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Abstract
Explainable Artificial Intelligence (XAI) is crucial in ensuring transparency, accountability, and trust in
machine learning models, especially in applications involving high-stakes decision-making. This paper
focuses on addressing the research gap in federated learning (FL), specifically emphasizing the use of
inherently interpretable underlying models. While most FL frameworks rely on complex, black-box
models such as Artificial Neural Networks (ANNs), we propose using Decision Tree (DT) classifiers to
maintain explainability. More specifically, we introduce a novel framework for horizontal federated
learning using Extremely Fast Decision Trees (EFDTs) with streaming data on the client side. Our
approach involves aggregating clients’ EFDTs on the server side without centralizing raw data, and the
training process occurs on the clients’ sides. We outline three aggregation strategies and demonstrate
that our methods outperform local models and achieve performance levels close to centralized models
while retaining inherent explainability.
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1. Introduction

Explainable Artificial Intelligence (XAI) is essential in machine learning and artificial intelli-
gence as it improves transparency, accountability, trust, and the ability to enhance and debug
AI systems. As AI technologies expand to various sectors, from healthcare to finance, the com-
plexity and opacity of these models often prevent their deployment in critical decision-making
processes. XAI seeks to mitigate this issue by providing insights into how AI algorithms reason
and how they arrive at specific conclusions, enabling users to validate and comprehend model
behaviors. Most of XAI research today focuses on post-hoc explanations for black-box models.
These models have complex internal workings that are difficult for humans to interpret or under-
stand. Various forms of analysis, from surrogate models to gradient credit assignment, are often
used to explain these models and their decisions. However, these post-hoc explanations have
several drawbacks. For example, they often fail to capture the true inner workings of the model,

TempXAI@ECML-PKDD’24: Explainable AI for Time Series and Data Streams Tutorial-Workshop, Sep. 9th, 2024, Vilnius,
Lithunia
Envelope-Open parisa.jamshidi@hh.se (P. Jamshidi); slawomir.nowaczyk@hh.se (S. Nowaczyk); mahmoud.rahat@hh.se
(M. Rahat); zahra.taghiyarrenani@hh.se (Z. Taghiyarrenani)
Orcid 0000-0001-7055-2706 (P. Jamshidi); 0000-0002-7796-5201 (S. Nowaczyk); 0000-0003-2590-6661 (M. Rahat);
0000-0002-1759-8593 (Z. Taghiyarrenani)

© 2024 Author:Pleasefillinthe\copyrightclause macro

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:parisa.jamshidi@hh.se
mailto:slawomir.nowaczyk@hh.se
mailto:mahmoud.rahat@hh.se
mailto:zahra.taghiyarrenani@hh.se
https://orcid.org/0000-0001-7055-2706
https://orcid.org/0000-0002-7796-5201
https://orcid.org/0000-0003-2590-6661
https://orcid.org/0000-0002-1759-8593
https://creativecommons.org/licenses/by/4.0


providing only surface-level insights that might not be trustworthy [1, 2]. Furthermore, they
are vulnerable to adversarial attacks that can manipulate the explanations without changing
the model’s predictions [3, 4]. Such limitations make them a questionable choice in applications
where transparency is a priority. Conversely, white-box models are inherently explainable
models designed to be transparent and interpretable from the outset. These models allow users
to understand their decision-making processes without the need for additional interpretability
techniques [1].

Federated learning (FL) is a technique in machine learning in which multiple devices record
local data and share their model with a server. The server forms a global model and shares it
without exchanging raw data. This method is more efficient regarding bandwidth and computing
resources because it does not need to transfer large amounts of raw data to a central server.
Although this approach has gained much attention due to its capacity, most of the underlying
models for FL are Artificial Neural Networks (ANNs). Post-hoc explainability methods can
be applied to black-box models of FL. For example, [5] used feature importance methods to
add explainability to their models, while [6] presented counterfactual explanation techniques.
However, there is a surprising lack of FL techniques suitable for inherently interpretable models.

In this paper, we focus on Decision Tree (DT) classifiers. Shallow DTs, in contrast to NNs and
complex models, are designed in a way that their internal workings are easily understandable
to humans. This allows for straightforward tracing of how inputs are transformed into outputs,
facilitating immediate insight into the decision-making process. Such transparency is crucial for
validating the model’s logic, ensuring ethical compliance, and fostering trust among users. This
makes DTs particularly suitable for the identification and correction of biases and errors within
the model: their transparent nature enables users to pinpoint specific aspects of the model
that contribute to undesirable outcomes, facilitating targeted improvements. Moreover, some
research indicates that tree-based models outperform ANNs in some applications, specifically
tabular data [7, 8].

