12, is equal to 1

4 , which is 1
M

in this example. The joint probability
of the third i- j pair in Eq. 12 is equal to zero in both Eqs. 10 and 11 because that event was not
observed as a labelling vector in the sample space W (see Tab. 1).

Lf ⌦Ly =

(
0

BBBB@

IN
OUT

IN
OUT
OUT

1

CCCCA
,

0

BBBB@

IN
OUT
OUT

IN
OUT

1

CCCCA
,

0

BBBB@

IN
OUT
OUT
OUT

IN

1

CCCCA
, . . . ,

0

BBBB@

UND
UND
UND
UND
UND

1

CCCCA

)
(12)

3.1.2. Marginal Probability

The second probability that we wish to measure is the marginal probability of each unique
labelling vector in the sets Lf and Ly , which turns out to be a normalised count across a vector
subspace, counting how many times Xf = x

(i)
f and Xy = x

(i)
y occurred in the sample space W, as

shown in Eqs. 13 and 14, respectively.

P(x(i)f ) =
1
M

M

Â
j=1

I
x
(i)
f =x

( j)
f

(13)

P(x(i)y ) =
1
M

M

Â
j=1

I
x
(i)
y =x

( j)
y

(14)

Example 3.3. Consider again the running example from Fig. 1a and the partition Af with its set
of distinct labelling vectors Lf , as presented in Eq. 7. Using Eq. 13, there are three events within
the space Lf which we can calculate marginal probabilities for. The marginal probability of the
first Lf ,1 2W, second Lf ,2 2W and third event Lf ,3 2W are equal to 1

2 , 1
4 and 1

4 , respectively.

3.2. Mutual Information

We wish to quantify the amount of information in the initial AF and the extent to which removing
an argument affects the distribution of labels between partitions of other arguments. We measure
this change through the computation of the MI between partitions of argument labels before and
after the removal of an argument. The MI is a symmetric function that quantifies the conditional
dependence between two random variables and is able to determine the amount of information
communicated, on average, about one random variable through observation of another [5, 6]. The
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MI between pairs of argument labels across the realised product space Lf ⌦Ly , where Lf and
Ly are defined Eqs. 4 and 5, respectively, is shown in Eq. 15.

I(Xf ;Xy) = Â
x
(i)
f 2Lf

Â
x
( j)
y 2Ly

P(x(i)f ,x( j)
y )log

0

@ P(x(i)f ,x( j)
y )

P(x(i)f )P(x( j)
y )

1

A (15)

The units of MI depend on the base of the logarithm used in the calculation. For the purposes
of this paper, information will be measured in bits which is the logarithm to the base of two.

We simplify the MI calculation presented in Eq. 15 by conducting one summation over |M |
pairs of outcomes x

(i)
f and x

( j)
y which feature in the realised product space Lf ⌦Ly , where

|M |= Mf ⇥My , as shown in Eq. 16.

I(Xf ;Xy) = Â
(x

(i)
f ,x

( j)
y )2Lf⌦Ly

P(x(i)f ,x( j)
y )log

0

@ P(x(i)f ,x( j)
y )

P(x(i)f )P(x( j)
y )

1

A (16)

We note that many of the joint probabilities in this sum will be zero for i- j pairs of outcomes in
the product space that do not feature in the sample space. So, the only non-zero contributions to
the MI summation will be i- j pairs that are in both the observed sample space W and the product
space Lf ⌦Ly . Thus, we restrict the summation to only include outcomes x

(i)
f and x

( j)
y that have

a joint probability greater than zero, as in Eq. 17.

