
Fantastic Argumentation Tools And Where To Find
Them
Michele Persiani⇤, Esteban Guerrero, Andreas Brännström, Kaan Kilic and
Timotheus Kampik

Umeå University, Umeå, Sweden

Abstract
This paper presents a survey of software for computational argumentation, focusing on tools and
libraries that can be re-used for building applications. The (so far preliminary) survey is intended
as a continuously updated resource that researchers and potential practitioners can refer to when
selecting tools for their argumentation use cases. The survey results indicate that while a plethora of
argumentation tools exist, covering various formal argumentation approaches, the software engineering
maturity of the tool ecosystem is low. For example, while many tools are openly available, few are
properly documented and covered by automated tests. We argue that many of these shortcomings can be
straightforwardly addressed by following simple engineering practices if community consensus regarding
basic requirements for software artifacts can be established, as is the case in software engineering-oriented
communities.

Keywords
Computational Argumentation, Systems for Formal Argumentation, Tools for Formal Argumentation

1. Introduction

The �eld of computational argumentation has evolved from a primarily theory-oriented domain
to a vibrant research area that increasingly produces applied research results1. Still, one can
arguably assess applications of computational argumentation as nascent, e.g., in contrast to
defeasible reasoning with rules engines, or temporal reasoning, both of which are employed at
scale in large-scale real-world software systems [1, 2]. In order to further advance applications
of computational argumentation, an important prerequisite is a vibrant ecosystem of tools
and libraries for computational argumentation. Without a mature ecosystem, practitioners
would have to implement their argumentation-based software systems from scratch, which i)
increases adoption hurdles and ii) would leave the impression that the time for serious adoption
has not yet come. Over the past decade, the argumentation community has put substantial

SAFA’24: Fifth International Workshop on Systems and Algorithms for Formal Argumentation, September 17, 2024,
Hagen, Germany
⇤Corresponding author.
� michelep@cs.umu.se (M. Persiani); esteban@cs.umu.se (E. Guerrero); andreasb@cs.umu.se (A. Brännström);
kaank@cs.umu.se (K. Kilic); tkampik@cs.umu.se (T. Kampik)
� https://people.cs.umu.se/~tkampik/ (T. Kampik)
� 0000-0001-5993-3292 (M. Persiani); 0000-0002-6035-800X (E. Guerrero); 0000-0001-9379-4281 (A. Brännström);
0009-0005-4903-8610 (K. Kilic); 0000-0002-6458-2252 (T. Kampik)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1This is, for example, evidenced by the recently launched workshop on Argumentation and Applications: https:
//argapp-workshop.github.io/.

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 56

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

e�ort into the design, implementation, and analysis of software tools, e.g., in the context of
the bi-annual workshop on Systems and Algorithms for Formal Argumentation (SAFA)2 and
the (also bi-annual) International Competition on Computational Models of Argumentation
(ICCMA)3.

However, an improper handling of research code that is somewhat common in the broader
computer science community can lead to issues related to reproducibility, because as the code
gets older (and stale), it becomes increasingly di�cult to properly execute it and to reuse it in new
projects. Methodologies to reduce this e�ect come from research in software engineering, whose
community has already adopted principles from the Open Science movement [3], promoting
transparency, openness, and reproducibility in scienti�c works. These principles are not only
applied to the research and papers themselves, but also to the products of such papers, which in
contemporary research practice often is code [4]. Indeed, in other communities, such as the
Multi-Agent Systems (MAS) community, e�orts to organize and assess tools through the lens of
open science and software engineering principles are emerging [5, 6]4.
It becomes therefore important to view research on computational argumentation tools

through the lens of open science principles, for the sake of maintaining a healthy ecosystem
of tools that are reusable, reproducible, and correct; with this broader goal in mind, this paper
provides an initial survey of tools from some of the venues of the argumentation community
that explicitly encourage the presentation of such tools. As such, the objectives of this paper
are two-fold:
1. To provide an overview of re-usable tools & libraries for formal argumentation and their

properties to facilitate software selection and re-usability.
2. Critically assess the state-of-the-art, identify shortcomings, and propose action items that

the community can potentially take up to increase the maturity of its software ecosystem.
This paper is structured as follows. Section 2 introduces the survey methodology, in particular,

its scope (Where do we search?) and our criteria for inclusion (What do we search for?) and
assessment (What are the properties we are interested in?). We report the results in Section 3.
Finally, Section 4 provides a discussion of the status quo given the survey results, and outlines
future work, both with respect to the survey and the formal argumentation tool ecosystem.

