
The Skeptic’s Argumentation Game or:
Well-Founded Explanations for Mere Mortals
Shawn Bowers1, Yilin Xia2 and Bertram Ludäscher2,⇤

1Department of Computer Science, Gonzaga University, USA
2School of Information Sciences, University of Illinois, Urbana-Champaign, USA

Abstract
We propose a new discussion game for abstract argumentation frameworks (AFs), related to, but di�erent
from other dialectical proof procedures and discussion games: the Skeptic’s Argumentation Game (SAG).
Unlike in other AF games, Player I (the Skeptic) aims to establish that an argument x is defeated, while
Player II (the Optimist) tries to prove the opponent wrong, i.e., that x is accepted. If neither player has a
winning strategy, the position is a draw and x’s status is undecided. This “reversal of roles” (compared
to the usual Proponent vs Opponent dialogue games about the acceptance status of an argument) might
appear strange at �rst, but has a number of important, fruitful consequences. Since SAG corresponds
exactly to (i) the grounded labeling semantics of AFs, and (ii) the standard semantics of “win-move” (WM)
games for normal play on �nite graphs, a rich body of research and results can be transferred directly to
grounded AF labelings. In this paper we show one such result transfer: The value (���/����/�����) of
a position x in a solved WM game can be fully explained by the provenance of x, i.e., a subgraph de�nable
by a regular expression. Consequently, via SAG, we can provide a detailed, well-founded explanation for
the acceptance status (value) of an argument. We also exploit well-founded explanations for visualization
to expose the structural dependencies inherent in an AF under the grounded semantics.

Keywords
Argumentation frameworks, game theory, provenance, discussion games

1. Introduction

Dung’s seminal work on abstract argumentation [1] gives a two-line logic program that speci�es
an argument processing unit (APU), i.e., a meta-interpreter that can be used to evaluate (or solve)
an argumentation framework (AF) via a declarative semantics:

Defeated(x) Attacks(y, x), Accepted(y).

Accepted(y) ¬Defeated(y).
(PAF2)

Given an AF, i.e., a digraph GAF = (V,E) whose edges y ! x in E model that an argument
y 2 V attacks an x 2 V , the �rst rule states that an argument x is defeated if there is an accepted
argument y that attacks x. The second rule speci�es that an argument is accepted if it is not
defeated. The subgoal “Accepted(y)” in the �rst rule can be replaced with the negated atom
from the second rule, resulting in an equivalent single-rule program:

Defeated(x) Attacks(y, x), ¬Defeated(y). (PAF1)

SAFA’24: 5th Intl. Workshop on Systems and Algorithms for Formal Argumentation, September 17, 2024, Hagen, Germany
⇤Corresponding author.
� bowers@gonzaga.edu (S. Bowers); yilinx2@illinois.edu (Y. Xia); ludaesch@illinois.edu (B. Ludäscher)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 104

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



This rule can be written equivalently in a “reversed edges” form as follows:

Defeated(x) AttackedBy(x, y), ¬Defeated(y). (PAF0 )

An edge x! y in the graph then means that argument x is attacked-by an argument y.
Now compare PAF0 with the single-rule “win-move” (WM) program from [2]:

Win(x) Move(x, y), ¬Win(y). (PWM)

The rule PWM can be seen as a game processing unit (GPU), i.e., a meta-interpreter that solves
two-player games: A position x in the game, given by a graph GWM, is (objectively) won if there
exists a move to a position y such that the new position is lost for the opponent. In particular, if
there are no more moves left to play1 a position is lost.

It is easy to see that the game-solving rule PWM and the AF-solving rule PAF0 are “identical
twins”, i.e., syntactic variants of the same generic query:

Q(x) E(x, y), ¬Q(y). (PQ)

In other words, the variants PWM and PAF0 only di�er in the interpretation of E and Q.

Solving Games withWFS. It is well known that the three-valued well-founded semantics (WFS)
of PWM solves games [2]: Win(x) is ����, �����, or ����� (unde�ned) if and only if position x
is ���, ����, or ����� in the game, respectively.

Solving AFs with WFS. Similarly, Dung has shown [1] that the WFS of PAF1 (and thus of
PAF0 ) yields a unique grounded labeling (cf. [3]): Defeated(x) is ����, �����, or ����� if and
only if x has the label ��� (defeated), �� (accepted), or ����� (undecided), respectively.

Given the syntactic correspondence of PWM and PAF0 and the fact that the WFS of PWM and
PAF0 solves games and computes the grounded labeling of AFs, respectively, the following
correspondences (��� ⇠= ���, ���� ⇠= ��, ����� ⇠= �����) are immediate:
Theorem 1 (WM-AF Correspondence). Let G = (V,E) be a �nite directed graph; M the
well-founded model of PQ applied to the edges E; �(x) the value of position x in G�

WM; and
LabAF(x) the grounded label of argument x in the argumentation framework GAF0 . Then:

M(Q(x)) =

8
<

:

����
�����
�����

9
=

; , �(x) =

8
<

:

���
����

�����

9
=

; , LabAF(x) =

8
<

:

���
��

�����

9
=

;

Here,G�

WM denotes the solved (= labeled) game graph (see De�nition 3 for details) and LabAF(x)
denotes the label (see De�nition 13) of argument x under the grounded semantics.

Research Questions. This WM-AF correspondence raises a number of interesting issues:
What is the nature of this game GWM that we can play on the (reversed) AF graph GAF0? At
�rst glance, it seems rather counter-intuitive that an ��� (defeated) argument x in AF should
correspond to a ��� position in GWM! On the other hand, the simple (and “standard”) form

1In chess: Checkmate!

