
EA-to-RDF: Pain-Free integration of RDF and UML⋆

Bob Janssen1,∗,†, Ghislain Atemezing2,†

1Joint Informatievoorziening Commando, Ministry of Defense, Netherlands
2ERA - European Union Agency for Railways, 120 Rue Marc Lefrancq, 59307 Valenciennes, France

Abstract
This article presents an addon to the popular Enterprise Architect (EA) tool that lets modellers import
existing ontologies into EA as classes and export class models to ontologies. The addon implements the
SEMIC guidelines that standardise the UML-RDF mapping. The tool has been tested against some large
UML diagrams from the railway domain and the generated outputs (RDF and UML) demonstrate the
usefulness of EA-RDF both from UML experts and ontology developers. This approach bridges the gap
between ontologies and IT engineering in UML; modellers at ease in UML but unfamiliar with triples
can now easily access existing ontologies and publish their models as triples.

Keywords
UML diagrams, RDF, OWL, Ontology, Enterprise Architect, Model Based Systems Engineering

1. Introduction

Engineers and ontologists share a desire to capture knowledge of systems. Engineers prefer
graphic schemata whilst ontologists prefer language tooling. The common goal remains the
need to precisely model systems. Whether it is a technical control-and-command system or
a socio-economic system, modellers apply the divide-and-conquer approach to identify the
components and subcomponents that form the system and how they relate.
Information technologists, better known under the acronym IT-engineers, use the Unified

Modelling Language (UML) [1], and in particular class models, to capture system information.
The UML is a rich graphical language that lets engineers sketch diagrams showing concepts
and how they connect. Ontologists are more philosophically and linguistically inclined but in
essence do the same when they identify concepts and how they relate in subject-predicate-object
phrases.
Good IT design separates problem and solution. Early design in particular should avert

technical products that may solve a problem. This is important because IT design all to often is
burdened with legacy technologies that hinder sound conceptualisation. Instead, IT engineering
should exert intellectual rigour by eliciting use cases, and then codifying the discipline’s jargon
in terms of UML class diagrams before tying themselves to a given technology. Introducing

Semantics2024: 20th International Conference on Semantic Systems, September 17–19, 2024, Amsterdam, The Netherlands
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open bob.janssen@yahoo.com (B. Janssen); ghislain.atemezing@era.europa.eu (G. Atemezing)
GLOBE https://ijzerweg.nl (B. Janssen); https://atemezing.org (G. Atemezing)
Orcid 0000-xxxx-xxxx-xxxx (B. Janssen); 0000-0003-1562-6922 (G. Atemezing)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:bob.janssen@yahoo.com
mailto:ghislain.atemezing@era.europa.eu
https://ijzerweg.nl
https://atemezing.org
https://orcid.org/0000-xxxx-xxxx-xxxx
https://orcid.org/0000-0003-1562-6922
https://creativecommons.org/licenses/by/4.0


technological platforms or ”code smell” into a model is considered poor practice because
technologies come and go whereas concepts last.
UML class diagrams are designed to capture concepts and by this virtue are a favorite tool

with both IT engineers and ontologists. This raises the question how information can cross
more easily from UML to triples and back. IT engineers have much to win from reusing the
knowledge that is readily available in published ontology. And vice versa, knowledge engineers
can raise interest in ontologies with IT engineers.

Figure 1: This class diagram exemplifies reuse of imported ontologies, the W3C person ontology and
the Dutch land registry’s top10nl ontology that defines topographic features. The diagram closes the
gap between IT- and domain expert by mixing a figure with explanations.

The SEMIC work group published a standard for mapping a small subset of UML constructs to
triples and back. We show in this paper how this mapping contributed to tooling and a workflow
for the widely used UML tool Enterprise Architect (EA). Section 2 of this paper presents existing
approaches, section 3 presents the main functionalities of the tool.

2. Related Work

Some approaches have been proposed in recent years to bridge the gap between UML modeling
and OWL ontologies. The work presented in [2] is an early attempt to generat OWL from UML



models. The approach used XMI corresponding to Ontology UML Profile (OUP) into OWL
description. Unfortunately, it was not possible to access and assess the tool.

Another approach by Chavez-Feria and al., [3] proposed Chowlk, a framework to transform
digital ontology conceptualisation diagrams into OWL. Chowlk proposed a different UML-based
visual notation and templates based on diagrams.net, which is not necessary in our proposal.
Finally, the OSLO project [4] boosted the next generation of formal mappings of UML to OWL.

The OMG ontology workgroup, having identified the need for converting UML to RDF, created
the Ontology DefinitionMetamodel (ODM) [5]. The ODM is included in EA somodellers wishing
to publish an ontology apply ODM stereotypes to classes and relations. But the need to apply
stereotypes expresses the intent to publish RDF from the outset which may not be given when
modellers wish to steer clear of any ”platform” whether it be XSD, Json, Object Oriented code,
or RDF.
The SEMIC guidelines [6] (mostly) ignore stereotypes and apply to a subset of UML class

models. This Platform Independent Model (PIM) approach expresses the intent that a good
model should be like a stem cell that is pluripotent and later develops into Platform Specific
Model (PSM) whence into even more specific computer code.

The SEMIC workgroup also produced a tool based on XSLT that turns a class model, expressed
in XMI, into RDF. Whilst this is tool-independent, XSLT is not particularly user friendly. The
present addOn for EA was developed to be user friendly.