2. Survey Methodology

2.1. Survey Scope

Our survey focuses on formal argumentation tools such as re-usable reasoners and solvers,
as well as tools for analysis, visualization and manipulation of argumentation graphs. While
relevant for the broader scope of research in argumentation, tools supporting other types of
argumentation, such as natural language argumentation or argument mining, are not considered.
This means that i) the software library must be grounded in formal argumentation, i.e., we do
not consider tools that provide “informal” argumentation capabilities that are not connected to
formal abstractions. ii) the software implementation must be re-usable by developers who want
2http://safa2024.argumentationcompetition.org/index.html
3http://argumentationcompetition.org/
4The name of our paper is derived from the initiative Fantastic MASs and Where to Find Them [5].

Michele Persiani, Esteban Guerrero, Andreas Brännström, Kaan Kilic, Timotheus Kampik

57 SAFA@COMMA 2024

to employ formal argumentation approaches in their applications, for example distributed as a
library or independent application. We systematically survey a few selected venues in which
we expected a high density of such tools among the overall publications, namely venues of
the argumentation community that explicitly invite tool presentations and evaluations: i) The
International Competition on Computational Models of Argumentation (ICCMA)5; ii) The
demonstration track of the International Conference On Computational Models of Argument
(COMMA)6; iii) The International Workshop on Systems and Algorithms for Formal Argu-
mentation (SAFA)7. Let us highlight that the aim of the survey is to elicit an initial sample of
argumentation tools from which a �rst, if only partial, overview of the state-of-the-art can be
compiled. This overview can then serve as a starting point for a living document that provides
a continuously updated overview of tools, as a resource for the argumentation community and
in particular for the growing number of researchers that have an interest in applications of
computational argumentation. We argue that for this purpose, surveying the above-mentioned
selected venues is su�cient, as many relevant tools can be expected to have an associated
publication in one of these venues. For example, even if a group of researchers publishes the
main paper introducing a tool in a less specialized venue, they may showcase it at COMMA or
evaluate it in the course of ICCMA.

2.2. Evaluation Criteria

The objectives of our survey are to both provide an overview of the general properties of
the tools, i.e. what tools exist and what/how they can be used; and to assess the software
engineering maturity of the ecosystem. To cover the former objective, we document: i) the
name of the tool; ii) venue were the tool was presented; iii) a brief description; iv) a list of
formal argumentation approaches (such as: abstract argumentation or structured argumentation)
that the tool covers; v) for solvers, which approach was used (e.g. ASP or ASPIC semantics);
vi) the type of tool, such as solver, visualizer, or utility; vii) the URL of a website describing
or hosting the tool or its source code; viii) the programming languages that the tool has been
developed in or for; ix) the paper (reference) that describes the tool; x) whether the tool is part of
a larger application. To cover the latter objective we assess whether: i) the tool is open-source;
ii) the tool is available under an open-source license; iii) documentation for the tool is available;
iv) tests are available for the tool; v) the tests are run on a continuous integration server; vi) it
is possible to open issues and contribute code; vii) eventual dependencies from other software;
viii) the last update of the tool, if this can be traced. We therefore gathered 17 features for each
tool, 9 for general description and 8 concerning software engineering principles. In reporting
solvers for the ICCMA, we acknowledge that dates for the "last update" of some tools’ source
code were obtained from the URL reported in the ICCMA tool description, however, some tools
were moved to other code repositories, university, or personal Web pages. In this sense, we
tried to track the last update of the main source code in the currently available repository.

5http://argumentationcompetition.org/
6https://comma.csc.liv.ac.uk/, limited to COMMA 2016 and later; due to earlier proceedings being pay-walled.
7https://safa2016.argumentationcompetition.org/, 1st edition.

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 58

(a) Number of tools that have been updated a given year
or later.

