
GECKO: A Question Answering System for Official
Statistics
Lucas Lageweg1,2, Jonas Kouwenhoven and Benno Kruit3

1Statistics Netherlands, Henri Faasdreef 312, Den Haag, Netherlands
2University of Amsterdam, Science Park 900, 1098 XH Amsterdam, Netherlands
3Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam, Netherlands

Abstract
This paper presents GECKO, a knowledge graph-based statistical question answering system currently
in beta deployment. GECKO aims to facilitate the retrieval of single statistical values from an exten-
sive database containing over a billion values across more than 4,000 tables. The system integrates a
comprehensive framework including data augmentation, entity retrieval, and large language model
(LLM)-based query generation. A key feature of the beta deployment is the collection of user feedback,
which is critical for improving system performance and accuracy. This feedback mechanism allows users
to report issues directly, ensuring continuous improvement based on real-world use.

1. Introduction

Statistics Netherlands (Centraal Bureau voor de Statistiek; CBS) is an independent administrative
body of the Dutch government tasked with the creation of statistics over a broad spectrum of
social topics and the responsibility to make them accessible to the general public. However,
in-house studies have shown that users struggle to find the correct tables for their needs in the
vast amount of data available. This research aims to develop a Question Answering (QA) system
to provide specific statistical observations from this data as responses to natural-language user
questions.

QA systems can take several forms, with most recently free-form generative Large Language
Models (LLMs) like ChatGPT and GPT4 [1] getting much attention. Due to the nature of these
models, they are able to generalize very well on a large range of topics, but have shown to
be prone to ‘hallucinations’, where plausible but incorrect or even nonsensical answers are
generated [2]. Especially for official data like governmental statistics, this is highly undesirable
behavior.
Knowledge Graph Question Answering (KGQA) is a field where knowledge graphs (KGs)

containing real-world facts and relations in structured form are used as a basis for QA systems.
Answers of such systems should always adhere to the KG. Therefore, assuming it contains
correct information, answering by returning parts of the KG, or reasoning over it, cannot lead to
nonsensical answers. In this paper, we introduce an end-to-end pipeline for a generation-based
KGQA system of CBS data.

SEMANTICS 2024, Demo Track
Envelope-Open l.lageweg@cbs.nl (L. Lageweg); jonaskouwenhoven@live.nl (J. Kouwenhoven); b.b.kruit@vu.nl (B. Kruit)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:l.lageweg@cbs.nl
mailto:jonaskouwenhoven@live.nl
mailto:b.b.kruit@vu.nl
https://creativecommons.org/licenses/by/4.0

Our approach introduces a data augmentation process for enhancing model training, explores
various encoder architectures for entity retrieval, and proposes a new query generator mecha-
nism enhanced by Low Rank Adaptation (LoRA) [3]. Additionally, we propose a new prompting
technique that utilizes dynamic prompts, constructing specific prompts based on the generation
phase. These improvements help the process of generating symbolic expressions for querying a
KG, thereby enhancing the overall performance of the QA system.
This paper details the beta deployment of GECKO and its feedback collection mechanism,

emphasizing the role of user input in refining the system. The beta phase is critical for identifying
and addressing potential issues, ultimately enhancing the system’s robustness and reliability.

(a) Overview

PPeerriiooddss

DDaaiirryy

pprroodduuccttiioonn

Butter Cheese

11 000000 kkgg

1995 132,300 682,900

2000 126,200 683,600

2005 118,800 672,200

2010 133,419 752,638

2015 147,577 844,974

(b) Example Table Fragment

Figure 1: (a) Overview of our pipeline from query to answer. Candidate table nodes (green) are retrieved
for the query, after which the measure and dimension filter candidates are retrieved (blue), resulting
in a complete subgraph for the table candidates. The subgraph is used as input for the constrained
S-expression decoding by either the baseline method or trained model. (b) Example CBS table fragment
(from 7425eng), showing one dimension (time periods) and two measures.

2. Related Work

Query generation systems, particularly those involving text-to-SQL and KGQA, have made
significant strides [4]. Recent work [5, 6] focus on grounding queries in knowledge graphs
to avoid hallucinations. Recent advancements [7, 8] highlight the use of LLMs in generating
logical forms for querying databases.

