
Continuous Knowledge Graph Quality Assessment
through Comparison using ABECTO
Jan Martin Keil

Heinz Nixdorf Chair for Distributed Information Systems, Institute for Computer Science, Friedrich Schiller University Jena,
Germany
German Aerospace Center (DLR), Institute of Data Science, Mälzerstraße 3-5, 07745 Jena, Germany

Abstract
Maintaining accuracy and completeness of RDF knowledge graphs is an important but challenging task. As
constraints checking can only spot outliers, knowledge graphs would need to be checked against reference data to
obtain a reliable assessment. But this is often impossible due to the lack of suitable reference data. An alternative
is the comparison with other, overlapping knowledge graphs that possibly contain incorrect data, too. This can
spot potentially incorrect values in the maintained knowledge graph. As knowledge graphs might evolve over
time, this comparison must be done regularly. However, the regular comparison of data is an exhausting and
error prone task, if done manually.

We present ABECTO, a command line tool for the automatic comparison of multiple possibly incorrect RDF
knowledge graphs to monitor their accuracy and completeness. In our demonstration, we will showcase its
application in a Continuous Integration scenario for the regular automatic check of the quality of a maintained
knowledge graph.

Keywords
Continuous Integration, Knowledge Graph Engineering, Knowledge Graph Quality, Ontology Engineering,
Ontology Quality

1. Introduction

In more and more application areas, knowledge graphs (KGs) provide domain-specific background
information for applications. These applications rely on the quality of the provided data. Accuracy
and completeness are two important quality criteria for the maturity of KGs for these applications.
However, maintaining the accuracy and completeness of RDF KGs is a challenging task. State-of-the-art
approaches, like the Shapes Constraint Language (SHACL) [1] for A-Box statements or the OntOlogy
Pitfall Scanner! (OOPS!) [2] for T-Box statements, use constraints to spot incompleteness or wrong data.
However, these approaches can only detect data outside of the range of plausible values, as for example
a negative age or a missing birthdate of a person. They fail to detect plausible but still wrong values or
completely missing resources. The detection of these issues requires the comparison with reference
data. Unfortunately, a reliable reference dataset is typically not available. Otherwise, the reference
dataset should have been used to construct the KG in the first place. Moreover, even authoritative
datasets might contain errors, as their creation process can not rely on a reliable reference dataset,
either. This results in a classical chicken-egg problem. In consequence, methods to detect wrong or
incomplete data must not rely on the freedom from error of other data.

As an alternative, we proposed [3] the comparison with other, overlapping KGs that possibly contain
incorrect data, too. This approach can spot potentially incorrect and missing values as well as missing
resources in the maintained KG. Even if it might not find all issues due to incorrect and incomplete
data in the compared KGs, this can contribute to further improve the accuracy and completeness of
the maintained KG. Thereby, it complements constraint based methods. Further, not requiring an ideal
reference dataset makes it more likely to find data to compare against.

SEMANTiCS 2024 EU: 20th International Conference on Semantic Systems, September 17-19, 2024, Amsterdam, Netherlands
$ jan_martin.keil@dlr.de (J. M. Keil)
� 0000-0002-7733-0193 (J. M. Keil)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jan_martin.keil@dlr.de
https://orcid.org/0000-0002-7733-0193
https://creativecommons.org/licenses/by/4.0


If done manually, the comparison of data in KGs is an exhausting and error prone task. Therefore, the
comparison must be automated. Moreover, to unlock the full potential of automated quality checks for
the improvement of a KG, they must run regularly. Otherwise, the data quality could decrease during
the evolution of the KG and incorrect data could be used in a productive environment, even though
they would have been automatically detectable.

In software engineering, the practice of quick integration and regular automatic quality checking
of all changes to a software is called Continuous Integration (CI). Ideally, each proposed change to
the software by internal and external contributors is immediately checked automatically. From the
field of software engineering it is known that projects using CI have an increased number of defects
spotted internally without having an increasing number of defects spotted externally [4] and release
their software more often [5]. CI is not yet widely used in knowledge graph engineering. However, we
expect positive effects on productivity and quality in this field, too.

Therefore, we developed ABECTO, a command line tool for the comparison of multiple possibly
incorrect RDF KGs to monitor their accuracy and completeness. It enables KG maintainers to regularly
check their KG automatically and is designed to be used in a CI environment. With ABECTO, we extend
the range of tools for the automated quality assessment of KGs to enable the precise orchestration of
quality assurance processes for KGs. In our demonstration, we will showcase its application in a CI
scenario for the regular automatic check of the quality of the maintained KG.