Shawn Bowers, Yilin Xia, Bertram Ludäscher

105 SAFA@COMMA 2024



of GWM suggests that many classic results from game theory [4, 5, 6] carry over to abstract
argumentation, thereby opening up opportunities for cross-fertilization and new insights. For
example, how does GWM relate to the results about the various discussion games [7] that are
well-known in formal argumentation?

Outline and Contributions. In Section 2, we recall notions of impartial two-player games on
�nite graphs and introduce our running example: Figure 1 depicts a simple win-move game
GWM, its well-founded, labeled solutionG�

WM (colors encode node labels), and—importantly—the
solved game with additional provenance information G⇤

WM. Our provenance model for games is
presented and can be used to precisely explain why and how the value of a position in a game
depends on the values of other positions. The model builds on prior work on provenance and
games from database theory (including our own [8, 9]) and includes: (i) a novel classi�cation
of provenance edges; and (ii) an elegant and e�cient query mechanism based on regular path
queries (RPQs) [10] to extract the provenance of a node.
In Section 3, we solve the puzzle from above and present (iii) the Skeptic’s Argumentation

Game (SAG), a new discussion game for AF implied by the WM-AF correspondence described
above. Via the duality of WM and AF, the results developed for game provenance (Section 2)
carry over to abstract argumentation and allow us to (independently) rediscover well-established
notions and results from AF (demonstrating the robustness of these AF notions). For example,
the concept of min-max numbering of arguments, known from strongly admissible sets [11],
is closely related to the notion of length (of a position) in game theory. Position lengths, in
turn, are useful for explaining why an argument is ��, ���, or ����� in the grounded labeling,
yielding (iv) an alternative approach for explaining the acceptance status of arguments.

In Section 4, we present an application facilitated by our game-theoretic, provenance-aware
approach to grounded AF solutions, notably (v) a layered visualization approach, illustrated
using a well-known example from case law [12]. A prototypical implementation of our approach
using a Jupyter notebook is available [13] and has been integrated into the PyArg system [14].

2. Games and their Provenance

We begin by brie�y describing win-move games and algorithms for solving them. We then
discuss game provenance [9], its regular structure (leading to a classi�cation of edge types), and
techniques for using provenance to explain the value of a position in a solved game.

2.1. Games and Position Values

Consider the graph GWM in Figure 1a, which will serve as our running example. With such a
graph we can associate a “classic” (i.e., impartial two-player) game as follows.
De�nition 1 (Game). A (win-move) game is a �nite digraph GWM = (V,E) where V is a set
of positions, and edges (x, y) 2 E ✓ V ⇥ V (also denoted x! y) represent possible moves.

After agreeing on a starting position x0 2 V , the game is played with a pebble by two players
who take turns moving in rounds (a round consists of two moves). Player I starts from x0. A
player can move from position x to y if (x, y) 2 E. In this case, y is a follower of x.

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 106



A

B C O

F

D E

G H

M

K

L

N

(a) A game graph GWM

A

B C O

F

D E

G H

M

K

L

N

(b) The solved game G�
WM . . .

A.1

B.0

1    

C.2

3 

O.0

    1

F.0

D.1
1   

E.1

G.2

 
 3

H.0

2     2

1 

M.∞

 2 

K.∞

L.∞

∞ 

N.∞

 ∞ 

   ∞ 

  ∞ 

(c) . . . with provenance (G⇤
WM)

Figure 1: Solving the game in (a) yields G�
WM in (b): node colors green, red, and yellow represent values

���, ����, and �����, respectively. Additional bookkeeping, while solving the game, yields (c): G⇤
WM, a

solved game with provenance explaining, e.g., optimal moves, and how quickly a win can be forced (or
how long a loss can be delayed).

A play ⇡ is an alternating sequence of moves x0
I! x1

II! x2
I! · · · by the players. The

length |⇡| of a play is the length of the sequence. A play ⇡ is complete if either |⇡| = 1
(repeating moves2) or ⇡ ends after |⇡| = n moves in a terminal node. A player who cannot
move loses (so-called normal play) and the opponent wins. If |⇡| =1 the play is a draw.
Example 1. If Player I starts from position D in Figure 1a, the optimal move is to F, thereby
leaving Player II stranded in a terminal node. However, the move D! E by Player I is a blunder :
it leaves Player II in a winning position (via the move E! H). Alternatively, if Player I starts
from C, regardless of their next move (which is either to D or to E), Player II can win the game.

Intuitively, the (objective!) value of a position (���, ����, or �����) only depends on “best
moves” (optimal play). In particular, “bad moves” (blunders) do not a�ect the value of a position.
De�nition 2 (Value of a Position). A position x is ��� if a player can force a win from x,
independent of the opponent’s moves; x is ���� if there are no moves to play or if the opponent
can force a win; and x is ����� if neither player can force a win.

A player that can force a win from a position has a winning strategy: a set of moves they can
make that lead to a loss for their opponent regardless of the moves their opponent makes.
Example 2. The winning strategy for a player at E in Figure 1a consists of a single move
{E! H}. The other moves from E are blunders. There are three winning strategies for a player
starting at A: {A! B}; {A! O}; and {A! C,D! F,E! H} (depending on whether the
opponent moves to D or E, respectively).
Determining the value of each position results in a solved game, which is represented via a

total labeling function �.
De�nition 3 (Solution Labeling of a Game). The (solution) labeling � : V ! {W, L, D} of
GWM = (V,E) yields the position values, where W, L, and D are shorthand for ���, ����, and
����� positions, respectively. The corresponding solved game is denoted G�

WM = (V,E,�).