(b) Distribution of programming languages

3. Results: Fantastic Argumentation Tools

3.1. General Findings

Our search identi�ed 59 di�erent software tools related to argumentation. Di�erent versions of
the same tool were removed and only the last version for each tool was kept. The overview
of all tools is provided in Tables 1, 2 and 3, and additional information is available online at
https://people.cs.umu.se/~tkampik/argtools/. In the tables only 12 features are shown for space
and formatting reasons.
The vast majority were argumentation solvers (n=52), followed by general utility libraries

(n=6) and visualizers of argumentation graphs (n=5), only one tool for benchmarking has been
identi�ed (n=1). Utilities are tools for speci�c tasks like annotating arguments, getting speci�c
meanings from arguments, and tools used for comparing di�erent argumentation systems. Some
tools perform multiple functions, for example, reasoner suites usually embed together a solver
and several accessory functions. Concerning programming languages, a plurality of the tools
is implemented in C++ (n=25). Other common languages are Python (n=14) and Java (n=10),
followed by a long tail of less common languages and polyglot or language-wise ambiguous
implementations (Figure 1b).

3.2. Ecosystem Maturity

Our review shows that most of the source code of the tools, namely 47 (80%), is openly available.
Moreover, we found that most of these argumentation tools are released without any type of
code license (n=33), but still, many argumentation tools are released under an open source
license, such as GPL or MIT (where the latter is more friendly towards re-use in proprietary,
closed-source contexts). Six tools had other mixed types of licenses.
Only 16 tools (27%) have source documentation or a technical description of the tools. In

general, internal documentation (e.g., API, in-line or architectural documentation) of the software
is considered a good practice for most software developers [7], however, our review found that

Michele Persiani, Esteban Guerrero, Andreas Brännström, Kaan Kilic, Timotheus Kampik

59 SAFA@COMMA 2024

there is a lack of code documentation impacting the reusability and maintainability of the tools.
Automatic tests in software engineering are suites of pre-scripted test cases that are executed

using software tools to validate the functionality and performance of software applications [8].
These tests enhance the reliability of the software by ensuring consistent test coverage and
identifying defects early in the development lifecycle. We found in our review 10 available tests
(w.r.t., 49 not available) for the argumentation tools with released code. In this sense, automated
testing for argumentation tools contributes to the e�ciency of the development process by
reducing manual e�ort and facilitating continuous integration and delivery practices. Moreover,
we found that only one tool (ASPARTIX) has been set up for continuous integration. In the
same context, bug or issue tracking refers to the systematic process of identifying, documenting,
and managing errors or �aws within a software application to ensure they are addressed and
resolved, usually performed by speci�c tools. We found that 3 tools (5%) have bug tracker
available, suggesting an impact on the overall quality and reliability of most argumentation
tools. An overview of the maintenance status of the tools is provided in Figure 1a: as far as
we can see given publicly available information, only a few of the surveyed tools have been
recently updated.

4. Discussion: Towards More Fantastic Argumentation Tools

The maturity of the computational argumentation ecosystem can be more qualitatively assessed
by examining the development and availability of tools and libraries (e.g., types of source code
licenses), the community’s e�orts in standardizing and sharing resources, and the integration of
argumentation systems into practical applications. Our review suggests at least three conclusions
about the ecosystem maturity:
• Development of tools and libraries. As our review suggests, the argumentation software
engineering ecosystem has gradually matured, with an acceptable corpus of argumentation
solvers (n=52), and visualization tools (n=6), indicating a gradual shift from theoretical research
to practical, usable systems.

• Community e�orts. The argumentation community has been active in organizing confer-
ences such as COMMA (with a demonstration track), workshops like SAFA, and competitions
like ICCMA, which foster the development and comparison of argumentation systems. More-
over, as our results indicate, there is a trend to utilize permissive licenses (w.r.t. GPL and MIT)
to solvers and tools, contributing back to the open-source community practices.