2. Comparison Framework

For the realization of the comparison of knowledge graphs, we propose a framework [3, 6] of four
consecutive processing phases and a reporting phase. The sequence of phases is visualized in Figure 1.

ReportSource MappingTransformation

Evaluation

Comparison

Figure 1: Schematic of the knowledge graph comparison framework.

During the source phase, the data of the knowledge graphs to compare get loaded. The data might
be loaded from local files, files retrieved via URL, SPARQL endpoints or further sources.

During the transformation phase, additional statements can be generated based on the existing
statements. Tools like SPARQL construct queries, reasoners or custom sets of rules might get applied for
this. The transformation enables, for example, the deduction of implicit encoded data, the application
of domain knowledge not encoded in the knowledge graph or the alignment of literal datatypes. It
provides high flexibility with regards to the original structure of the data to enable the applicability of
knowledge graph comparisons to a wide range of fields.

During the mapping phase, the correspondency of resources gets determined. A wide range of
approaches could be applied for the mapping: Starting from simple rules like equal or similar values
of corresponding properties up to the application of sophisticated algorithms for ontology matching
or entity linking. In addition, users might manually include or exclude correspondencies. However,
mapping approaches are not the main concern of our work. Instead, results from dedicated third
mapping tools could also be reused, if provided as RDF input.

During the comparison and evaluation phase, the corresponding resources get compared. This
includes the determination of missing resources or values, as well as the detection of value deviations.
Further, the count, coverage and completeness of resources and values will be measured.

During the reporting phase, the collected information about the knowledge graphs get exported
into files of different formats.



3. The ABox Evaluation and Comparison Tool for Ontologies
(ABECTO)

ABECTO is a Java command line tool for the comparison and evaluation of two or more KGs to assess
their accuracy and completeness. It implements the comparison framework introduced in Section 2
and is based on the RDF framework Apache Jena1. The source code is publicly available on GitHub2

and Zenodo [7] under the permissive open source software license Apache 2.03. In addition, ABECTO
is available as a Docker image in the GitHub Container Registry to ease the use of ABECTO in CI
environments. Parameters may enable a failure exit status code in case of detected issues in a specific
KG to signal a failure to the calling environment.

ABECTO is developed as a command line tool because programs with graphical user interfaces
cannot be used effectively in an automated manner. In early drafts [6] ABECTO was implemented as
HTTP REST service with Jupyter Notebook4 as user interface. However, this prevented it from being
used as a CI tool and therefore the architecture was refactored. Beyond that, the current version features
several new or improved processors, reports and measures.5

3.1. Configuration and Application of ABECTO

The comparison in ABECTO is configured by a plan that is a pipeline of several steps, described using
the ABECTO vocabulary6. Each step executes a processor with a particular configuration. ABECTO
provides multiple built in processors to (a) load resources from different sources like files or SPARQL
endpoints, (b) transform statements with e.g. SPARQL CONSTRUCT queries in preparation of future
steps, (c) map resources based on value equality, string similarity, functional dependencies and the
re-use of mappings provided by the KGs them self, and to (d) compare corresponding resources regarding
population completeness and property value accuracy and completeness. The data to compare are
described with aspects and aspect variables defined by one SPARQL SELECT query per compared KG.
The output primary data and metadata of each step are stored in in-memory RDF graphs, using the
ABECTO vocabulary.

ABECTO can reveal several types of issues: Resource omissions spot resources from one KG without
corresponding resource in another KG. Value omissions spot variable values of resources from one KG
without an equivalent value for corresponding resources and the same variable in another KG. However,
if both KGs have a value for the same variable of corresponding resources, but their values are not
equivalent, ABECTO detects a value deviation. Further, ABECTO can provide measurements of the
number of resources and values, the overlap between the KGs, and their estimated completeness.

The results together with the plan definition and provenance data can be stored as RDF in a TRiG7

file. Further, ABECTO provides multiple built in reports for the export in CSV or Markdown8 format to
ease the review and analysis of measurements, omissions, deviations and mappings.