Data augmentation techniques [9, 10], are essential for creating diverse and realistic training
datasets. Entity retrieval methods including sparse and dense retrieval approaches [11, 12, 13],
play a crucial role in identifying relevant data within vast datasets.
Compared to existing KBQA or text-to-SQL systems, we provide a hybrid solution where

statistical tabular data can be represented as knowledge graphs, to which the techniques for
symbolic expression generation instead of more complex query language generation (SQL or
SPARQL) can be applied. With this approach, we propose a novel system that can help find

relevant information in official statistics and similar systems, which is vital for governmental
decision making and all fields of research utilising and relying on these statistics.

3. System Design

In processing a question, GECKO performs four core steps: entity retrieval, filters retrieval, con-
strained S-expression decoding (i.e. symbolic expression generation) and observation validation.
We restrict the querying space by performing entity retrieval based on the input question to
determine the closest KB nodes. This is done through either sparse retrieval using BM25+ [14]
as a baseline method, using a trained dual encoder [12] or a finetuned ColBERT model [13].
After obtaining the closest matching entities based on the query, we retrieve all possible

filters for tables by exploding a subgraph using the entities found. The result of the subgraph
exploding is a graph containing all table nodes and their related measures and dimensions
having nodes intersecting with the retrieved entities from the previous step. The subgraph
contains all relevant nodes to the query, connected to one or more tables.
The query and subgraph are used as input for the constrained S-expression decoding. The

S-expressions are generated token-by-token such that, given the subgraph, admissible tokens
are returned at every step. A rule-based baseline was created using the entity retrieval scores to
greedily determine what token from the admissible tokens to select. The second method uses a
transformer-based decoder-only seq2seq model and dynamic prompting.

When generating a token at a given timestep, the model evaluates the sequences in the list of
admissible/constrained tokens and selects the sequence with the highest assigned score. For
example, when 7425eng is given to the decoder as one of the admissible next tokens, but only a
decomposition of sub-tokens can be embedded by the model (e.g. 7425 followed by ##eng), the
summed log probability for these subtokens will determine the total probability of selecting
this identifier for generation.
The novelty in this constraining method is the introduction of dynamic prompting, which,

instead of calculating the likelihood of a token sequence based on a static prompt (i.e. text
input for the model), adjusts the prompts according to the generation phase. For example,
when generating a table ID, the prompt is altered to only include the most relevant table IDs
and their descriptions. Similarly, when measures are generated in the next phase, it retrieves
the measures related to the previously generated table ID, and using those to construct a new
prompt. This method applies to the different dimension groups as well. Figure 2 contains a
schematic overview of the dynamic prompting technique.

4. Model training & beta deployment

For creating training data, we developed a method for manual data annotation. This method
involves annotators writing queries that can be answered by a specific table cell. Annotators
were instructed to write their questions both as full sentences and in a more casual style, aiming
to simulate the formulation of questions posed by users in a search engine. The data obtained
from this manual annotation process contains queries and their corresponding S-expression,
resulting in 2300 annotated pairs.

Figure 2: Schematic overview of dynamic promting for a decoder-only model architecture. If there are
multiple tokens that can be generated, a custom prompt is given to the decoder with labels for all the
possible options.

The annotated queries were distributed over random tables from the CBS datapool, and
contained a strong class imbalance towards tables that were more easily annotated. This class
imbalance and random distribution motivates extending this study with data augmentation.
In this extension, annotated S-expressions and their associated queries are used to fine-tune
a GPT-3.5 model through the OpenAI fine-tuning services. The query-expression pairs were
transformed into prompts using the descriptions of the IDs for various measures, dimensions,
and table IDs. Training such a model reduces the need for additional manual annotation, while
also significantly increasing the amount of annotated data.
The initial GECKO model (𝑣1) and model containing the improvements discussed here (𝑣2)

were evaluated using a selected sample of this dataset. This was done by evaluation exact table
matches of generated S-expressions (𝑣1 0.35; 𝑣2 0.63), F1-scores for selected dimensions in said
S-expressions (𝑣1 0.62; 𝑣2 0.71) and by manually annotation answer relevancy, as an answer can
be a non-exact match but still be relevant to the question (𝑣1 0.38; 𝑣2 0.71).