3. EA-RDF Functionalities

In this section, we describe how to go from RDF to UML and vice versa.

3.1. RDF to UML

Published ontologies are potent stores of domain knowledge. In day-to-day life, most IT
engineers reinvent the wheel or at best take inspiration from ontologies when designing class
diagrams because they’re tasked to build an application on a given platform. This defies the
Interoperability and Reusability goals in the FAIR acronym. This motivated the capability
of importing published ontologies into EA. An IT engineer can climb on the shoulders of
giants by importing ontologies into UML classes. The import retains important information
including definitions, the URI’s and relations. The tool comes with a set of preloaded well-
known ontologies such as foaf, DCAT, SKOS and many more. Alternatively, the user can import
published ontologies straight from existing catalogs such as Linked Open Vocabulary (LOV) or
any resource from the web. The modeller can then tailor the imports by specialising classes,
adding relations and new classes. This prevents modellers from toiling away in isolation and
by design create incompatibilities for which costly and fragile adaptors need to be built as an
afterthought. Short, importing ontologies as ready-made UML class models gives Model Base
System Engineers a sound foundation and blueprints on which to build models for their domain.

3.2. UML to RDF

The SEMIC style guide reference [6] lists rules for mapping classes, data types, connectors,
arities and annotations to RDF concepts, properties and SHACL shapes. UML constructs not in



Figure 2: Screenshot of a diagram showing a selection of classes imported from an ontology defined
by the European Railway Agency (ERA). A user typically creates such a view to represent a domain of
interest and then enriches the original model, e.g. by adding methods as shown by the blue square in
the Vehicle class, or by specialising classes to meet specific requirements.

the mapping rules are ignored.
URI’s are essential to triples so the UML model must provide the ingredients for constructing

URI’s. This is commonly achieved by applying tags named ”uri” to UML elements or ”base-uri”
to packages. This closely mimicks the SEMIC approach and dispenses of the need for a separate
configuration file. A subject, predicate or object node will inherit the URI from the tag of the
original UML element or, lacking a tag, of the package where it was found. The tool issues a
warning or error when no URI could be constructed.

3.3. Publishing your model to the Web

A model that is published on the web is FAIR: Findable - Accessible - Interoperable and Reusable.
EA out-of-the-box can produce a HTML view of a UML model. The addon adds a new landing
page that lists the produced RDF-triples. This HTML is readily exposed on a web server in such a
way that the produced URI’s have a target on the the web. Users can browse context information
because the triples are backed by published UML diagrams. Extra context reduces entry barriers,
accelerates learning curves and reduces development effort. The landing page includes an
index that helps users discover concepts defined in the model. This creates a continuum where
one can navigate between triples and published UML. This compares favourably to a classic

http://data.europa.eu/949


Figure 3: During the transformation process a table displays the produced triples. A click on a triple
highlights the associated element, in this case the MilitaryPoliceOfficer class. The right-most column
links to the SEMIC rule that governed the creation of this triple. This helps understanding and verifying
the transformation process.

situation where users chase data, context and documentation locked away in various silos.

4. Conclusions and future work

This paper presents a tool for automatic generation of RDF from UML class models and vice-
versa, packaged as an add-on for Enterprise Architect, a popular UML modelling tool. The tool
implements the SEMIC mapping rules. We will perform a quantitative evaluation of the tool by
both UML modellers and ontologists to compare the tool with existing approaches.

References

[1] O. A. Specification, Omg unified modeling language (omg uml), superstructure, v2. 1.2,
Object Management Group 70 (2007) 16.

[2] D. Gasevic, D. Djuric, V. Devedzic, V. Damjanovi, Converting uml to owl ontologies, in:
Proceedings of the 13th international WorldWideWeb conference on Alternate track papers
& posters, 2004, pp. 488–489.

[3] S. Chávez-Feria, R. García-Castro, M. Poveda-Villalón, Converting uml-based ontology
conceptualizations to owl with chowlk, in: The Semantic Web: ESWC 2021 Satellite Events,
Springer International Publishing, Cham, 2021, pp. 44–48.

[4] D. De Paepe, G. Thijs, R. Buyle, R. Verborgh, E. Mannens, Automated uml-based ontology
generation in oslo2, in: E. Blomqvist, K. Hose, H. Paulheim, A. Ławrynowicz, F. Ciravegna,
O. Hartig (Eds.), The Semantic Web: ESWC 2017 Satellite Events, Springer International
Publishing, Cham, 2017, pp. 93–97.

[5] O. M. Group, Ontology definition metamodel, 2014. URL: https://www.omg.org/spec/ODM/
1.1/PDF.

[6] E. Costetchi, B. V. Nuffelen, C. Nyulas, E. Stani, A.-N. Pasare, Semic style guide – technical
guidelines, 2023. URL: https://semiceu.github.io/style-guide/1.0.0/references.html, v. 1.0.0.

https://www.omg.org/spec/ODM/1.1/PDF
https://www.omg.org/spec/ODM/1.1/PDF
https://semiceu.github.io/style-guide/1.0.0/references.html

	1 Introduction
	2 Related Work
	3 EA-RDF Functionalities
	3.1 RDF to UML
	3.2 UML to RDF
	3.3 Publishing your model to the Web

	4 Conclusions and future work