The command line interface of ABECTO provides several parameters to control its input and output.
An RDF dataset file that contains a plan configuration must be selected as input. If paths for an RDF
result file or reports are provided, these will we generated. The RDF result file also contains the plan
configuration and can be used as input, too. A parameter allows to skip the plan execution to only load
and process existing results for later generation of additional reports. For the use in CI environments
the KG of primary interest can be defined. Then, the reports will only contain issues that concern the
KG of primary interest. Moreover, it can be configured which type of issues –if applicable, only from
the KG of primary interest– cause a failure exit status code to signal a problem to the CI environment.

1https://jena.apache.org/
2https://github.com/fusion-jena/abecto
3https://opensource.org/licenses/Apache-2.0
4https://jupyter.org/
5https://github.com/fusion-jena/abecto/blob/main/CHANGELOG.md
6http://w3id.org/abecto/vocabulary
7https://www.w3.org/TR/trig/
8https://daringfireball.net/projects/markdown/

https://jena.apache.org/
https://github.com/fusion-jena/abecto
https://opensource.org/licenses/Apache-2.0
https://jupyter.org/
https://github.com/fusion-jena/abecto/blob/main/CHANGELOG.md
http://w3id.org/abecto/vocabulary
https://www.w3.org/TR/trig/
https://daringfireball.net/projects/markdown/


Figure 2: Screenshot of the presentation of deviations in the GitHub user interface. It shows the deviations
between the value of one resource from the maintained KG and the values of two corresponding resources from
two different compared KGs.

3.2. Example Projects on Real-World Knowledge Graphs

We provide two example comparison projects for real world KGs.9 The first project is a Comparison
and Evaluation of Unit Ontologies [8]. In the project we compare unit of measurement and quantity
kind data from OM 2, QUDT 2, as well as the according subsets of SWEET 3 and Wikidata. The
comparison includes in total more than 11 600 resources and takes in total about 13min. Out of these,
5min are spend on the loading of all relevant data from the Wikidata SPARQL endpoint, alone.

The second project is a Comparison of Space Travel Data in Wikidata and DBpedia [9]. In
the project we compare astronaut, spacecraft and space mission data from DBpedia and Wikidata. The
comparison includes in total more than 18 200 resources and takes in total about 14min. Again, 5min
of this time are spend on loading all relevant data from the Wikidata SPARQL endpoint, alone.

Findings have been reported to the according maintainers. Both comparison projects already caused
several improvements10 in all involved knowledge graphs.

4. Demonstration

We showcase the use of ABECTO in a CI pipeline to monitor the accuracy of a KG. The demon-
stration [10] starts with an incomplete and flawed example KG maintained in a Git repository. The
repository is equipped with a ready for operation pipeline configuration that will compare the example
KG to two other incomplete and flawed example KGs. For the purpose of the demonstration the KGs
in comparison will also be contained in the repository. In a real world scenario they would of course
origin from external sources.

Requirements for the demo execution and preparation instructions are available in the ReadMe

9DBpedia: https://www.dbpedia.org/, OM: https://github.com/HajoRijgersberg/OM, QUDT: https://qudt.org, SWEET: https:
//github.com/ESIPFed/sweet, Wikidata: https://www.wikidata.org

10OM: https://github.com/HajoRijgersberg/OM/issues?q=abecto, QUDT: https://github.com/qudt/qudt-public-repo/issues?q=
abecto, SWEET: https://github.com/ESIPFed/sweet/issues?q=abecto, DBpedia & Wikidata: https://www.wikidata.org/wiki/
User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies

https://www.dbpedia.org/
https://github.com/HajoRijgersberg/OM
https://qudt.org
https://github.com/ESIPFed/sweet
https://github.com/ESIPFed/sweet
https://www.wikidata.org
https://github.com/HajoRijgersberg/OM/issues?q=abecto
https://github.com/qudt/qudt-public-repo/issues?q=abecto
https://github.com/qudt/qudt-public-repo/issues?q=abecto
https://github.com/ESIPFed/sweet/issues?q=abecto
https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies
https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies


file11 of the demonstration. During the demonstration, the initial KGs will be updated with some
prepared changes. These changes might (a) add new accurate facts, (b) add new faulty facts, (c) fix
existing faulty facts, (d) update the KGs in comparison in a way affecting the comparison, (e) mark
deviating facts from the KGs in comparison as wrong, or (f) restore the initial repository status to restart
the demonstration. After each change, the CI pipeline will be executed automatically. An example
repository with pre-executed changes12 is available online. The results become available through the
GitHub user interfaces and present the detected problems in the KG to the user, as shown in Figure 2.
During the demonstration, we will look up the results of the automated execution of ABECTO after each
change. This allows visitors to experience hands-on how KG quality can be monitored and improved
using ABECTO. Moreover, since ABECTO is available as free and open source software, visitors have
the opportunity to continue exploring the capabilities afterwards and to use it for their own KG.