5. Conclusion

The beta deployment of GECKO1, a generation-based KGQA system for CBS data, marks a
significant milestone in improving user interaction with governmental statistics. This phase
includes mechanisms for feedback collection, which will play a crucial role in refining and
enhancing the system based on user input. The feedback gathered during the beta deployment
will help identify and address potential issues, ensuring the system’s robustness and reliability.
This process is essential for developing a reliable QA system capable of providing accurate and
relevant statistical observations in response to natural-language user questions.

1https://gecko.cbs.nl

https://gecko.cbs.nl

References

[1] OpenAI, GPT-4 Technical Report, 2023. arXiv:2303.08774.
[2] M. Zhang, O. Press, W. Merrill, A. Liu, N. A. Smith, How Language Model Hallucinations

Can Snowball, 2023. arXiv:2305.13534.
[3] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: Low-

rank adaptation of large language models, in: International Conference on Learning
Representations, 2022.

[4] B. Qin, B. Hui, L. Wang, M. Yang, J. Li, B. Li, R. Geng, R. Cao, J. Sun, L. Si, F. Huang,
Y. Li, A survey on text-to-sql parsing: Concepts, methods, and future directions, 2022.
arXiv:2208.13629.

[5] Y. Gu, S. Kase, M. Vanni, B. Sadler, P. Liang, X. Yan, Y. Su, Beyond i.i.d.: Three levels of
generalization for question answering on knowledge bases, in: Proceedings of the Web
Conference 2021, ACM, 2021. doi:10.1145/3442381.3449992.

[6] D. Yu, S. Zhang, P. Ng, H. Zhu, A. H. Li, J. Wang, Y. Hu, W. Wang, Z. Wang, B. Xiang, Decaf:
Joint decoding of answers and logical forms for question answering over knowledge bases,
2023. arXiv:2210.00063.

[7] P. Schneider, M. Klettner, K. Jokinen, E. Simperl, F. Matthes, Evaluating large language
models in semantic parsing for conversational question answering over knowledge graphs,
arXiv preprint arXiv:2401.01711 (2024).

[8] L. Nan, Y. Zhao, W. Zou, N. Ri, J. Tae, E. Zhang, A. Cohan, D. Radev, Enhancing text-to-SQL
capabilities of large language models: A study on prompt design strategies, in: The 2023
Conference on Empirical Methods in Natural Language Processing, 2023.

[9] L. Bonifacio, H. Abonizio, M. Fadaee, R. Nogueira, InPars: Unsupervised dataset generation
for information retrieval, in: Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’22, Association for Comput-
ing Machinery, New York, NY, USA, 2022, p. 2387–2392. doi:10.1145/3477495.3531863.

[10] V. Jeronymo, L. Bonifacio, H. Abonizio, M. Fadaee, R. Lotufo, J. Zavrel, R. Nogueira, Inpars-
v2: Large language models as efficient dataset generators for information retrieval, arXiv
preprint arXiv:2301.01820 (2023).

[11] Z. Huang, S. Xu, M. Hu, X. Wang, J. Qiu, Y. Fu, Y. Zhao, Y. Peng, C. Wang, Recent trends
in deep learning based open-domain textual question answering systems, IEEE Access 8
(2020) 94341–94356.

[12] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L.Wu, S. Edunov, D. Chen, W.-t. Yih, Dense passage
retrieval for open-domain question answering, in: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Association for Computa-
tional Linguistics, Online, 2020, pp. 6769–6781. doi:10.18653/v1/2020.emnlp-main.550.

[13] O. Khattab, M. Zaharia, Colbert: Efficient and effective passage search via contextualized
late interaction over bert, in: Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, 2020, pp. 39–48.

[14] Y. Lv, C. Zhai, Lower-bounding term frequency normalization, in: Proceedings of the 20th
ACM International Conference on Information and Knowledge Management, CIKM ’11,
Association for Computing Machinery, New York, NY, USA, 2011, p. 7–16. doi:10.1145/
2063576.2063584.

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2305.13534
http://arxiv.org/abs/2208.13629
http://dx.doi.org/10.1145/3442381.3449992
http://arxiv.org/abs/2210.00063
http://dx.doi.org/10.1145/3477495.3531863
http://dx.doi.org/10.18653/v1/2020.emnlp-main.550
http://dx.doi.org/10.1145/2063576.2063584
http://dx.doi.org/10.1145/2063576.2063584

	1 Introduction
	2 Related Work
	3 System Design
	4 Model training & beta deployment
	5 Conclusion

