
Post-Hoc Insights: Natural-Language Explanations for
AI-Enhanced/-Integrated Software Systems
Dennis Schiese1, Aleksandr Perevalov1 and Andreas Both1,2

1Leipzig University of Applied Sciences, Leipzig, Germany
2DATEV eG, Nuremberg, Germany

Abstract
In this paper, we aim to address the problem of explainability as a broad research area for the specific
case of component-based systems. Our goal is to create a greater and deeper understanding of such a
system and its execution process, which is determined by the observable components’ data flows. Since
we approach this problem from the data perspective and focus on component-based Question Answering
systems, we consider two data types: SPARQL & RDF triples. We present a demonstrator for generating
corresponding explanations by using generative AI systems and for comparison based on templates. Our
approach is provided as an open-source web application that is freely accessible to all users.

Keywords
Explainability, Component-based Systems, Natural-Language Generation, Large Language Models

1. Introduction

Explanations are of crucial importance in enhancing not only but primarily both, the trustwor-
thiness of a wide range of systems and the traceability of responses. With the ever-increasing
complexity of software and the recent and fast progress in artificial intelligence (AI), systems
become increasingly opaque to both users and developers [1]. Since these “black-box” systems
are problematic for both sides, explainability plays an increasingly important role, especially in
the area of AI. There, the term explainability primarily describes methods and actions to under-
stand the predictions and thus the decision-making of a certain model, whether it is opaque or
transparent. While transparent models are comparably easy to explain, it is difficult to do so for
opaque models [2]. Therefore, for such models, explanations are generated post-hoc and with
different approaches, e.g., LIME [3] or SHAP [4]. Here, we present an approach for post-hoc
explainability within component-based AI-enhanced software systems, i.e., the explainability of
the behavior of components in general (not limited to AI models) that uses the system’s data that
was processed and/or is reflecting the intermediate processing steps. Accordingly, (post-hoc)
explanations are created for each component, regardless of their transparency. Our approach is
driven by the assumption that probably more general, but also more appropriate explanations
for all kinds of components can be generated. We argue that the value of such explanations and
the insight into a system can be further enhanced if the system under consideration consists
of well-defined components (in particular, having a clear purpose), with the explanations thus
being task-oriented. Hence, we want to explore this hypothesis by applying our approach to a
real-world component-based system and propose natural-language explanations.

SEMANTiCS 2024
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0


(a) General component model with
input and output representing the
data streams used to create the
component’s explanations.

(b) Process of executing the system and requesting an expla-
nation for a specific component (dotted arrow). The Data
Verbalizer consists of two different approaches to generate
explanations: template-based and using generative AI.

Figure 1: General component model and process big picture.

2. Related work

Explainability plays a crucial role in gaining a better understanding of a system’s behavior.
Although the topic is not entirely new, it has become important again with the increasing use
of AI in the past few years. Recent research on explainable AI (XAI) [2] has mainly focused
on explaining the models and therefore the process. Especially the explanation of opaque
models and therefore “black-boxes” remains a great field of future research. Currently, multiple
categorizations and corresponding approaches exist for this model type, as outlined in [4, 5, 6].
However, in many cases, these approaches are unsuitable [7]. Therefore, we shift our focus to
component-based systems, aiming to generate natural-language explanations post-hoc using
real data. To achieve this, we will leverage generative AI, which shows potential in producing
explanations due to its proven text generation capabilities [8, 9]. To the best of our knowledge,
similar approaches that utilize a system’s and more specifically a component’s data to create
explanations using generative AI, were not known at the time this paper was published.

3. Explaining components

Component-based systems utilize the principle of separation of concerns, which we believe
enhances explainability. Thus, when assessing explainability in these systems, the focus should
be on the individual components. To guide this approach, a brief concept is introduced below.

Conceptual basis As the basis for the concept, we developed a generalistic component model
which is shown in Figure 1a. It reflects the basic composition of systems where a component 𝐶
might call other components which thereby become part of the execution of 𝐶. With this, we
describe a minimal, explainable model that can be used to create any (explainable) component-
based system. This model can be used to reflect systems composed of components and their
data flows. Please note, that this concept is based on the assumption of an orchestrated system
and probably only applies to such systems. For the model shown, this means that the data



Figure 2: Screenshot of the demonstrator where the input data (represented as SPARQL query) and the
output data (represented as RDF triples) are verbalized with different configurations.

stream between a child and its orchestrator is unique. To represent this concept, we derived an
ontology1 which serves as a basis for further extensions. To apply the basis ontology to a use
case, the following system information is required: 1 Input and output data streams, 2 Datasets
following from data streams, 3 Type of (here: natural-language) explanation, 4 Component
integration, and 5 Approach to generate explanations with provided data.