2On �nite graphs, cycles are necessary (but not su�cient) for a play to end in a draw.

Shawn Bowers, Yilin Xia, Bertram Ludäscher

107 SAFA@COMMA 2024



Figure 1b shows the labeled solution of the game in Figure 1a (node colors indicate labels).

2.2. Standard Algorithms for Solving Games

It is well known that games can be solved by iterating the following two rules3.

• �(x) := L if 8 (x, y) 2 E: �(y) = W. (RR)
• �(x) := W if 9 (x, y) 2 E: �(y) = L. (GR)

The red rule (RR) states that a position x is ���� (labeled L) if all of x’s followers y have already
been ��� (labeled W): No matter which follower y of x a player moves to, the opponent can
force a win from y. The green rule (GR) states that a position x is ��� (labeled W) if at least one
of x’s followers y has already been ���� (labeled L): A player can thus choose to move from x
to such a y, leaving the opponent in a lost position.

On an unlabeled graphGWM, the �rst applicable rule is RR: Terminal positions have no moves
and so the RR 8-condition is vacuously true. The result is that each such terminal position
is assigned L. In the next iteration, GR becomes applicable, assigning W to all positions that
have have at least one direct move according to the GR 9-condition to a terminal position. The
second iteration of RR labels positions whose moves all lead to positions previously won. The
second iteration of GR then assigns labels to positions with at least one move to a lost position.
This stage-wise iteration eventually converges to a �xpoint, and any remaining nodes are drawn
positions [9, 15]. The underlying process of iterating RR and GR is equivalent to the classic
backward induction procedural approach for solving games.

A game can also be solved by evaluating the rule PWM under the well-founded semantics [2].
If this is implemented via the alternating �xpoint procedure (AFP) [16], one obtains an increasing
sequence of underestimates U1 ✓ U3 ✓ U5 . . . converging to the set of ���� atoms U! from
below, and a decreasing sequence of overestimates O0 ◆ O2 ◆ O4 . . . converging to O! , the
���� or ����� (unde�ned) atoms from above. Thus, the atoms in the “gap” O! \ U! have the
third truth-value �����, while atoms not in O! are �����.

2.3. Explaining Position Values through Provenance

The provenance P(x) represents an explanation of why and how a position x has a particular
value in a (solved) game. To compute P(x), we �rst add additional provenance information,
which includes position lengths and edge labels, to solved games. We then use the provenance
information to construct the explanation P(x) as a subgraph of the solved game rooted at
x (together with the additional provenance information). Here we consider two notions of
provenance: the actual [9] and primary [17] provenance of a position.

Solving games using either AFP or (equivalently) backward induction yields additional game-
theoretic information, notably the length (or remoteness [4]) of a position.
De�nition 4 (Position Length). Let G�

WM = (V,E,�) be a solved game. The length |x| of a
position x 2 V is: the minimum number of moves necessary to force x’s win if �(x) = W (i.e.,
x’s value becomes known after its �rst follower is ����); the maximum number of moves that

3Initially, �(x) := ; for each position x 2 V .

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 108



x’s losing can be delayed if �(x) = L (i.e., x’s value is known after its last follower is���); and
1 (denoting in�nite play) if �(x) = D.
Position length corresponds to the classic game-theoretic notion of optimal play: players

try to win as quickly or lose as slowly as possible thus avoiding blunders. The length of a
position can be computed simply by using the iteration/state number in which the position’s
value becomes �rst known (starting at 0) [9, 17].
De�nition 5 (Provenance Move Labels). Let G�

WM = (V,E,�) be a solved game. A prove-
nance move labeling ⇤ : E ! {w , l ,d , b} assigns labels for winning (w ), delaying (l ), drawing
(d ), and blundering (b) moves, such that:

⇤(x, y) :=

8
>><

>>:

w if �(x) = W and �(y) = L

l if �(x) = L and �(y) = W

d if �(x) = D and �(y) = D

b otherwise

A solved game with move labels is denoted G⇤
WM = (V,E,�,⇤).

Not all moves are created equal. The previous de�nition assigns four di�erent edge types
(labels) ⇤(x, y) to moves (x, y) 2 E. The edge type depends on the value �(x) of the move’s
origin x and the value �(y) of its follower position y. Table 1 provides an overview: If a position
x is won, there must be a winning move to a follower y that is lost for the opponent. Choosing
any other follower (i.e., one that is drawn or won for the opponent) is a blunder. On the other
hand, if x is drawn, there cannot be a lost follower (otherwise x would be winning, not drawn).
Instead one must �nd a drawn follower y to keep the draw. Moving to a follower that is won
(for the opponent) is another kind of blunder. Finally, in a lost position x, there are no lost or
drawn followers (otherwise, x would not be lost) and the only option is a delaying move to a
position y that is won for the opponent.

From x | To y ���� (L) ����� (D) ��� (W)

��� (W) winning (w ) blunder (b) blunder (b)

����� (D) — drawing (d ) blunder (b)

���� (L) — — delaying (l )

Table 1
Move labels (edge types) for moves x! y from Definition 5: provenance-relevant edge types (w , d , l )
are found on the diagonal; there are three types of blunders and three nonexistent edge types.

Like positions, moves in a solved game are also associated with a length:
De�nition 6 (Move Length). Let G⇤

WM = (V,E,�,⇤) be a solved game with move labels.
The length |(x, y)| of a move (x, y) 2 E is: 1 + |y| if ⇤(x, y) 2 {w , l};1 if ⇤(x, y) = d ; and
unde�ned if ⇤(x, y) = b .