• Integration into practical applications. While well-established engineering practices in
computational argumentation are still emerging compared to �elds related to data science,
the e�orts to create a vibrant ecosystem are evident. The regular organization of SAFA and
ICCMA demonstrates a commitment to advancing the �eld.
In conclusion, our survey results indicate that while a plethora of computational argumenta-

tion tools exist, most of them are either not reusable at all or are risky or di�cult to re-use due
to a lack of proper licensing, documentation, or tests. Generally speaking, the ecosystem of
argumentation tools is diverse and still maturing; here, an exception is the regular performance
evaluation of some tools as part of ICCMA. A stronger software engineering practice is needed
when creating and maintaining tools that are as easily reusable as possible. Ideally, application

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 60

developers can leverage existing tools, by either importing them as libraries or accessing the
application programming interface of an “externally” running tool. However, this becomes di�-
cult if tools are too narrowly specialized, poorly documented, or not re-usable at all. As such, it
is important that we start seeing tools as an independent product of research (in argumentation)
rather than only a side-product of answering entirely di�erent research questions. One relevant
point to mention is that while the survey is preliminary in its scope and hence at least to some ex-
tent incomplete, given our focus on key argumentation venues, we assume that our conclusions
based on the obtained results are broadly correct. Still, we intend to further extend the survey
and to maintain the corresponding web page at https://people.cs.umu.se/~tkampik/argtools/ as
a living document.
Some threats to validity exist that an extension of the presented work could address in the

future. First, the survey covers di�erent venues and in particular all argumentation competitions,
in which the same or very similar solvers appear in slightly di�erent versions. Here, we have
not (yet) executed a careful assessment that leads to distinct counts. Yet more importantly,
all information about the surveyed tools was obtained by reviewing the scienti�c literature
and online resources pointed to by the relevant papers. The creators of the tools may possess
additional and more precise information that we could not obtain or elicit. As such, while
we expect the broader conclusions to maintain their validity through time, on a tool-level
some properties may be incorrect; also, given the selective scope of the survey, additional
argumentation tools that the survey does not cover are expected to exist. Having gathered these
results, we hope this survey to be useful to researchers who are in the process of developing
software for computational argumentation and are searching for some previously developed
tool to either leverage or study, or in search for guidelines when developing new tools. Equally
importantly, let us claim that the results provided in this survey highlight the need for further
action when it comes to the continuous advancement of the argumentation tools ecosystem
in terms of re-usability and, more broadly, software engineering maturity. Ideally, the initial
survey e�ort presented in this paper can be understood as the start of a continuous process of
assessing the status quo of the argumentation tooling ecosystem at a given point, as well as
over time.

References

[1] S. Liang, P. Fodor, H. Wan, M. Kifer, Openrulebench: an analysis of the performance of
rule engines, in: Proceedings of the 18th International Conference on World Wide Web,
WWW ’09, Association for Computing Machinery, New York, NY, USA, 2009, p. 601–610.
URL: https://doi.org/10.1145/1526709.1526790. doi:10.1145/1526709.1526790.

[2] M. Bravo, N. Diegues, J. Zeng, P. Romano, L. E. Rodrigues, On the use of clocks to enforce
consistency in the cloud., IEEE Data Eng. Bull. 38 (2015) 18–31.

[3] A. K. Das, Unesco recommendation on open science: An upcoming milestone in global
science, Science Diplomacy (2021) 39.

[4] H. Thimbleby, Improving science that uses code, The Computer Journal (2023).
[5] D. Briola, A. Ferrando, V. Mascardi, Fantastic mass and where to �nd them: First

results and lesson learned, in: A. Ciortea, M. Dastani, J. Luo (Eds.), Engineering

Michele Persiani, Esteban Guerrero, Andreas Brännström, Kaan Kilic, Timotheus Kampik

61 SAFA@COMMA 2024

Multi-Agent Systems - 11th International Workshop, EMAS 2023, London, UK, May
29-30, 2023, Revised Selected Papers, volume 14378 of Lecture Notes in Computer Sci-
ence, Springer, 2023, pp. 233–252. URL: https://doi.org/10.1007/978-3-031-48539-8_16.
doi:10.1007/978-3-031-48539-8_16.

[6] A. Rago, O. Cocarascu, F. Toni, Argumentation-based recommendations: Fantastic expla-
nations and how to �nd them, in: Proceedings of the 27th International Joint Conference
on Arti�cial Intelligence, IJCAI’18, AAAI Press, 2018, p. 1949–1955.