The typical approach in ML is batch learning, also known as offline learning, which involves
training a model on a fixed dataset all at once. On the other hand, online learning, or incremental
learning, continuously updates the model as new data becomes available. This makes it suitable
for dynamic environments where data arrives sequentially. Much less research has been done
with incremental learning in FL fashion than batch learning.

Therefore, there is a gap when clients have access to streaming data and aim to achieve an
inherently explainable global model with better performance than their local model through
collaboration in a federated mode. We proposed our method to aggregate the incremental
decision trees from clients’ sides in an FL framework, which can achieve higher performance
compared to local ones, and as the client’s models are DTs, they are inherently explainable. Our
contributions are as follows:

• We created a global model without centralizing raw data, using statistical information
stored in EFDTs.

• In our proposed method, EFDTs are trained locally and aggregated in each round.
• We have introduced three aggregation methods on the server to aggregate clients’ EFDTs.
• Furthermore, we maintain both local and global models as a single tree to make them
inherently explainable.



The rest of the paper is organized as follows: Related work summarizes previous research
intersection of FL and tree-based methods. Then, in Preliminaries, we introduce some basic
concepts of incremental decision trees and tree similarity methods. The proposed method is
described in Methodology. The experimental setup is found in Section Experimental Setup
followed by the result in Results. Finally, we draw some conclusions in Conclusion

2. Related work

Within this distributed learning paradigm, horizontal federated learning (HFL) and vertical
federated learning (VFL) represent two approaches. Each client has different data samples in
HFL, but the feature set is the same. VFL, however, uses data samples shared among clients
with different features [9].

SecureBoost [10] is a VFL framework in which only one of the clients has the label of samples,
called active party, and the rest, without labels, called passive parties. This method works with
a gradient-tree boosting algorithm in which the active party shares the gradient and Hessian
values with the passive party. After that, the passive party categorizes the samples based on
local features into buckets and provides the total values of each bucket to the active party in
the form of a histogram. The active party then performs local calculations to find the best way
to split the nodes and directly coordinate updates with the passive parties. Other methods, like
OpBoost [11], were proposed to optimize SecureBoost. There are other methods categorized on
tree-based VFL, including FEDXGB [12] and VF2Boost [13], which are Homomor Encryption
(HE)-based.

There is also research on the conjugation of tree-based models and HFL. [14] proposed a
method based on GBDT(Gradient-boosted decision trees), in which each client trains a decision
tree using their local dataset and adds it to the global model in turn. Boosting-based Federated
Random Forest (BOFRF) [15] proposed a boosting framework for random forests in a federated
manner. Each client forms their RFs and, on the server side, considers those as weak classifiers
and proposes a method to calculate their weights. Our approach involves explicitly training a
single tree, which is explainable, whereas using the bagging approach in the server to form the
global model will result in a loss of explainability.

Another approach is to train a tree-based model collaboratively in a server. Clients share
local statistical information with the server, and the server decides on node partitioning in each
round.

There are few works of conjugation of incremental decision trees and FL. [16] and [17] are
two methods to train an IDT in VFL and HFL, respectively. The first method encrypts samples
from clients’ streaming data and passes them to the server. In the latter method, the Data
Collector collected the raw data from the client and aggregated them. In both, the server uses
that information to train a VFDT.

Our proposed method falls under the category of HFL, and the features are consistent across
all clients. Additionally, we do not share raw data with the server. Instead, we train trees on the
client side, and the server is responsible for aggregating the trees.



3. Preliminaries

3.1. Incremental Decision tree

The Hoeffding Tree (HT) [18] is one of the fundamental research studies that proposed the
Incremental Decision Tree (IDT) for efficient data stream mining. The HT uses the Hoeffding
bound to determine when a statistically significant decision about splitting a node can be made
based on the amount of data collected. The inequality for a random variable 𝑟 with range 𝑅 is
expressed as follows:

𝜖 =
√
𝑅2 ln (1/𝛿)

2𝑛
, (1)

where 𝜖 represents the margin of error, 𝛿 is the confidence level, and 𝑛 is the number of
observations.

In 2018, [19] proposed the Hoeffding Anytime Tree, also known as the Extremely Fast Decision
Tree (EFDT). EFDT, in contrast, enhances the capabilities of HT by including an ”anytime”
aspect. This means it can continuously update and revise its model as new data becomes
available without revisiting old data. While HT makes decisions based on accumulated data up
to a certain point, EFDT continuously improves its decisions, resulting in better performance in
dynamic data streams.