Move labels (edge types) are used directly to de�ne the actual provenance Pac(x) of a position
x in a solved game [17].

Shawn Bowers, Yilin Xia, Bertram Ludäscher

109 SAFA@COMMA 2024



De�nition 7 (Actual Provenance of a Position). Given a provenance-labeled solution G⇤
WM,

the actual provenance Pac(x) of a position x is the subgraph reachable from x by only following
w -, l -, and d -labeled moves. In particular, blundering (b) moves must be ignored.

Not all winning moves are created equal. Winning moves can be further categorized as
either primary or secondary based on optimal play. A primary winning move (labeledwpr) from x
is a winning move that is part of a shortest-length win for x. A secondary winning move (labeled
w sc) from x is a non-shortest winning move. Both the AFP-based and backward-induction
algorithms for solving games can be instrumented to compute all primary winning (wpr) and
delaying (l ) edge labels [17]. The remaining edge labels can be obtained using De�nition 5.
De�nition 8 (Primary Provenance of a Position). Given a provenance-labeled solution
G⇤

WM, the primary provenance Ppr(x) of a position x is the subgraph reachable from x by only
following wpr-, l -, and d -labeled edges. Thus, blundering (b) and secondary winning moves
(w sc) are ignored.
Example 3. Figure 1c shows the solved game of Figure 1b with corresponding provenance move
labels and lengths. Edge colors indicate corresponding labels, where primary winning moves
are denoted using solid edges, secondary winning moves are denoted using dashed edges, and
blundering moves are drawn using gray dashed edges.

2.4. The Regular Structure of Game Provenance

The type graph in Figure 3a below summarizes the overall provenance structure of solved
games with respect to position values and move types. The seven edge types can be split
into provenance-relevant moves (winning, delaying, drawing) and provenance-irrelevant moves
(three types of blunders). The winning moves can be further subdivided into fast-winning
(primary provenance) and slow-winning (secondary provenance). Figure 3a (like Table 1) also
shows that there are three types of “ghost moves” that cannot exist in a solved game.

For example, a position would not be lost if there were a move to a lost or to a drawn position.
Similarly, a drawn x can never have a move to a lost follower y, otherwise x would be winning
rather than being drawn.

Computing Provenance using RPQs. Obtaining the provenance of a position in a solved,
provenance-labeled game can be succinctly expressed using regular-path queries (RPQs) [10]
(i.e., over the type graph of Figure 3a). Consider a solved game G⇤

WM = (V,E,�,⇤). Its move
relation E (with labelings) induces a function MR (for move paths matching R). Here R is a
regular expression over an alphabet {wpr,w sc,w , l ,d , b} of move labels.
De�nition 9 (Move-Based Regular Path Queries). The expression MR(x) evaluates to the
minimal subgraph G0 ✓ G rooted at x such that all paths

x
`1! x1

`2! x2 · · ·
`n! xn

in G, whose concatenated labels `1`2 · · · `n match regular expression R, also match in G0.
In this way, the parameter R speci�es a path expression, but unlike an RPQ which returns a

set of nodes,MR(x) returns a subgraph de�nable by an RPQ R.

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 110



Theorem 2 (Provenance via RPQs). The actual Pac(x) and potential Ppr(x) provenance of a
position x can be computed usingMR (where w denotes wpr|w sc):

Pac(x) :=

8
>><

>>:

Mw .(l .w)⇤(x) if �(x) = W

M(l .w)⇤(x) if �(x) = L

Md+
(x) if �(x) = D

Ppr(x) :=

8
>><

>>:

Mwpr.(l .wpr)⇤(x) if �(x) = W

M(l .wpr)⇤(x) if �(x) = L

Md+
(x) if �(x) = D

Finally, we note that MR-style expressions can be used to de�ne additional (path-based)
queries over a game graph (e.g., to check reachability between nodes, to �nd blundering paths,
or to only consider secondary provenance).

3. The Skeptic’s Argumentation Game

We brie�y recall some basic de�nitions of abstract argumentation frameworks [1, 18] and then
introduce SAG, the Skeptic’s Argumentation Game.

3.1. Preliminaries: Abstract Argumentation Frameworks

De�nition 10. An argumentation framework (AF) is a �nite digraph GAF = (V,E) where the
nodes V represent arguments and edges (x, y) 2 E ✓ V⇥V (denoted x! y) represent attacks.
Within an AF, a set S of arguments attacks y if y is attacked by some argument x 2 S.

De�nition 11. Let GAF = (V,E). S ✓ V is con�ict free if no two arguments in S attack each
other. An argument x is acceptable for S if every argument y that attacks x is attacked by S (S
is said to defend x). S is admissible if it is con�ict free and each argument in S is acceptable
with respect to S.

An AF can have many admissible sets, referred to as extensions. Di�erent classes of extensions
give rise to di�erent extension semantics.
De�nition 12. For GAF = (V,E), S ✓ V is strongly admissible if every argument in S is
defended by some subset S0 ✓ S \ {x} such that S0 is also strongly admissible.
An AF can also have many strongly admissible sets, the largest of which is the unique

grounded extension [19, 11]. Dung [1] showed that the well-founded model of PAF2 exactly gives
an AF’s grounded extension.
Given an AF, we can consider its extensions as the “solutions" (under the given extension

semantics) for that AF. An alternative approach is to label the arguments according to their
acceptance status [20, 11]:
De�nition 13. (Labeling Semantics) Let GAF = (V,E) be an argumentation framework.
An AF labeling is a function LabAF : V ! {��,���,�����} that assigns a label of ��, ���,

Shawn Bowers, Yilin Xia, Bertram Ludäscher

111 SAFA@COMMA 2024



or ����� to arguments. Label values correspond to whether an argument is �� an extension
(accepted), ��� of an extension (rejected), or neither in nor out (�����).