I(Xf ;Xy) = Â
(x

(i)
f ,x

( j)
y )2Lf⌦Ly ,P(x

(i)
f ,x

( j)
y )>0

P(x(i)f ,x( j)
y )log

0

@ P(x(i)f ,x( j)
y )

P(x(i)f )P(x( j)
y )

1

A (17)

In light of this constraint and using Eq. 11, it is easy to see that the only non-zero addends
to the MI will be from contributions where the joint probability of pairs of outcomes from the
product space feature in the same labelling from the sample space. For the sake of computational
efficiency, we substitute Eq. 11 into Eq. 17 so that the MI calculation is, therefore, reduced to a
single sum over the set of labellings for our problem setting, such that

I(Xf ;Xy) =
M

Â
x(m)2W

1
M

log

0

@ 1

M P(x(m)
f )P(x(m)

y )

1

A (18)

where x
(m) = (x(m)

f ,x(m)
y ) and W⇢Lf ⌦Ly is the space containing non-zero joint probabilities.

The MI is a symmetric function which means there will be a total of 2A

2 distinct combinations
of Af and Ay which produce unique MI calculations. We, therefore, compute the MI between
divisions of arguments for up to half the powerset to completely explore the distribution of
information communicated across the sets of labelling vectors within the initial AF.

Example 3.4. Turning back to our running example and remembering that Af = (p,q) and Ay =
(r,s, t). The MI between each segment’s set of labelling vectors was found to be I(Xf ;Xy) =
1.5 bits (1 d.p.), under complete semantics. We see that observing the labels of, say, the arguments
in Af tells us 1.5 bits of information about the labels of arguments in Ay , and vice versa.
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3.3. Sensitivity Analysis

Now that we have explained how to determine the MI between segments of labelling vectors
within the initial AF, we explain how to conduct sensitivity analysis. To start this task, we
sequentially remove each argument a 2A and the relations containing that argument from the
initial AF – creating a sensitive AF G a – which we evaluate using the same semantics chosen
earlier, and compute the MI between divisions of labelling vectors in the sensitive AF.

Definition 3.3. For an AF G = (A ,R) undergoing sensitivity analysis, we refer to G a =
(A a,Ra) as a sensitive AF which does not include the argument a

1, the argument of inter-
est, where A a = A \a such that A a ⇢A and a 62A a. For a relation r 2R, if the argument
a 2 r features in that relation, then it is removed from the set of relations such that Ra = R \R�

is the set of sensitive relations and R� = { r | 8r 2 R where a 2 r} are the relations to be
removed, where Ra ✓R.

Notation 3.1. When we say A a

f or A a

y , we are referring to the two partitions of A a within the
sensitive AF G a that obey Def. 3.1, however they use the set of sensitive arguments A a, as
outlined in Def. 3.3, instead of the set of all arguments A in the initial AF.

Again, we order the set of sensitive arguments A a using a function f (A a) : A a! A
a, such

that A
a = (a1, ...,aN�1) is a vector of arguments. We map the vector of sensitive arguments A

a to
a set of labelling vectors through the function g(Aa) : A

a!L a

M
, such that

L a

M
= {L

a

i
}M

a

i=1 (19)

where M
a is the number of labelling vectors output from semantic evaluation of the sensitive

AF G a, and L
a

i
is the i-th labelling vector containing N� 1 argument labels, such that L

a

i
=

(la

1 , ..., l
a

N�1), where l
a

j
2 L

a

i
is the label of the argument a j 2 A

a and l
a

j
2 LAB (Sec. 2).

The sets A a

f and A a

y are mapped to the argument vectors A
a

f and A
a

f through

f (A a

f ) : A a

f ! A
a

f = {(a1, ...,a|A a

f |) | 8ai 2A a where ai 62A a

y} and (20)

f (A a

y ) : A a

y ! A
a

y = {(a1, ...,a|A a
y |) | 8a j 2A a where a j 62A a

f }, (21)

respectively, where i 6= j.
The sets of distinct labelling vectors corresponding to the partitions Af and Ay are found using

g(Aa

f ) : A
a

f !L a

f = {L
a

f ,i}
M

a

f
i=1 and (22)

g(Aa

y) : A
a

y !L a

y = {L
a

y,i}
M

a
y

i=1 (23)