3.2. Decision Tree Similarity

An important step in Federated Learning is an aggregation of models from different clients,
and a crucial component in that process is based on the similarity between them. Decision
tree similarity methods aim to quantify the similarity between different decision trees. Over
the years, several approaches have been proposed, typically divided into two main categories:
syntactic and semantic similarities.

Syntactic similarity methods compare and analyze decision trees based on their structure.
Techniques such as tree edit distance, which calculates the minimal changes needed to transform
one tree into another, and structural similarity measures, which compare the arrangement and
features of nodes, are commonly used [20, 21, 22].
Semantic similarity methods aim to capture the functional similarity between trees by

considering the decisions made by each tree, which means they look at the similarity in the
prediction distributions [23, 22]. This can consider the similarity of decisions made by each
tree on a set of instances.

4. Methodology

Our methodology consists of two phases: training and aggregation. Training occurs on the
clients’ sides, while aggregation occurs on the server’s side. Our training process is incremental
since we are in the streaming setting. Our main contribution resides in the aggregation phase,
in which we put different aggregation strategies into contrast.
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Figure 1: The framework of the proposed method. At the clients’ sides, training takes place. The
blue dashed box signifies the selection of the base tree, while the green dashed box represents the
combination of the base tree with other trees, all located on the server side. Depending on the chosen
strategy, the base tree may consist of one or multiple trees.

4.1. Problem Formulation

Assume we have 𝑘 clients 𝑐1⋯ 𝑐𝑘 where each one has access to a different streaming dataset
𝐷1⋯𝐷𝑘. Given that we are in a horizontal federated setting, the feature set is the same for all
datasets 𝑓1⋯𝑓𝑚.

In particular, in order to maintain the inherent interpretability of the global model, we require
that the final result be limited to a single decision tree. While aggregating a number of trees
into a forest is a natural way to extend DT learning to a federated setting, our work is one of
the very few attempts to collaboratively create a single tree among all the clients.

In our proposed method, the server only aggregates the clients’ trees without training them,
so there’s no need to share raw data with the server.

4.2. Incremental training on the client side

Each client(𝑐𝑖) trains its own decision tree on its local dataset(𝐷𝑖). As a new data point arrives,
they use incremental learning to update their tree. After a predefined number of data points are
received by each client, they send their trained decision trees to the server. Then, each one will
receive a new tree from the server and continue using and training this new tree by the next
part of their streaming data.

Each node of EFDT stores a 𝑛𝑖𝑗𝑘 table, which can be interpreted as the number of instances
where the 𝑖 − 𝑡ℎ attribute has the 𝑗 − 𝑡ℎ value, and the class label is 𝑘. This table is used to
calculate metrics such as information gain or Gini index, which determine the best attribute for
splitting the data at a node. Each client will share their tree with this information instead of
raw data.

4.3. Aggregation on the server side

The aggregation process begins when the server receives decision trees from the clients. We
have proposed three different strategies for the server side. However, the aggregation process
remains consistent across all strategies, but each strategy differs in its approach to selecting



the base tree. Before delving into the specifics of each strategy, let’s first explore how the
aggregation process operates.

As mentioned earlier, every node in EFDT contains an 𝑛𝑖𝑗𝑘 table. As part of the aggregation
process, we merge the tables of nodes along the same path into two trees. Algorithm 1 outlines
this method in detail. Specifically, when two nodes from two trees share common parents, they
can be effectively combined, even if they have opted for different features. This is possible
because the table contains aggregated information before the split.

Algorithm 1 Aggregation Function

1: function aggregation(𝑇1, 𝑇2)
2: function traverse(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2)
3: if 𝑛𝑜𝑑𝑒1 is None or 𝑛𝑜𝑑𝑒2 is None then
4: exit
5: else
6: merge(𝑛𝑜𝑑𝑒1.𝑛𝑖𝑗𝑘, 𝑛𝑜𝑑𝑒2.𝑛𝑖𝑗𝑘)
7: end if
8: if 𝑛𝑜𝑑𝑒1.feature == 𝑛𝑜𝑑𝑒2.feature and 𝑛𝑜𝑑𝑒1.value == 𝑛𝑜𝑑𝑒2.value then
9: traverse(𝑛𝑜𝑑𝑒1.right_child, 𝑛𝑜𝑑𝑒2.right_child)

10: traverse(𝑛𝑜𝑑𝑒1.left_child, 𝑛𝑜𝑑𝑒2.left_child)
11: else
12: exit
13: end if
14: end function
15: traverse(𝑇1.root, 𝑇2.root)
16: end function

As mentioned earlier, the strategies differ in terms of how the base tree is chosen to combine
the clients’ models. Below are the details of three proposed strategies.