3.2. Discussion Games

The standard grounded game (SGG) and the grounded discussion game (GDG) are alternative game-
based proof procedures for determining whether an argument is in the grounded extension [11].

The Standard Grounded Game (SGG). The SGG de�nes a discussion (similar to a play) as
a sequence of arguments (agreeing with the given attack relation) made by two players, the
Proponent (trying to show that an argument is accepted) and the Opponent (trying to refute
this claim). Unlike the traditional game-theoretic set-up described in Section 2, where Player I
makes the �rst move from the start node x to a follower y, in SGG, it is the Opponent who �rst
chooses a move to a successor node y (i.e., a follower in the attacked-by direction of edges).

The Grounded Discussion Game (GDG). The GDG is played by two players directly on an
AF graph (not on a game tree) and players have four types of moves at their disposal: (i) claim
an argument x is labeled �� (���(x): has to be the case); (ii) claim an argument should not be
labeled ��� (��(x): can be the case); (iii) concede that an argument is labeled �� (�������(x));
or (iv) retract that an argument should not be labeled ��� (�������(x)).

SGG and GDG Compared. One could argue that SGG is conceptually simpler than GDG since
the latter introduces various move types (���, ��, �������, and �������).

On the other hand, SGG is computationally more expensive, as “the number of steps needed
in a winning strategy of the SGG can be exponential in relation to the in/out-size of the strongly
admissible labeling that the SGG winning strategy is constructing” [11, p.297].

In the following, we propose the Skeptic’s Argumentation Game (SAG), which can be seen as
a variant of the SGG (e.g., w.r.t. its conceptual simplicity) but without its exponential overhead.
It combines the bene�ts of both approaches while also following a traditional game-theoretic
set-up. In a sense, SAG is not a new game but rather a new interpretation (for grounded AF
semantics) of the classic win-move game described in Section 2.

3.3. The Skeptic’s Argumentation Game

Figure 2a shows an AF with its corresponding grounded labeling in Figure 2b and provenance
information in Figure 2c, where �� (accepted) is blue, ��� (defeated) is orange, and �����
(undecided) is yellow. Note that Figure 2 is equivalent to Figure 1 as follows:

(a) the WM-graph in Figure 1a is identical to the AF-graph in Figure 2a if we reverse the
attack edges (i.e., replace them by attacked-by edges); and

(b) the node values in Figure 1b and Figure 1c match those in Figure 2b and Figure 2c, respec-
tively, see Theorem 1 (WM-AF Correspondence).

As suggested in Section 1, this correspondence (or duality) implies that the reverse of the attack
graph (i.e., the attacked-by graph) can be understood as a 2-player (argumentation) game that is
isomorphic to the standard WM game. This allows us to directly transfer the provenance results
from Section 2 to the AF setting (e.g., see the example in Figure 2c). But what is this game?

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 112



A

B C O

F

D E

G H

M

K

L

N

(a) An attack graph GAF

A

B C O

F

D E

G H

M

K

L

N

(b) Grounded solution G
�
AF . . .

A.1

B.0

1   

C.2

3

O.0

    1

F.0

D.1
1   

E.1

G.2

3

H.0

2       2

1  

M.∞

  2 

K.∞

L.∞

∞  

N.∞

∞  

∞  

   ∞

(c) . . . with provenance (G⇤
AF)

Figure 2: Solving the AF in (a) yields G�
AF in (b): node colors orange, blue, and yellow represent labels

���, ��, and �����, respectively. Additional bookkeeping, while computing the grounded labeling of AF,
yields (c): G⇤

AF, a grounded labeling with provenance explaining, e.g., how quickly a SAG position can be
won (or how long a loss can be delayed).

A Skeptic’s Perspective. Player I, the Skeptic, argues that a node x in AF is a defeated argument.
To this end, the Skeptic claims that there exists an attacker y in the AF-graph which itself is
accepted and y attacks x (or equivalently x is attacked-by y). This corresponds to Player I
choosing one of the possible moves (from x) in the game. Player II, the Optimist, begs to di�er
and makes the counter claim that all attackers of x are defeated, including y.
Example 4 (A Skeptic’s Win). Assume the Skeptic wants to demonstrate that node D is a
defeated argument in Figure 2a. The best move in SAG is to move to node F (which attacks D)
and claim that F is accepted and thus D is defeated. The Optimist could try and show that F
itself is defeated (so the attack F! D wouldn’t matter), alas there are no further moves to play:
No argument in AF attacks F, so its acceptance has been established and the Skeptic has proven
that D is indeed defeated.
Example 5 (An Optimist’s Win). Alternatively, if the Skeptic claims that C is defeated, there
must exist an accepted attacker of C. Both possible SAG moves, i.e., to the attacker D and to
the attacker E can be refuted by the Optimist: D is defeated (as just shown in Example 4) so
its attack on C can be ignored. Argument E is similarly defeated (via the accepted attacker H).
Since all attackers of C have been shown to be defeated, the Skeptic’s claim that C is defeated
has been refuted and C must be accepted: A win for the Optimist (Player II).
Looking back at Example 4, had the Skeptic chosen the move from D to E (instead of to F),

this would have been a blunder : the Skeptic aims to point to an accepted attacker of D but the
potential attacker E is itself defeated, so this attack cannot be used to establish the defeat of D.
As shown for (generic) win-move games in Section 2.4, one can distinguish at least seven

di�erent kinds of edges, i.e., not all moves are created equal: winning, losing (i.e., delaying),
and drawing moves are the only provenance edges that contribute to the value of a position
x (���, ����, or �����). In contrast, blunders are moves that are not considered part of the
provenance of x, as they do not contribute to x’s value.

