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Abstract
Current AI systems, including smart search engines and recommendation systems tools for streamlin-
ing literature reviews, and interactive question-answering platforms, are becoming indispensable for
researchers to navigate and understand the vast landscape of scientific knowledge. Taxonomies and
ontologies of research topics are key to this process, but manually creating them is costly and often
leads to outdated results. This poster paper shows the use of SciBERT model to automatically generate
research topic ontologies. Our model excels at identifying semantic relationships between research
topics, outperforming traditional methods. This approach promises to streamline the creation of accurate
and up-to-date ontologies, enhancing the effectiveness of AI tools for researchers.
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1. Introduction

The current generation of AI technologies, such as smart search engines, recommendation
systems, and question-answering applications, significantly aids researchers in exploring and
interpreting scientific literature [1]. Despite this, the rapid growth of scientific publications,
increasing by about 2.5 million papers annually [2], poses a substantial challenge. Although
large language models have revolutionised natural language processing (NLP) [3], they still
encounter limitations to process extensive text volumes and understand the broader context of
a research area.

To address this, scientific knowledge graphs (SKGs) [4], such as SemOpenAlex1, AIDA-KG2,
ORKG3, CS-KG4, became increasingly popular, providing structured and formal representations
of research publications.

Research topics are essential for describing research concepts within SKGs, making ontologies
of research topics (e.g., MeSH, UMLS, CSO, NLM) crucial for organising and querying academic
information [5]. Altogether, they empower intelligent systems to efficiently navigate and
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understand academic literature, including advanced search engines, interactive conversational
agents, analytics dashboards, and academic recommender systems.
However, manually creating ontologies of research topics is costly and time-consuming,

often resulting in outdated representations. To address this challenge, several approaches have
been proposed, including the integration of ontology learning with crowdsourcing methods,
combining statistical analysis with user feedback [6], or utilising citation-based clustering
of research papers to infer research topics from the titles and abstracts of documents within
clusters [7]. Another approach is Klink-2 [8], which produced the Computer Science Ontology
(CSO) [9], a widely adopted resource with about 14K topics and 159K semantic relationships.

In the same direction, this poster paper explores the use of SciBERT for generating research
topic ontologies. Our goal is to develop a method that incorporates language model technology
to update CSO and construct large-scale ontologies across scientific disciplines. We developed a
model to identify four semantic relationships (supertopic, subtopic, same-as, and other ) between
research topics and compared its performance to traditional feature-based solutions. Preliminary
results show that the transformer-based model significantly outperforms traditional models.
The gold standard and code are available on a GitHub repository5.

2. Materials and Methods

In this section, at first we describe the addressed task and the used datasets. Then, we illustrate
a traditional feature-based approach, and our transformer-based technique.

2.1. Task Definition and Datasets

In this work, we address a single-label multi-class classification problem. The task is to classify
the relationship between a pair of research topics (𝑡𝐴, 𝑡𝐵) according to four categories which are
essential for ontology generation:

• supertopic: 𝑡𝐴 is a parent topic of 𝑡𝐵. E.g., ontological languages is a broader area than owl
• subtopic: 𝑡𝐴 is a child topic of 𝑡𝐵. E.g., nosql is a specific area within databases
• same-as: 𝑡𝐴 and 𝑡𝐵 are different labels for the same concept. E.g., haptic interface and
haptic device

• other : 𝑡𝐴 and 𝑡𝐵 do not relate according to the above categories. E.g., blockchain and user
interfaces

In this context, other can refer to either negative samples or alternative semantic relationships
not currently considered by our method, such as partOf, or contributesTo.
For our gold standard, we selected portions of the Computer Science Ontology [9] that

have been manually checked and improved. CSO is a large ontology covering 14K research
topics, providing an extensive and fine-grained representation of Computer Science. It was
automatically generated using the Klink-2 algorithm [8] on 16 million scientific articles.

CSO comprises four primary semantic relationships. Among them, superTopicOf and related-
Equivalent essentially correspond to our superTopic and same-as relationships, respectively. To
5Gold standard and code - https://github.com/aleessiap/LeveragingLMforGeneratingOntologies.git
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construct the gold standard, we selected 4,713 superTopicOf triples from the CSO and desig-
nated them as superTopic instances. Additionally, we chose 3,034 relatedEquivalent triples to
represent equivalence using the same-as relation. We also derived 4,713 subTopic relationships
by reversing the superTopic relationships. Lastly, we randomly paired topics to create 5,151
other relationships, ensuring that none of these pairs shared any of the previously identified
relationships within the CSO. The resulting gold standard dataset consists of 17,611 triples,
divided into 15,154 triples (86%) for the training set, 2,166 triples (12.3%) for the validation set,
and 291 triples (1.7%) for the test set. To prevent bias, we ensured that topic pairs in one set do
not appear in another. Moreover, each test set triple includes at least one topic not present in
the training set. These measures make the test set more challenging compared to those used
for Klink-2 [8]. In order to compute features involving the linkage of topics to relevant papers
used in our feature-based method, we queried AIDA-KG [10], a KG considering 25 million
publications linked to research topics in CSO.