4.3.1. Syntactic strategy (Syn):

In this approach, the base tree is the most representative syntactic tree among the clients’ trees,
meaning it is the tree that requires the fewest changes to match the other trees. By using the
edit distance on the bracket format of the trees, we can identify this tree, which we refer to as
”Syn” in Algorithm 2. Then, the aggregation method is applied to ”Syn” along with the other
clients’ trees. Finally, the server broadcasts the Syn tree to all clients.

4.3.2. Semantic strategy (Sem):

The base tree in this strategy is that tree with minimum disagreement with other clients on
predictions. In Algorithm 3, the server uses a proxy dataset, 𝐷𝑠, to identify this tree, referred
to as ”Sem”. Then, it iterates through all client trees, aggregating information from matching
paths in each tree into the Sem tree to update it. Finally, the server broadcasts the Sem tree to
all clients.



Algorithm 2 Syntactic strategy (Syn)

1: Input: List of clients’ trees 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒 =
[𝐶1, 𝐶2, … , 𝐶𝑘]

2:

3: Output: one global tree
4: 𝐵𝐹𝑠 ← ∅ ▷ To store bracket format of

𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒
5: for each 𝐶𝑖 in clientsTree do
6: 𝐵𝐹𝑠.add(BracketFormat(𝐶𝑖))
7: end for
8: 𝑆𝑦𝑛 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑎𝑠𝑒𝑇 𝑟𝑒𝑒(𝐵𝐹𝑠) ▷

Representative Syntactic tree
9: for each 𝐶𝑖 in clientsTree do

10: if 𝐶𝑖 ≠ 𝑆𝑦𝑛 then
11: aggregation(𝑆𝑦𝑛, 𝐶𝑖)
12: end if
13: end for
14: return 𝑆𝑦𝑛

Algorithm 3 Semantic strategy (Sem)

1: Input: List of clients’ trees 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒 =
[𝐶1, 𝐶2, … , 𝐶𝑘]

2: dataset located on server: 𝐷𝑠
3: Output: one global tree
4: 𝑃𝑟𝑒𝑑 ← ∅ ▷ To store 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒

predictions of 𝐷𝑠
5: for each 𝐶𝑖 in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒 do
6: 𝑃𝑟𝑒𝑑.add(prediction(𝐶𝑖, 𝐷𝑠))
7: end for
8: 𝑆𝑒𝑚 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑎𝑠𝑒𝑇 𝑟𝑒𝑒(𝑃𝑟𝑒𝑑) ▷

Representative Semantic tree
9: for each 𝐶𝑖 in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒 do

10: if 𝐶𝑖 ≠ 𝑆𝑒𝑚 then
11: aggregation(𝑆𝑒𝑚, 𝐶𝑖)
12: end if
13: end for
14: return 𝑆𝑒𝑚

4.3.3. Individual strategy (Ind):

In contrast to previous strategies, this strategy constructs one tree per client. It compares each
client’s tree with the trees of all other clients and aggregates information from matching paths
into the final tree for that client (Algorithm 4). After updating all trees, the server will pass the
updated trees to their owners.

Algorithm 4 Individual strategy (Ind)

1: Input: List of clients’ trees 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒 = [𝐶1, 𝐶2, … , 𝐶𝑘]
2: Output: List of individual aggregated trees for each client
3: 𝐼 𝑛𝑑𝑠.copy(𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒)
4: for each 𝐼 𝑛𝑑 in 𝐼 𝑛𝑑𝑠 do
5: for each 𝐶𝑖 in 𝑐𝑙𝑖𝑒𝑛𝑡𝑠𝑇 𝑟𝑒𝑒 do
6: if 𝐶𝑖 ≠ 𝐼𝑛𝑑 then
7: aggregation(𝐼 𝑛𝑑, 𝐶𝑖) ▷ Each tree would be aggregated with the other trees’

common path.
8: end if
9: end for

10: end for

We used centralized learning and local learning to establish upper-bound and lower-bound,
respectively, for the mentioned strategies. In centralized learning, all the data exist in a single
location, and a single model is trained. In contrast, in local learning, each client trains a model
with its own data without interacting with other clients.



5. Experimental Setup

5.1. Dataset Description

We use two datasets with categorical features, which lets us better control the experiment and
analyze the results. Below is a brief description of each.
Mushroom dataset: This dataset contains 8124 descriptions of hypothetical samples rep-

resenting 23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is
classified as edible or poisonous. There are 22 features and 8124 data points1.
Chess (King-Rook vs. King-Pawn): This dataset contains two classes: white-can-win

(”won”) and white-cannot-win (”nowin”). The classes are mostly balanced at 52% and 48%,
respectively. There are 36 features and 3196 data points2.