Shawn Bowers, Yilin Xia, Bertram Ludäscher

113 SAFA@COMMA 2024



∃ Node:
WON

|!!| ≤ 2n+1

b-1 (blunder)

∃ Node:
DRAWN
|!!| = ∞

b-3 (blunder)

∀ Node:
LOST

|!!| ≥ 2n

w_pr (primary winning)
w_sc (secondary winning)

b-2 (blunder)

d (drawing)

n/a

l (losing/delaying)

n/a
n/a

7/10/24, 8:34 PM graph.svg

file:///Users/ludaesch/Dropbox/Travel/2024-06-Germany-and-Vienna-TaPP/Readings/graph.svg 1/1

(a) G⇤
WM labels and annotations

∃ Node:
OUT

|!!| ≤ 2n+1

b-1

∃ Node:
UNDEC
|!!| = ∞

b-3

∀ Node:
IN

|!!| ≥ 2n

s_pr (successful attack, primary)
s_sc (successful attack, secondary)

b-2

u (undecided attack)

n/a

f (failed attack)

n/a

n/a

7/10/24, 9:14 PM graph (1).svg

file:///Users/ludaesch/Dropbox/Travel/2024-06-Germany-and-Vienna-TaPP/Readings/graph (1).svg 1/1

(b) G⇤
AF labels and annotations

Figure 3: Provenance Edge Types. (a) Node x is a ��� if there exists (9) a (primary or secondary
winning) move to a ���� position y. Node x is ���� if all (8) moves lead to ��� positions (for the
opponent). The length of x indicates how long the game lasts in optimal play: A win can be forced from
a��� node in at most 2n+1 moves; a loss can be delayed for at least 2n moves. (“!!” denotes a brilliant
move in chess.) If neither player can force a win from x, then that node is �����: There exists (9) a
move that keeps the draw (by eventually repeating moves and playing a game of infinite length). Edge
types “b-1, b-2, b-3” are blunders and thus irrelevant for determining the value of a node. The label “n/a”
indicates move types that cannot exist in a game. The dual interpretation in (b) is explained in the text.

SAG: A New (Old) Impartial Game. The Skeptic’s Argumentation Game (SAG) introduced
above (Examples 4 and 5) employs the standard machinery of games as de�ned in Section 2.
SAG therefore is such a classic impartial game4, only that moves are interpreted as attacked-by
edges. Consequently, via the WM-AF correspondence, the de�nitions of games, solutions, the
AFP-based (backward induction) algorithm, length, actual and primary provenance, and the
regular provenance structure all immediately apply to this “new” argumentation game as well.

The Regular Structure of AF Provenance. Similar to Figure 3a, the type graph in Figure 3b
summarizes the overall provenance structure of AFs with respect to argument values and attack
types. The seven attack types are divided into provenance-relevant attacks (successful, failed,
undecided) and provenance-irrelevant attacks (three kinds of blunders). The successful attacks
are further subdivided into primary and secondary attacks (as in Figure 3a). Figure 3b also
shows the three edge types that cannot exist in a grounded labeling. For example, an argument
would not be accepted if it were attacked by an accepted or an undecided argument. Similarly,
an undecided argument x can never be attacked by an accepted argument y, otherwise x would
be defeated rather than undecided.

4. Provenance-Aware Layered AF Visualizations

Graph-based visualization can help to clarify the structural context of both games and argumen-
tation frameworks, providing insight into why a node (position or argument) has a particular
value. A direct result of the duality between games and AFs is that game provenance can be
exploited within AF visualizations to organize arguments within attack graphs according to the
role they play in the grounded labeling. Here we show one approach for exploiting this structure
in which provenance edge types are used to generate AF graph layouts that are organized into

4Using the usual normal play rule, i.e., the player making the last move wins.

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 114



4/20/24, 5:41 PM AF-animal-fdp.svg

file:///Users/ludaesch/Dropbox/Reviews/2024-04-COMMA/AF-animal-fdp.svg 1/1

A

B

C

E

F
V

W

Y

T

U

D

Q

Z

X

S

I

M

H

G

J

K

L

O

N

(a) A standard force-directed AF layout

4/20/24, 7:57 PM AF-animal-layered.svg

file:///Users/ludaesch/Dropbox/Reviews/2024-04-COMMA/AF-animal-layered.svg 1/1

B.1

A.2

2  

T.2

2  

F.4
5

E.∞

C.1D.1

S.3

4

G.1 H.1

2  

I.1

J.∞

O.∞

U.1

2  

3

K.0

1

L.0

1
Q.0

11 1

V.0

11

W.0

1

X.0

1

Y.0

1
Z.0

1

M.∞
∞

∞

N.∞

∞

∞

∞

(b) A layered provenance-aware AF layout

Figure 4: Provenance-awareAF visualization: (a)GAF for a body of case law [12]. Even for fairly small
graphs it is di�icult to spot arguments that are immediately accepted, i.e., nodes without incoming attack
edges. The provenance-aware, layered rendering in (b) exposes the grounded (well-founded) labeling:
accepted arguments without attackers are layered at the bottom (len = 0), followed by immediately
defeated arguments (len = 1), etc. The undecided component (len =1) is in a separate cluster; the most
“di�icult” accepted argument (len = 4) is F. Edges that do not contribute to provenance (gray, dotted) are
suppressed, revealing the underlying structure and “dependency flow” of the solved AF.