where M
a

f M
a, M

a

y M
a, L a

f ✓L a

M
, L a

y ✓L a

M
, and L

a

f ,i and L
a

y,i are the i-th labelling vectors
for the partitions A

a

f and A
a

y , respectively.
Using the same semantics as earlier, we evaluate the sensitive AF to observe two sets of

labelling vectors for the arguments in the vectors A
a

f and A
a

y ; thus, enabling us to compute
argument acceptance probabilities for partitions of arguments within the sensitive AF.
1It is important for the reader to note that this paper only considers the removal of one argument from an initial AF
while conducting sensitivity analysis. However, we note this approach could be extended to remove more than one
argument from an initial AF to understand how this affects the results output from sensitivity analysis.
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Notation 3.2. Let G a be a sensitive AF with the argument a removed (Def. 3.3) and A
a

f and A
a

y
be two sensitive argument vectors, mapped from the sets A a

f and A a

y , which follow Def. 3.1.
The random vector X̃ = (X̃f , X̃y) is a measurable function from a probability space (Wa,F a,Pa)
where X̃ maps elements from the sensitive sample space Wa = L a

M
to events L a

f ⌦L a

y ⇢F a.

Example 3.5. Back to our running example. We present an MI calculation for the sensitive AF
G t . To start, we employ Def. 3.3 to create a sensitive AF G t with arguments A t = {p,q,r,s} and
relations Rt = {(q, p),(r,q),(s,q),(r,s),(s,r)} (Fig. 1b). We let A t

f = {p,q} and A t

y = {r,s}
because that is the same as the original partitions (i.e., Af and Ay in Ex. 3.1) where neither A t

y
nor A t

y contain the argument t. We map the dichotomous sets of arguments A t

f and A t

y to the
argument vectors A

t

f = (p,q) and A
t

y = (r,s), respectively, through the function f . We, again,
use complete semantics to evaluate G t to observe the set labellings for each partition (Tab. 2),
allowing the realisation and mapping of each argument in A

t

f and A
t

y to their respective sets of
labelling vectors L t

f and L t

y , through the function g. The MI I(X̃f ; X̃y) between the labelling
vectors for this partition of sensitive arguments is equal to 0.9 bits (1 d.p.).

Table 2
The complete labellings of the G t displayed in Figure 1b.

Labellings, L (A t) p q r s

L1(A t) �� ��� �� ���
L2(A t) �� ��� ��� ��
L3(A t) ��� ��� ��� ���

For a sensitive AF G a, the total number of combinations of A a

f and A a

y that produce unique

MI calculations is equal to 2A a

2 , which is equal to half the number of unique MI results (i.e., 2A

2 )
that we calculate in the initial AF G .

Once we have computed the set of distinct MI results using half the possible combinations of
Af and Ay in the initial AF and A a

f and A a

y in the sensitive one, we can quantify a diagnosticity

score, which describes how much information was lost or gained between either Af and Ay ’s set
of labelling vectors after the removal of the sensitive argument, as stated in Def. 3.4.

Definition 3.4. The diagnosticity score is defined as the change in MI before (calculated using
the labelling vectors Lf and Ly for all arguments in Af and Ay from G ) and after (calculated
using L a

f and L a

y for all arguments in A a

f and A a

y from G a) the removal of the argument of
interest. Eq. 24 computes the diagnosticity score when the argument of interest a was removed
from either Af or Ay .

D(Af ,Ay ;A a

f _A a

y ) = I(Xf ;Xy)� I(X̃f ; X̃y) (24)

An interesting point to note about Eq. 24 is the sign. A positive diagnosticity score infers
that there was more information communicated, on average, between partitions in the initial AF
G , whereas a score below zero indicates that there was more information transferred between
partitions of argument labels within the sensitive AF G a.
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Example 3.6. Coming back to our running example for the last time, we consider the impact
that removing the argument t had on the acceptability of arguments within each partition in the
initial and sensitive AFs. We employed the set of labelling vectors of Af and Ay to calculate the
MI between Xf and Xy in the initial AF (Ex. 3.4), and used the set of labelling vectors of A

t

f
and A

t

y to compute the MI between X̃f and X̃y in the sensitive AF G t (Ex. 3.5). We now show
the use Def. 3.4 by presenting the diagnosticity score D(Af ,Ay ;A t

y) for the aforementioned
partitions, which turns out to be 0.6 bits (1 d.p.).