In conclusion, the presented model establishes a basis for explainable component-based sys-
tems, characterized by unique data streams between components and their parent. Additionally,
an extendable ontology representing this model has been developed.

Demonstrator Finally, as a visualization of this concept, applied to a concrete system, the
demonstrator shown in Figure 2 has been developed. This web service can perform a Qanary
QA process and provides English explanations for each component. The creation of these
post-hoc explanations thus follows the workflow shown in Figure 1b. This illustration shows
the two existing approaches for the creation of explanations: Via templates and Generative AI.
Both are realized and visible in the demonstrator that we used to conduct a preliminary study
with about 3000 experiments, where we found that the generatively generated explanations
are almost as good as the template-based ones. In particular, in the case of SPARQL query
verbalization, the quality of the generatively generated explanations was superior to the quality
of the template-based explanations. In view of these results and the resulting findings, we would
be grateful for a lively evaluation of the explanations provided by the following demonstrator.

1https://github.com/WSE-research/qanary-explanation-service/blob/main/plain_ontology.owl

https://github.com/WSE-research/qanary-explanation-service/blob/main/plain_ontology.owl


With the demonstrator, it is possible to start a QA process 1 by passing a question or
2 by selecting a pre-defined one (s.t., an actual execution run can be started). The pre-
defined questions are dependent on the selected configuration 3 . Here, different component
combinations are configured, to easily get started. However, it is also possible to change the
configuration 4 and select your very own component combination. When doing so, the order
is relevant to the QA process 6 . When starting the QA process, the explanations are generated
afterward. While the template-based explanations will not vary, the generative ones do, due
to the characteristics of LLMs. As the quality of these variations may be the most interesting
part, the used examples and OpenAI’s GPT models2 can be changed 5 . When the process is
finished, the explanations for all components are available and displayed (for input data: 7 , for
output data: 11 ). For each explanation, the dataset 8 and prompt 9 can be inspected. The
explanations are split up into Template and Generative. Below every explanation, the quality can
be rated as good or poor 10 . Summarized, our demonstrator supports initiating a QA process
via custom or pre-defined questions, influenced by configurable component combinations and
the (post-hoc) generated explanations, either template-based or generative, can be reviewed
and rated for quality. The application was implemented using the Python library Streamlit. It is
available as an online demo3 as well as published on GitHub4 and available as a Docker image
on Dockerhub5. The source code of both applications is released under the MIT license.

Qanary use-case Our demonstrator used the Qanary framework6 [10, 11, 12] as foundation
for a component-based system that is manifesting a Question Answering application. Following
the Qanary methodology, each component fetches the required data (input) by itself from the
Qanary triplestore (centralized process memory) and stores the created data (component output)
there after finishing the processing. Hence, this setting is perfectly suited for our use case, as
the input and output data of each component is already tracked in the process memory of the
Qanary-driven system. Thereafter, we utilized this data to generate the explanations in the
demonstrator. Concerning the previously introduced concept we follow, we can declare the
access to the triplestore (read/write) as input and output data streams (cf. 1 ), SPARQL queries
(fetching input data) and RDF triples (stored output data) as data (cf. 2 ), natural language as
explanation type (cf. 3 ), and API-based server/client registration as component integration
(cf. 4 ). Finally, in our demonstrator, two methods for automatic explanation generation per
component are integrated: using manually defined templates (cf. T ) and using several LLMs
(cf. 4 and G ). The extended ontology is accessible on GitHub7.