“well-founded layers”: argument clusters that are layered according to the order their values
become known in the iterative (AFP-based) computation used to compute the grounded labeling.
Example 6 (Bench-Capon Animal Case-Law). Figure 4a shows the AF from [12] visualized
with a widely-used force-directed layout [21] (in this case, implemented in Graphviz5). Figure 4a
only shows the input AF and has no additional provenance information. However, even with
additional coloring and annotations, it would be di�cult to quickly understand the arguments
and attacks that explain a given argument’s value. As an example, T is accepted under the
grounded semantics, however, determining why this is the case is di�cult to untangle from
the visualization in Figure 4a. Figure 4b shows the provenance-aware layered visualization of
the same AF under the grounded semantics, where arguments are clustered according to their
lengths. Given an argument, the relevant subgraph that led to its value is shown “below” it in
the layout. For example, we can see that T is accepted because it is attacked by U and B, which
are themselves attacked by the unattacked arguments V,W, and Y.

4.1. AF Layered Visualization Heuristics

A visualization of an AF using our layered approach is de�ned by four heuristics:

(i) Arguments and Attacks. Each argument and attack is decorated according to the template
of Figure 3b, following the general style of Figure 2c.

5https://graphviz.org/

Shawn Bowers, Yilin Xia, Bertram Ludäscher

115 SAFA@COMMA 2024



(ii) Layout Direction. AFs are displayed according to a layout direction (w.r.t. attack edges),
which is either vertical or horizontal. Vertical layouts can be bottom-to-top (as shown in
Figure 4b) or top-to-bottom. Horizontal layouts can be left-to-right or right-to-left.

(iii) Layered Arguments. All arguments with the same length, except for those that are
����� (with a length of1), are displayed at the same level in the graph. Each level is
drawn orthogonal to the (either horizontal or vertical) layout direction. This means that
arguments with length k are aligned horizontally for a vertical layout, and vertically for a
horizontal layout. Levels are displayed in order according to their lengths, e.g., level k in
a bottom-to-top layout will be below level k + 1, and so on. There are �ve levels shown
in Figure 4b: the top-most level contains F (with length 4), followed by a level containing
S (with length 3), a level containing the arguments with length 2, a level containing the
arguments with length 1, and the last level containing the arguments with length 0.

(iv) Layered Edges. All attacks x ! y that are labeled as either primary succeeding or else
failing (see Figure 3b) are required to be displayed in the layout direction (e.g., “up-the-
page” in a bottom-to-top layout). These edges represent the attacks that are relevant in
the explanation of an argument’s value, as opposed to irrelevant (blunder) attacks or
secondary (successful) attacks discovered after an argument’s value has already been
found in the backward induction (AFP-based) computation. Additional edges are drawn
as appropriate for the graph, however, they do not impact the overall layering (i.e., they
are not required to follow the same layout direction constraints).

Example 7. In Figure 4b, the successful attack of H on F is a primary edge, and thus, is required
to be drawn in the upward direction in the (bottom-to-top) layout. However, the attack of F
on B is not required to be drawn according to the layered edge constraint since F’s value was
known prior to considering the attack in the AFP-based solution (i.e., the attack is a secondary
edge). The attack of D on C is irrelevant (a blunder), and in this case is drawn horizontally,
since both arguments are in the same layer (i.e., they have the same length).

4.2. Implementing AF Layered Visualization using Graphviz in PyArg

Given an AF and its associated provenance labelings, the above heuristics can be directly
implemented using the DOT language of Graphviz [22]. In particular, argument nodes and
attack edges are represented according to their provenance labelings (to assign labels, colors,
solid vs dashed renderings, and arrow heads). Nodes with non-in�nite lengths are grouped using
DOT’s rank command. Non-primary and non-failing edges are assigned the “non-ranking”
constraint (i.e., the edge is ignored by Graphviz when calculating the layout of nodes). An initial
prototype [14] has been implemented within PyArg [23], which also includes additional options
for structuring AF visualizations under the grounded semantics using provenance information.6

6Available at: https://pyarg.npai.science.uu.nl/21-visualise-abstract

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 116



5. Summary and Future Work

We have explored the duality between the win-move rule PWM and the AF rule PAF under the
well-founded semantics, giving rise to solved two-player combinatorial games and grounded
AF labelings, respectively. A discussion game has been presented which, to the best of our
knowledge, has not been studied by the argumentation community until now: In the Skeptic’s
Argumentation Game (SAG), Player I, the Skeptic, aims to establish that an argument x is defeated,
while Player II, the Optimist, tries to prove the opponent wrong and show that x is accepted.
This reversal of roles (from the more common Proponent vs Opponent in other discussion games)
appears counter-intuitive at �rst, but yields a number of important results. SAG is identical to a
classic/generic impartial game (only that moves are interpreted as attacked-by edges). Therefore,
concepts and results from game theory directly carry over to AFs, e.g., backward induction,
length of positions, and prior work on the provenance of games [17, 9].