[7] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota, M. Lanza, D. C. Shepherd,
Software documentation: the practitioners’ perspective, in: ICSE ’20: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 590–601. doi:10.1145/3377811.
3380405.

[8] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,
M. J. Harrold, P. McMinn, A. Bertolino, J. Jenny Li, H. Zhu, An orchestrated survey
of methodologies for automated software test case generation, Journal of Systems and
Software 86 (2013) 1978–2001. doi:10.1016/j.jss.2013.02.061.

[9] A. Borg, D. Odekerken, et al., Pyarg for solving and explaining rgumentation in python,
Computational Models of Argument-Proceedings of COMMA 2022 353 (2022) 349–350.

[10] S. Ellmauthaler, S. A. Gaggl, D. Rusovac, J. P. Wallner, Adf-bdd: An adf solver based on
binary decision diagrams., in: COMMA, 2022, pp. 355–356.

[11] C. Baier, M. Diller, C. Dubsla�, S. A. Gaggl, H. Hermanns, N. Käfer, Admissibility in
Probabilistic Argumentation, in: Proceedings of the 18th International Conference on
Principles of Knowledge Representation and Reasoning, 2021, pp. 87–98. URL: https:
//doi.org/10.24963/kr.2021/9. doi:10.24963/kr.2021/9.

[12] J. Klein, M. Thimm, probo2: A benchmark framework for argumentation solvers., in:
COMMA, 2022, pp. 363–364.

[13] M. Lenz, R. Bergmann, User-centric argument mining with arguemapper and arguebuf,
in: Computational Models of Argument, IOS Press, 2022, pp. 367–368.

[14] N. Potyka, Attractor-a java library for gradual bipolar argumentation., in: COMMA, 2022,
pp. 369–370.

[15] H. Prakken, et al., deliberate–online argumentation with collaborative �ltering, Computa-
tional Models of Argument: Proceedings of COMMA 2020 326 (2020) 453.

[16] M. Caminada, S. Uebis, An implementation of argument-based discussion using aspic, in:
Computational Models of Argument, IOS Press, 2020, pp. 455–456.

[17] R. Duthie, J. Lawrence, C. Reed, J. Visser, D. Zogra�stou, Navigating arguments and hy-
potheses at scale, in: 8th International Conference on Computational Models of Argument,
COMMA 2020, IOS Press, 2020, pp. 459–460.

[18] S. Wells, The open argumentation platform (oapl), in: Computational Models of Argument,
IOS Press, 2020, pp. 475–476.

[19] P. Baroni, S. Borsato, A. Rago, F. Toni, et al., The" games of argumentation" web platform.,
in: COMMA, 2018, pp. 447–448.

[20] R. Booth, M. Caminada, B. Marshall, Disco: A web-based implementation of discussion
games for grounded and preferred semantics, in: Computational Models of Argument,
IOS Press, 2018, pp. 453–454.

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 62

[21] D. Neugebauer, Dabasco: Generating af, adf, and aspic+ instances from real-world discus-
sions, in: Computational Models of Argument, IOS Press, 2018, pp. 469–470.

[22] F. Cerutti, M. Giacomin, M. Vallati, et al., Generating structured argumentation frameworks:
Afbenchgen2., in: COMMA, 2016, pp. 467–468.

[23] F. Brons, Labsat-solver: Utilizing caminada’s labelling approach as a boolean satis�ability
problem, System Descriptions of the First International Competition on Computational
Models of Argumentation (ICCMA’15) (2015) 1.

[24] B. van Gijzel, Dungell: A reference implementation of dung’s argumentation frameworks
in haskell, Thimm and Villata (2015) (2015) 15–18.

[25] B. Liao, L. Jin, R. C. Koons, Dynamics of argumentation systems: A division-based method,
Arti�cial Intelligence 175 (2011) 1790–1814.

[26] O. Rodrigues, Gris: Computing traditional argumentation semantics through numerical
iterations., Thimm and Villata (2015) (2015) 37–40.