4. Conclusion

The lack of explainability in many (not only AI-driven) systems is clearly evident. In this paper,
we have thus presented an application that addresses this problem for component-based systems,

2gpt-3.5-turbo-instruct, gpt-3.5-turbo-16k, gpt-4-0613 | Chat and Chat-Completions API with vanilla settings
3http://demos.swe.htwk-leipzig.de:40119/
4https://github.com/WSE-research/qanary-explainability-frontend and /qanary-explanation-service
5https://hub.docker.com/r/wseresearch/qanary-explainability-frontend
6https://github.com/WDAqua/Qanary
7https://github.com/WSE-research/qanary-explanation-service/blob/main/ontology_qanary.owl

http://demos.swe.htwk-leipzig.de:40119/
https://github.com/WSE-research/qanary-explainability-frontend
https://github.com/WSE-research/qanary-explanation-service
https://hub.docker.com/r/wseresearch/qanary-explainability-frontend
https://github.com/WDAqua/Qanary
https://github.com/WSE-research/qanary-explanation-service/blob/main/ontology_qanary.owl


as we believe this increases an explanation’s potential. The generated explanations were based
on the input and output data of each process-related component and were generated automati-
cally using (1) templates and (2) generative AI (using several LLMs). The latter explanations vary
more or less depending on the LLM settings used, such as the examples given, the GPT models,
or others8. Finally, this methodology represents a valuable and general approach to explaining
a system by explaining its components. Furthermore, with the increasing performance of Large
Language Models (LLMs), the results will become probably increasingly accurate and better.

Acknowledgments: This work was partially supported by the German Federal Ministry of
Economics and Technology (BMWi) under the number 16DTM107B (ASAGuR).

References

[1] L. Chazette, W. Brunotte, T. Speith, Exploring explainability: A definition, a model, and a
knowledge catalogue, in: IEEE 29th Int. Requirements Eng. Conf., 2021, pp. 197–208.

[2] P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, P. M. Atkinson, Explainable artificial
intelligence: an analytical review, WIREs Data Mining and Knowledge Discovery 11 (2021).

[3] M. T. Ribeiro, S. Singh, C. Guestrin, ”why should I trust you?”: Explaining the predictions
of any classifier, CoRR abs/1602.04938 (2016). arXiv:1602.04938.

[4] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Advances
in neural information processing systems 30 (2017).

[5] T. Verma, C. Lingenfelder, D. Klakow, Generating natural language explanations for
black-box predictions, in: 2022 Fourth International Conference on Transdisciplinary AI
(TransAI), IEEE, 2022, pp. 40–46. doi:10.1109/TransAI54797.2022.00013.

[6] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, F. Turini, Factual and
counterfactual explanations for black box decision making, IEEE Intelligent Systems 34
(2019) 14–23. doi:10.1109/MIS.2019.2957223.

[7] H. Lakkaraju, D. Slack, Y. Chen, C. Tan, S. Singh, Rethinking explainability as a dialogue:
A practitioner’s perspective, NeurIPS Workshop on Human Centered AI (2022).

[8] A. Bhattacharjee, R. Moraffah, J. Garland, H. Liu, Towards LLM-guided causal explainability
for black-box text classifiers, in: AAAI 2024 Workshop on Responsible Lang. Models, 2024.

[9] R. Ajwani, S. R. Javaji, F. Rudzicz, Z. Zhu, LLM-generated black-box explanations can be
adversarially helpful, 2024. arXiv:2405.06800 [cs].

[10] A. Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, C. Lange, Qanary – a method-
ology for vocabulary-driven open question answering systems, in: The Semantic Web.
Latest Advances and New Domains, Springer, 2016, pp. 625–641.

[11] K. Singh, A. Both, D. Diefenbach, S. Shekarpour, D. Cherix, C. Lange, Qanary – the fast
track to creating a question answering system with linked data technology, in: The
Semantic Web, Springer, 2016, pp. 183–188. doi:10.1007/978-3-319-47602-5_36.

[12] D. Diefenbach, K. Singh, A. Both, D. Cherix, C. Lange, S. Auer, The Qanary ecosystem:
Getting new insights by composing question answering pipelines, in: Web Engineering,
Springer, 2017, pp. 171–189. doi:10.1007/978-3-319-60131-1_10.

8Depending on the used LLM, there may be settings that impact the randomness or creativity of responses.

http://arxiv.org/abs/1602.04938
http://dx.doi.org/10.1109/TransAI54797.2022.00013
http://dx.doi.org/10.1109/MIS.2019.2957223
http://arxiv.org/abs/2405.06800 [cs]
http://dx.doi.org/10.1007/978-3-319-47602-5_36
http://dx.doi.org/10.1007/978-3-319-60131-1_10

	1 Introduction
	2 Related work
	3 Explaining components
	4 Conclusion