3.4. Pseudo-code for the Diagnostic Argument Identifier

We present the pseudo-code for the DAI in Algorithm 1. The algorithm takes as input an AF
G and a semantics S capable of producing more than one labelling, and returns a diagnosticity

vector D[A ][ 2A

2 ], which contains 2A

2 diagnosticity scores for every argument in the graph.

4. Experimental Evaluation

We have introduced a novel algorithm that uses an evaluation-based approach to quantify how
much the removal of an argument changes the semantic evaluation of an AF (Algo. 1). To evaluate
the effectiveness of our method, we now present the results of an experiment conducted using the
AF in our running example (Fig. 1). One of the reasons we chose to use the AF presented in Fig.
1 was because we assumed it possessed a similar topology to graphs found within an intelligence
setting (i.e., many symmetric attacks as a result of conflicting information).

Results and Discussion. We computed 2A

2 (i.e., 16) diagnosticity scores, corresponding to the
total number of segments of labelling vectors, for all arguments in the running example (Fig. 2).

Figure 2: The diagnosticity scores for the 16 partitions of labelling vectors for all arguments within the
AF G (Fig. 1), discovered using complete semantics.

Looking to Fig. 3, we present a violin plot which groups together the individual diagnosticity
scores in Fig. 2 to show the distribution of change in MI for partitions of labelling vectors after
the sequential removal of each argument in the AF G within the running example. We also
included the median and mean diagnosticity scores, as well as the average absolute values, to
better understand and compare the distribution and sign (i.e., positive or negative) of scores for
all the removed arguments.
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Algorithm 1 The Diagnostic Argument Identifier
Input: An AF G = (A ,R) and a semantics S
Output: D[A ][ 2A

2 ]

1: function DAI(G , S)
2: L (A ) . Evaluate initial AF G with chosen semantics S.
3: A = f (A ) : A ! A . Create a vector of arguments for all arguments in the initial AF.
4: W = g(A) : A!LM . Set the sample space to be equal to the set of labelling vectors from the initial AF.
5: M = |LM | . Save the number of labellings from the initial AF.
6: MIs[ 2A

2 ] . Declare the size of the initial AF’s MI results array.
7: D[A ][ 2A

2 ] . Declare the size of diagnosticity vector D.
8: for Af 2 2A

2 do . Iterate through subsets of Af in the initial AF, up to half the powerset (Def. 3.1).
9: Ay = A \Af . Create the other set Ay (Def. 3.1).

10: Af = f (Af ) : Af ! Af ; Ay = f (Ay ) : Ay ! Ay . Create the argument vectors for Af and Ay .
11: Lf = g(Af ) : Af !Lf ; Ly = g(Ay ) : Ay !Ly . Create the sets of labelling vectors (Eqs. 4 & 5).
12: I(Xf ;Xy ) = 0 . Set the MI equal to zero for the current partitions of the initial AF.

13: for (x
(m)
f ,x

(m)
y ) 2W do . Iterate through labellings in the W where both x

(m)
f and x

(m)
y occur.

14: P(x
(m)
f ); P(x

(m)
y ) . Eqs. 13 and 14, respectively.