[27] K. Sprotte, Asgl: Argumentation semantics in gecode and lisp, System Descriptions of the
First International Competition on Computational Models of Argumentation (ICCMA’15)
(2015) 41–44.

[28] S. Groza, A. Groza, Prograph: towards enacting bipartite graphs for abstract argumentation
frameworks, System Descriptions of the First International Competition on Computational
Models of Argumentation (ICCMA’15) (2015) 29–32.

[29] T. F. Gordon, Carneades iccma: A straightforward implementation of a solver for abstract
argumentation in the go programming, System Descriptions of the First International
Competition on Computational Models of Argumentation (ICCMA’15) (2015) 54.

[30] W. Faber, M. Vallati, F. Cerutti, M. Giacomin, Solving set optimization problems by
cardinality optimization with an application to argumentation (2016).

[31] E. Hadjisoteriou, M. Georgiou, Assa: Computing stable extensions with matrices, Thimm
and Villata (2015) (2015) 62–65.

[32] F. Pu, G. Luo, Z. Jiang, Encoding argumentation semantics by boolean algebra, IEICE
TRANSACTIONS on Information and Systems 100 (2017) 838–848.

[33] W. Faber, M. Vallati, F. Cerutti, M. Giacomin, et al., Enumerating preferred extensions
using asp domain heuristics: The asprmin solver., in: COMMA, 2018, pp. 459–460.

[34] W. Dvorák, M. Järvisalo, J. P. Wallner, S. Woltran, Cegartix: A sat-based argumentation
system, in: Pragmatics of SAT Workshop (POS), 2012.

[35] M. Vallati, F. Cerutti, M. Giacomin, Chimærarg: Con�guring static portfolios for solving
argumentation problems (2017).

[36] F. Cerutti, M. Giacomin, M. Vallati, et al., Argsemsat: Solving argumentation problems
using sat., COMMA 14 (2014) 455–456.

[37] S. Nofal, K. Atkinson, P. E. Dunne, Looking-ahead in backtracking algorithms for abstract
argumentation, International Journal of Approximate Reasoning 78 (2016) 265–282.

[38] S. Tasharro�, T. Janhunen, Gg-sts: Argumentation solver from aalto university in iccma
2017, 2017.

[39] S. Ellmauthaler, H. Strass, The diamond system for computing with abstract dialectical
frameworks., in: Comma, 2014, pp. 233–240.

[40] N. Geilen, M. Thimm, Heureka: a general heuristic backtracking solver for abstract
argumentation, in: Theory and Applications of Formal Argumentation: 4th International

Michele Persiani, Esteban Guerrero, Andreas Brännström, Kaan Kilic, Timotheus Kampik

63 SAFA@COMMA 2024

Workshop, TAFA 2017, Melbourne, VIC, Australia, August 19-20, 2017, Revised Selected
Papers 4, Springer, 2018, pp. 143–149.

[41] M. Thimm, Dredd-a heuristics-guided backtracking solver with information propagation
for abstract argumentation, The Third International Competition on Computational
Models of Argumentation (2019).

[42] J.-M. Lagniez, E. Lonca, J.-G. Mailly, Coquiaas v3. 0 iccma 2019 solver description, Sys-
tem descriptions of the Third International Competition on Computational Models of
Argumentation (ICCMA’19) (2019).

[43] L. Malmqvist, Yonas: An experimental neural argumentation solver, International Compe-
tition on Computational Models of Argumentation (ICCMA) 295 (2019).

[44] A. Previti, M. arvisalo, Argpref: A sat-with-preferences approach to ideal semantics, The
3rd International Competition on Computational Models of Argumentation (ICCMA’19)
(2019).

[45] S. Bistarelli, L. Kottho�, F. Santini, C. Taticchi, et al., A �rst overview of iccma’19., in:
AI3@ AI* IA, 2020, pp. 90–102.

[46] W. Dvo�ák, M. König, A. Rapberger, J. P. Wallner, S. Woltran, Aspartix-v-a solver for
argumentation tasks using asp, in: 14th Workshop on Answer Set Programming and Other
Computing Paradigms, 2021, pp. 1–12.

[47] J.-M. Lagniez, E. Lonca, J.-G. Mailly, J. Rossit, Design and results of iccma 2021, arXiv
preprint arXiv:2109.08884 (2021).