A new, �ne-grained classi�cation of attack types has been derived from the dual edge types
in our prior work on game provenance [17]. While many approaches have been developed to
explain acceptance and non-acceptance of arguments in AFs under di�erent semantics (e.g., see
[11, 24, 25, 26]), our work complements these approaches (for the grounded semantics) via a new
AF attack-type classi�cation. Our approach also facilitates the use of path-based queries (RPQs)
over AF-graphs to obtain, e.g., the actual and primary provenance of accepted, defeated, and
undecided arguments. RPQs over provenance edge types can also provide a �exible mechanism
for expressing ad-hoc queries for exploring and extracting information from AFs.
Finally, we have described an application of game provenance for AFs that leverages both

edge types and node lengths to visualize the well-founded explanations of an argument’s value
(acceptance status). By both coloring arguments and edges according to their acceptance status,
and clustering argument nodes into layers according to when their values are discovered in a
backward induction, the overall “�ow of acceptance and defeat” is emphasized. This approach
suggests that the dependencies of arguments can be more easily discovered within an AF
visualization (e.g., when compared to force-directed or other non-semantic layout approaches).

In future work, we plan to continue to explore the duality and deep connections between win-
move games (and game-theoretic approaches in general) and argumentation frameworks started
recently [15]. We hope that others will join in this quest for new insights at the intersection of
argumentation and game theory.

References

[1] P. M. Dung, On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games, AI 77 (1995) 321–357.

[2] A. Van Gelder, K. A. Ross, J. S. Schlipf, The Well-founded Semantics for General Logic
Programs, Journal of the ACM 38 (1991) 619–649.

[3] P. Baroni, M. Caminada, M. Giacomin, Abstract Argumentation Frameworks and Their
Semantics, in: [18], 2018, pp. 159–236.

[4] C. Smith, Graphs and Composite Games, Journal of Combinatorial Theory 1 (1966) 51–81.

Shawn Bowers, Yilin Xia, Bertram Ludäscher

117 SAFA@COMMA 2024



[5] A. Fraenkel, Combinatorial Game Theory Foundations Applied to Digraph Kernels, Elec-
tronic Journal of Combinatorics 4 (1997) 1–17.

[6] J. Flum, Games, Kernels, and Antitone Operations, Order 17 (2000) 61–73.
[7] M. Caminada, Argumentation Semantics as Formal Discussion, in: [18], 2018, pp. 487–518.
[8] J. Flum, M. Kubierschky, B. Ludäscher, Total and Partial Well-Founded Datalog Coincide,

in: Intl. Conf. on Database Theory (ICDT), LNCS 1186, Springer, 1997, pp. 113–124.
[9] S. Köhler, B. Ludäscher, D. Zinn, First-Order Provenance Games, in: In Search of Elegance

in the Theory and Practice of Computation, LNCS 8000, 2013, pp. 382–399.
[10] P. T. Wood, Query Languages for Graph Databases, ACM SIGMOD Record 41 (2012) 50–60.
[11] M. Caminada, P. Dunne, Strong Admissibility Revisited: Theory and Applications, Argu-

ment & Computation 10 (2020) 277–300.
[12] T. Bench-Capon, Representation of Case Law as an Argumentation Framework, in: JURIX

Conf. on Legal Knowledge and Information Systems, 2002, pp. 103–112.
[13] Y. Xia, S. Bowers, B. Ludäscher, Demonstrating Provenance for Grounded Argumentation,

2024. https://github.com/idaks/Games-and-Argumentation/tree/safa2024.
[14] Y. Xia, D. Odenkerken, S. Bowers, B. Ludäscher, Layered Visualization of Argumentation

Frameworks, COMMA Demo-Paper Session, 2024. (to appear).
[15] B. Ludäscher, S. Bowers, Y. Xia, Games, Queries, and Argumentation Frameworks: Towards

a Family Reunion, in: Workshop on Advances in Argumentation in AI (AI3), volume 3546,
CEUR, 2023.

[16] A. Van Gelder, The Alternating Fixpoint of Logic Programs with Negation, Journal of
Computer and System Sciences 47 (1993) 185–221.

[17] S. Bowers, Y. Xia, B. Ludäscher, On the Structure of Game Provenance and its Applications,
in: Intl. Workshop on the Theory and Practice of Provenance (TaPP), 2024. (to appear).

[18] P. Baroni, D. Gabbay, M. Giacomin, L. v. d. Torre, Handbook of Formal Argumentation,
London, England: College Publications, 2018.

[19] P. Baroni, M. Giacomin, On Principle-Based Evaluation of Extension-Based Argumentation
Semantics, Arti�cial Intelligence 171 (2007) 675–700.

[20] M. Caminada, On the Issue of Reinstatement in Argumentation, in: Logics in Arti�cial
Intelligence, LNAI 4160, 2006, pp. 111–123.

[21] T. M. J. Fruchterman, E. M. Reingold, Graph Drawing by Force-Directed Placement,
Software Practice & Experience 21 (1991) 1129–1164.

[22] E. R. Gansner, E. Koutso�os, S. C. North, K.-P. Vo, A Technique for Drawing Directed
Graphs, IEEE Trans. Softw. Eng. 19 (1993) 214–230.

[23] D. Odekerken, A. Borg, M. Berthold, Demonstrating PyArg 2.0, in: Workshop on Advances
in Argumentation in AI (AI3), volume 3546, CEUR, 2023.

[24] A. Borg, F. Bex, A Basic Framework for Explanations in Argumentation, IEEE Intelligent
Systems 36 (2021) 25–35.

[25] A. J. García, C. I. Chesñevar, N. D. Rotstein, G. R. Simari, Formalizing Dialectical Expla-
nation Support for Argument-Based Reasoning in Knowledge-Based Systems, Expert
Systems with Applications 40 (2013) 3233–3247.

[26] X. Fan, F. Toni, On Computing Explanations in Argumentation, in: AAAI, 2015.

The Skeptic’s Argumentation Game or: Well-Founded Explanations for Mere Mortals

SAFA@COMMA 2024 118