15: I(Xf ;Xy ) += 1
M

log
✓

1
M P(x(m)

f )P(x(m)
y )

◆
. Compute the addend of the MI between segments for the

m-th labelling vector of the initial AF (Eq. 18).
16: MIs {Af , Ay , I(Xf ;Xy )} . Append the result to the array of initial MI calculations.
17: for a 2A do . Begin sensitivity analysis where a is the argument of interest.
18: G a = (A a,Ra) . Instantiate the sensitive AF (Def. 3.3).
19: L (A a) . Evaluate the sensitive AF G a with chosen semantics S.
20: A

a = f (A a) : A a! A
a . Create the argument vector for the set of all sensitive arguments.

21: Wa = g(A) : A!L a

M
. Set the sample space to be equal to the sensitive AF’s set of labelling vectors.

22: M
a = |L a

M
| . Save the number of labellings of the sensitive AF.

23: for Af , Ay , I(Af ;Ay ,) 2MIs do . Iterate through partitions and MI results from the initial AF G .
24: if a 2Af then

25: A a

f = Af \a; A a
y = Ay . Create A a

f and A a
y by removing a from Af (Defs. 3.1 & 3.3).

26: else if a 2Ay then

27: A a
y = Ay \a; A a

f = Af . Create A a

f and A a
y by removing a from Ay (Defs. 3.1 & 3.3).

28: A
a

f = f (A a

f ) : A a

f ! A
a

f ; A
a
y = f (A a

y ) : A a
y ! A

a
y . Create the sensitive AF’s argument vectors.

29: L a

f = g(Aa

f ) : A
a

f !L a

f ; L a
y = g(Aa

y ) : A
a
y !L a

y . Create the sensitive sets of labelling vectors.
30: I(X̃f ; X̃y ) = 0 . Set the MI equal to zero for the current partitions of the sensitive AF.

31: for (x̃
(m̃)
f , x̃

(m̃)
y ) 2Wa

do . Iterate through the sensitive sample space Wa

32: P(x̃
(m̃)
f ); P(x̃

(m̃)
y ) . Eqs. 13 and 14, respectively.

33: I(X̃f ; X̃y ) += 1
Ma log

✓
1

Ma P(x̃(m̃)
f )P(x̃(m̃)

y )

◆
. Compute the addend of the MI between segments for

the m̃-th labelling vector of the sensitive AF (Eq. 18).
34: if a 2Af then

35: D(Af ,Ay ;A a

f ) = I(Xf ;Xy )� I(X̃f ; X̃y ) . Compute the diagnosticity score (Eq. 24)
36: D[a] {a, Af , Ay , D(Af ,Ay ;A a

f )} . Append the result to the diagnosticity vector D

37: if a 2Ay then

38: D(Af ,Ay ;A a
y ) = I(Xf ;Xy )� I(X̃f ; X̃y ) . Compute the diagnosticity score (Eq. 24)

39: D[a] {a, Af , Ay , D(Af ,Ay ;A a
y )} . Append the result to the diagnosticity vector D

return D

Jordan Robinson, Katie Atkinson, Simon Maskell, Chris Reed

37 SAFA@COMMA 2024



Figure 3: A violin plot showing the distribution of diagnosticity scores, as well as the median, mean and
average absolute change in MI for the graph G (Fig. 1a), under complete semantics.

The argument t was arguably the most diagnostic as it had the largest median, mean and
average absolute diagnosticity scores (Fig. 3). This result is intuitive because t has symmetric
attacks between the arguments r and s such that removing t reduces the number of complete
labellings from four (Tab. 1) to three (Tab. 2).

The argument q had the second largest set of diagnosticity scores (Fig. 3). Even though q only
attacked one argument (Fig. 1) and its removal does not reduce the number of labellings (Tab.
1), the conditional dependence between t and q meant that q produced greater median and mean
diagnosticity scores. An interesting point to note is that the removal q from the initial AF would
change the label of the argument p so that it was sceptically labelled IN within the sensitive AF
G q. Thus, for the sensitive AF G q, the MI scores would equal zero for partitions where p was
the only argument in a segment (i.e., A q

f = {p} or A q

y = {p}) because the MI is always zero for
partitions that only contain arguments which are sceptically labelled.