[48] M. Heinrich, The matrixx solver for argumentation frameworks, arXiv preprint
arXiv:2109.14732 (2021).

[49] M. Alviano, The pyglaf argumentation reasoner (iccma2021), arXiv preprint
arXiv:2109.03162 (2021).

[50] J.-M. Lagniez, E. Lonca, J.-G. Mailly, J. Rossit, Crusti g2io, a benchmark generator based
on a inner/outer template, ICCMA 2023 (2023) 35.

[51] M. Thimm, F. Cerutti, M. Vallati, Fudge v3. 2.8, ICCMA 2023 171 (2007) 25.
[52] A. Niskanen, M. Järvisalo, µ-toksia in iccma 2023, ICCMA 2023 (2023) 31.
[53] S. Declercq, Q. J. Capellini, C. Yang, J. Delobelle, J.-G. Mailly, Portsat: A portfolio of sat

solvers for abstract argumentation, ICCMA 2023 (2023) 32.
[54] J. Delobelle, J.-G. Mailly, J. Rossit, Revisiting approximate reasoning based on grounded

semantics, in: European Conference on Symbolic and Quantitative Approaches with
Uncertainty, Springer, 2023, pp. 71–83.

[55] J. Delobelle, J.-G. Mailly, J. Rossit, Aripoter-degrees: Argumentation approximate reasoning
using in/out degrees of arguments, ICCMA 2023 (2023) 10.

[56] M. Thimm, Fargo-limited v1. 1.1, ICCMA 2023 (2023) 21.
[57] M. Thimm, Harper++: Using grounded semantics for approximate reasoning in abstract

argumentation, The Fourth International Competition on Computational Models of
Argumentation (ICCMA’21) (2021).

[58] P. Besnard, S. Doutre, D. Longin, et al., Sesame-a system for specifying semantics in
abstract argumentation, in: 1st International Workshop on Systems and Algorithms for
Formal Argumentation (SAFA 2016) co-located with the 6th International Conference on
Computational Models of Argument: COMMA 2016, volume 1672, 2016, pp. 40–51.

[59] W. Dvorák, A. Greßler, S. Woltran, Evaluating setafs via answer-set programming, in:

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 64

SAFA@ COMMA, 2018, pp. 10–21.
[60] M. Thimm, T. Rienstra, Approximate reasoning with aspic+ by argument sampling.,

SAFA@ COMMA 2672 (2020) 22–33.
[61] T. Kampik, D. Gabbay, Towards diarg: An argumentation-based dialogue reasoning engine,

in: SAFA 2020: The Third International Workshop on Systems and Algorithms for Formal
Argumentation, Online, September 8, 2020, Technical University of Aachen, 2020, pp.
14–21.

[62] R. Baumann, M. Heinrich, A python script for abstract dialectical frameworks., in: SAFA@
COMMA, 2020, pp. 74–79.

[63] M. Diller, S. A. Gaggl, P. Gorczyca, Strategies in �exible dispute derivations for assumption-
based argumentation., in: SAFA@ COMMA, 2022, pp. 59–72.

Michele Persiani, Esteban Guerrero, Andreas Brännström, Kaan Kilic, Timotheus Kampik

65 SAFA@COMMA 2024

Table 1
Computational argumentation tools, their basic properties, and their so�ware engineering maturity. Here and henceforth, the following legend
applies. OS: Open Source; D: Documented; T: Tested; CI: Continuous Integration; IT: Issue Tracker; EE: Empirical Evaluation; LU: Last Update;
Xdenotes existence, whereas X denotes absence of availability.