Acknowledgments

Many thanks to the author’s supervisor Birgitta König-Ries as well as to the anonymous reviewers for
very helpful comments on earlier drafts of this manuscript.

References

[1] RDF Data Shapes Working Group, Shapes Constraint Language (SHACL), in: H. Knublauch,
D. Kontokostas (Eds.), W3C Recommendation, 2017. URL: https://www.w3.org/TR/2017/
REC-shacl-20170720/.

[2] M. Poveda Villalón, A. Gómez Pérez, M. C. Suárez Figueroa, OOPS! (OntOlogy Pitfall Scanner!):
An On-line Tool for Ontology Evaluation, International Journal on Semantic Web and Information
Systems 10 (2014) 7–34. doi:10.4018/ijswis.2014040102.

[3] J. M. Keil, Ontology ABox Comparison, in: The Semantic Web: ESWC 2018 Satellite Events -
ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers,
2018, pp. 240–250. doi:10.1007/978-3-319-98192-5_43.

[4] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and productivity outcomes relating to
continuous integration in github, in: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, ACM, New York, NY, USA, 2015, p. 805–816. doi:10.
1145/2786805.2786850.

[5] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and benefits of continuous
integration in open-source projects, in: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’16, ACM, New York, NY, USA, 2016, p. 426–437.
doi:10.1145/2970276.2970358.

[6] J. M. Keil, Abecto: An abox evaluation and comparison tool for ontologies, in: A. Harth, V. Presutti,
R. Troncy, M. Acosta, A. Polleres, J. D. Fernández, J. X. Parreira, O. Hartig, K. Hose, M. Cochez
(Eds.), The Semantic Web: ESWC 2020 Satellite Events, volume 12124 of Lecture Notes in Computer
Science, Springer, 2020, pp. 140–145. doi:10.1007/978-3-030-62327-2_24.

[7] J. M. Keil, ABox Evaluation and Comparison Tool for Ontologies (ABECTO) v2.2.2 (2024). doi:10.
5281/zenodo.11522479.

[8] J. M. Keil, Units of Measurement Data Comparison with ABECTO, 2023. doi:10.5281/zenodo.
7843835.

[9] J. M. Keil, Wikidata and DBpedia Space Travel Data Comparison with ABECTO, 2023. doi:10.
5281/zenodo.7843823.

[10] J. M. Keil, Demonstration: Continuous Knowledge Graph Quality Assessment through Comparison
using ABECTO v1.0.0 (2024). doi:10.5281/zenodo.10796062.

11https://github.com/fusion-jena/abecto-ci-demo/blob/main/README.md
12https://github.com/fusion-jena/abecto-ci-demo-example/actions

https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
http://dx.doi.org/10.4018/ijswis.2014040102
http://dx.doi.org/10.1007/978-3-319-98192-5_43
http://dx.doi.org/10.1145/2786805.2786850
http://dx.doi.org/10.1145/2786805.2786850
http://dx.doi.org/10.1145/2970276.2970358
http://dx.doi.org/10.1007/978-3-030-62327-2_24
http://dx.doi.org/10.5281/zenodo.11522479
http://dx.doi.org/10.5281/zenodo.11522479
http://dx.doi.org/10.5281/zenodo.7843835
http://dx.doi.org/10.5281/zenodo.7843835
http://dx.doi.org/10.5281/zenodo.7843823
http://dx.doi.org/10.5281/zenodo.7843823
http://dx.doi.org/10.5281/zenodo.10796062
https://github.com/fusion-jena/abecto-ci-demo/blob/main/README.md
https://github.com/fusion-jena/abecto-ci-demo-example/actions

	1 Introduction
	2 Comparison Framework
	3 The ABox Evaluation and Comparison Tool for Ontologies (ABECTO)
	3.1 Configuration and Application of ABECTO
	3.2 Example Projects on Real-World Knowledge Graphs

	4 Demonstration