2.2. Feature-based Method

Our classification task is commonly approached exploiting numerical features, usuallymeasuring
the frequency and common usage of the two topics [8]. Extracted feature vectors are then
classified through mathematical functions or machine learning algorithms [8]. We devised a
feature-based classification method using the following features for each pair of topics (𝑡𝐴, 𝑡𝐵):

• occA: the frequency of 𝑡𝐴 appearing in paper abstracts
• occB: the frequency of 𝑡𝐵 appearing in paper abstracts
• cooccurrenceAB: the frequency of both 𝑡𝐴 and 𝑡𝐵 appearing together in abstracts
• subsumption: the degree of overlap between the co-occurring topics, computed as
subsumption = 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝐴𝐵

𝑜𝑐𝑐𝐴 − 𝑐𝑜𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝐴𝐵
𝑜𝑐𝑐𝐵

The first two features indicate the popularity of a topic. The third feature quantifies the
relatedness of two topics. The fourth feature assesses the hierarchical relationship between
the topics. After normalising the features, we trained two ensemble machine learning models:
Gradient Boosting (GB) and Random Forest (RF); varying the number of estimators from 10 to
3000 to determine the optimal configuration.

2.3. Language Model-based Method

Our method leveraging language models relies on SciBERT [11], an extension of BERT [12],
which is a highly regarded model for its ability to effectively understand and process human
language. SciBERT, trained on scientific literature from Semantic Scholar, enhances BERT’s
capabilities by focusing on the scientific domain.
To address our classification task we fine-tuned SciBERT using the training set described

in Section 2.1. Specifically, we used the scibert-scivocab-uncased model from Huggingface.
As optimiser, we selected AdamW [13] to prevent overfitting in large models. For the fine-
tuning process, we provided the model with the surface forms of the two topics, separated by a
semicolon. For each couple of topics, we also provided the correct relationship class from the
training set. We experimented with varying the number of epochs from 1 to 10, maintaining 50
warm-up steps. Our best-performing model was achieved when training for five epochs.



Table 1
Experimental results. GB = Gradient Boosting, RF = Random Forest.

Classifier Feature-based GB Feature-based RF Lang. Model-based
Accuracy 0.5842 0.6426 0.9141

Precision

supertopic 0.5424 0.5634 0.9143
subtopic 0.4815 0.6200 0.9452
same-as 0.5167 0.5804 0.9615
other 0.8621 0.8793 0.8286
average 0.6007 0.6608 0.9124

Recall

supertopic 0.4211 0.5263 0.8421
subtopic 0.3421 0.4079 0.9079
same-as 0.7750 0.8125 0.9375
other 0.8475 0.8644 0.9831
average 0.5964 0.6528 0.9177

F-score

supertopic 0.4740 0.5442 0.8767
subtopic 0.4000 0.4921 0.9262
same-as 0.6200 0.6771 0.9494
other 0.8547 0.8718 0.8992
average 0.5872 0.6463 0.9129

3. Evaluation

Using the test set described in Section 2.1, we evaluated the three methods outlined in the
previous section: Gradient Boosting and Random Forest (both feature-based), and SciBERT
(language model-based). We compared their performance using accuracy, precision, recall, and
F-score, which are standard metrics for text classification.

Table 1 reports the experimental results. The language model-based method was far superior
to the feature-based methods in all areas, achieving an impressive F1 score of 0.9129. This was
over 27% higher than the other methods. Among the feature-based approaches, Random Forest
performed better. The language model-based method was particularly effective in recognising
superTopic and subTopic relations, where feature-based methods struggled, likely due to the
presence of unfamiliar topics in the test set.
The language model-based method generally priorities precision over recall, particularly

for the relations superTopic, subTopic, and same-as. However, for the other relation, it tends to
miss some semantic connections, resulting in lower precision compared to recall. This suggests
the model may incorrectly classify some related topics as other, an issue we intend to explore
further in future research.

4. Conclusions

In this poster paper, we introduced a new method based on SciBERT to identify the relationship
between research topics and conducted a comparative analysis against feature-based solutions.
We fine-tuned a SciBERT model using a gold standard of triples derived from CSO. The model
achieved an F1 score of 0.9129, a 27% improvement over methods using numerical features.
These findings are significant given the growing demand for detailed ontologies to enhance
content characterization in scientific KGs



In our future work, we aim to develop an innovative method for creating taxonomies of
research topics to improve CSO and create large-scale ontologies across different scientific
fields. We plan to combine language models and numerical features using knowledge injection
techniques and experiment with recent large language models. We also intend to explore
potential challenges when applying these techniques to other research domains and assess the
impact of cross-disciplinary applications.
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