Name Type Language(s) Reference OS Licensed D T CI IT EE LU
PyArg Solver Python [9] X X X X X X X X
ADF-BDD Solver Rust [10] X X X X X X X 2024
CPrAA Solver Python [11] X X X X X X X 2022
probo2 Benchmark Python [12] X X X X X X X 2024
ArgueMapper
and Arguebuf

Annotation Typescript, Python [13] X X X X X X X 2024

Attractor Solver Java [14] X X X X X X X 2022
deliberate Visualization X [15] X X X X X X X X
ABDA Solver Python [16] X X X X X X X 2021
ArgNav Visualization Python [17] X X X X X X X 2021
OAPL Utility, Visualization, Solver Python [18] X X X X X X X 2024
Game of Argu-
mentation

Solver, Visualization NA [19] X X X X X X X X

DISCO Solver, Visualization JavaScript [20] X X X X X X X 2017
DABASCO Utility Python [21] X X X X X X X 2021
AFBenchGen2 Utility JavaScript [22] X X X X X X X 2014
LabSAT-Solver Solver Java [23] X X X X X X X 2022
Dungell Solver Haskell [24] X X X X X X X 2015
ZJU-ARG Solver Java [25] X X X X X X X X

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 66

Table 2
Continued: computational argumentation tools, their basic properties, and their so�ware engineering maturity.

Name Type Language(s) Reference OS Licensed D T CI IT EE LU
GRIS Solver C++ [26] X X X X X X X X
ASGL Solver LISP, CLOS, C++ [27] X X X X X X X 2019
ProGraph Solver Prolog [28] X X X X X X X 2015
Carneades Solver Go [29] X X X X X X X 2001
prefMaxSAT Solver C++ [30] X X X X X X X 2015
ASSA Solver Java [31] X X X X X X X X
argmat-clpb Solver C++, Prolog [32] X X X X X X X 2017
argmat-dvisat Solver C++ [32] X X X X X X X X
argmat-mpg Solver C++ [32] X X X X X X X X
argmat-sat Solver C++ [32] X X X X X X X X
ASPrMin Solver C++ [33] X X X X X X X 2017
cegartix Solver C++ [34] X X X X X X X 2017
Chimærarg Solver C++ [35] X X X X X X X 2017
ArgSemSAT Solver C++ [36] X X X X X X X 2020
ArgTools Solver C++ [37] X X X X X X X 2019
gg-sts Solver C++ [38] X X X X X X X 2017
goDIAMOND Solver GO [39] X X X X X X X 2015
heureka Solver C++ [40] X X X X X X X 2017
DREDD Solver C++ [41] X X X X X X X 2022
CoQuiAAS v3.0 Solver C++ [42] X X X X X X X 2019
Yonas Solver Python [43] X X X X X X X 2019
Argpref Solver Python [44] X X X X X X X 2019

Michele Persiani, Esteban Guerrero, Andreas Brännström, Kaan Kilic, Timotheus Kampik

67 SAFA@COMMA 2024

Table 3
Continued: computational argumentation tools, their basic properties, and their so�ware engineering maturity.

Name Type Language(s) Reference OS Licensed D T CI IT EE LU
Mace4/Prover9 Solver C++ [45] X X X X X X X 2019
ASPARTIX-V21 Solver ASP [46] X X X X X X X 2021
ConArg Solver C++ [47] X X X X X X X 2021
MatrixX Solver Python [48] X X X X X X X 2021
pyglaf ’21 Solver Python [49] X X X X X X X 2021
Crustabri Solver Rust, C++ [50] X X X X X X X 2022
FUDGE ’23 Solver C++ [51] X X X X X X X 2023
µ-toksia ’23 Solver C++ [52] X X X X X X X 2023
PORTSAT Solver Rust, C++ [53] X X X X X X X 2023
AFGCNv2 Solver Python [54] X X X X X X X 2023
ARIPOTER-
Degrees

Solver Java [55] X X X X X X X 2023

ARIPOTER-
HCAT

Solver Java [55] X X X X X X X 2023

fargo-limited Solver C++ [56] X X X X X X X 2022
HARPER++ Solver C++ [57] X X X X X X X 2022
SESAME Specifying semantics Java [58] X X X X X X X 2017
SETAFs via ASP Solver ASP [59] X X X X X X X 2018
AR with ASPIC+ Solver Java [60] X X X X X X X X
DiArg Dialogue Reasoner Java [61] X X X X X X X 2024
Python for ADFs Solver Python [62] X X X X X X X 2020
flexABle Solver Prolog [63] X X X X X X X 2023

Fantastic Argumentation Tools And Where To Find Them

SAFA@COMMA 2024 68