While the arguments r and s are not the most diagnostic, their removal from the initial AF
results in the same distribution of change in MI (Fig. 3), which can be attributed to the symmetry
between them in the initial graph. The median change in MI was below zero (Fig. 3) which
indicates that, on average, more information was communicated between segments of labelling
vectors in the sensitive AFs G r and G s after the removal of r and s, respectively.

The preliminary result presented in this paper is a first attempt within the literature to combine
abstract argumentation and a technique from the information-theoretic literature for sensitivity
analysis. We were able to quantify the sensitivity, dependence and robustness of an AF’s set of
conclusions based upon the arguments it was comprised of.

5. Related Work

The prior literature covers work on probabilistic argumentation, namely the epistemic [7, 8]
and constellation [9, 10] approaches. Our method of probability computation differs from both
approaches because we do not rely on probability functions to evaluate AFs, as is the case with
the epistemic approach. Nor do we iterate through all the permutations of a graph’s topology,
counting the number of times where a user-chosen set of arguments features in an induced AF’s
set of extensions, as per the constellation approach. We note one proposal that employed the
frequency of individual argument labels to compute marginal probabilities which were then used

On Diagnostic Arguments in Abstract Argumentation

SAFA@COMMA 2024 38



in combination with a Markov network to semantically evaluate an AF [11]. Our formalised
probability calculations (see Eqs. 10, 11, 13 and 14) are the first attempt within the literature to
employ partitions of arguments and their labels to compute joint and marginal probabilities.

To the best of our knowledge, there has only been two proposals before this one which use
argumentation for sensitivity analysis. The first employs argumentation and Markov random
fields to quantify the sensitivity of items of information [12]. The second proposal evaluates the
sensitivity of initial weights assigned to arguments within the context of inverse argumentation,
where they consider whether changes in an argument’s weight affects the acceptability degree of
other arguments, computed using gradual semantics [13]. The algorithm presented in this paper
combines Dung’s original abstract AF and semantics with a set of novel probability calculations
to compute the change in MI before and after the removal of an argument of interest.

Aside from the two above works on sensitivity analysis, we consider the argument strength
literature to be the most closely related to the DAI. Strength has been represented by arbitrarily
assigning a weight to an argument [14] or using ranking-based semantics [15, 16, 17, 18, 19].
However, our approach differs from all of the above because we neither choose an argument’s
weight nor do we not alter the well-known semantics to produce a preorder on the set of arguments.

6. Conclusions and Future Work

The novel algorithm presented in this paper is one of the first attempts within the literature to use
of argumentation for sensitivity analysis. We use the labellings output from the evaluation of an
AF to compute joint and marginal argument acceptance probabilities which are employed in MI
calculations before and after the removal of an argument. We argue that the diagnosticity scores
output by the DAI provide a holistic quantification of the sensitivity, dependence and robustness
of an AF’s evaluation. We contend that such a tool would provide benefit to intelligence analysts
by algorithmically identifying sensitive arguments found within an analysis.

Future work could involve intelligence analysts, comparing the outputs from the DAI with the
outcome from sensitivity analysis conducted by a set of analysts. And, of course, extending the
DAI to include more flavoursome AFs is an obvious extension. Another avenue for future work
could be to investigate different domains in which the DAI could be applied. For instance, the
DAI could aid in decision and deliberation problems, allowing users to utilise the rational logic of
argumentation and probability theory to identify and focus on crucial arguments with their task,
or by providing reasoners with an indication of which arguments are the most important to attack
when analysing a debate. Adding or removing multiple arguments is an interesting idea to pursue
as it might better explain the diagnosticity of sets of arguments. Finally, one could argue that the
DAI, in its current state, is computationally expensive. Cheaper approaches, such as counting the
number of attacks from and to an argument or whether an argument is in a dense area of an AF,
should be explored to identify whether they are capable of producing the same results as the DAI.
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