5.2. Experiments Description

To share the data across clients, we used stratified splitting so that the ratio of the classes was
the same for all clients. Moreover, the amount of data each client receives is the same as other
clients. To address the uncertainty, we randomly performed this data-sharing schema 10 times
with different seeds, and the result was averaged.

It’s important to note that before dividing the data among clients, 1% of the data is set aside
to be stored on the server side. This data, referred to as 𝐷𝑠 in this paper, is used to identify the
representative semantic tree.

Our model choice is Extremely Fast Decision Tree (EFDT) [19], which is the same for all
clients. For stable results, we resorted to the River library in Python [24]. The parameters for
EFDT are set to be the default parameters; only the binary_split is set to True. To construct
the representative syntactic tree used in SynRoot and SynPath, the APTED library is utilized
[20, 21].

For the federated learning setting, we consider 4 clients and 200 rounds of communication
between the clients and the server. Accordingly, each client’s data is divided by 200 and fed
in a streaming manner to clients’ EFDT. This learning procedure is repeated for each strategy
mentioned in 4.

6. Results

In this section, we present the results obtained using the proposed method. We compare the
result of the proposed method with different strategies against centralized and local learning.
We present two tables, Tables 1 and 2, showing the accuracy of five strategies after some
communication rounds for the mushroom and chess datasets, respectively. In almost all cases,
the performance of the proposed strategies falls between the performance of local and centralized
learning, as expected. These strategies benefit from aggregation, allowing them to access more
information at each point compared to local learning. However, their access to information is
still not as extensive as centralized learning.

1https://archive.ics.uci.edu/dataset/73/mushroom
2https://archive.ics.uci.edu/dataset/22/chess+king+rook+vs+king+pawn

https://archive.ics.uci.edu/dataset/73/mushroom
https://archive.ics.uci.edu/dataset/22/chess+king+rook+vs+king+pawn


Table 1
Mean ± std of the accuracy(%) of 10 runs for different methods in some rounds(Mushroom dataset)

#round Centralized Local Ind Syn Sem
1 48.97 ± 9.13 44.44 ± 11.11 44.44 ± 11.11 44.44 ± 11.11 44.44 ± 11.11
5 70.15 ± 4.39 53.83 ± 2.54 64.29 ± 5.22 65.51 ± 6.25 64.23 ± 6.99
15 82.50 ± 1.81 66.31 ± 2.02 79.60 ± 1.75 79.90 ± 1.99 79.55 ± 2.37
25 86.38 ± 1.51 72.81 ± 1.63 83.53 ± 1.27 83.79 ± 1.20 83.45 ± 1.38
50 89.65 ± 1.05 80.58 ± 0.82 87.52 ± 0.84 87.74 ± 0.65 87.54 ± 0.87
100 92.92 ± 0.45 85.97 ± 0.48 90.66 ± 0.58 90.80 ± 0.52 90.64 ± 0.54
150 94.86 ± 0.48 88.27 ± 0.41 92.37 ± 0.54 92.44 ± 0.61 92.20 ± 0.54
175 95.51 ± 0.44 88.95 ± 0.46 92.96 ± 0.50 93.06 ± 0.56 92.80 ± 0.51
185 95.73 ± 0.42 89.22 ± 0.41 93.20 ± 0.54 93.31 ± 0.60 93.06 ± 0.54
195 95.92 ± 0.41 89.50 ± 0.39 93.42 ± 0.53 93.55 ± 0.58 93.30 ± 0.55
200 96.01 ± 0.40 89.62 ± 0.38 93.52 ± 0.54 93.66 ± 0.59 93.42 ± 0.56

Table 2
Mean + std of the accuracy(%) of 10 runs for different methods in some rounds(Chess dataset)

#round Centralized Local Ind Syn Sem
1 48.18 ± 14.11 45.00 ± 18.71 45.00 ± 18.71 45.00 ± 18.71 45.00 ± 18.71
5 57.12 ± 4.22 45.54 ± 6.83 54.64 ± 4.87 56.25 ± 6.20 53.57 ± 4.72
15 63.30 ± 2.62 51.59 ± 4.33 61.08 ± 2.99 61.88 ± 3.51 59.55 ± 3.93
25 66.96 ± 2.44 56.66 ± 2.56 64.56 ± 3.23 65.74 ± 3.02 63.18 ± 4.06
50 69.30 ± 1.92 61.12 ± 1.23 66.33 ± 2.05 66.68 ± 2.13 65.72 ± 2.59
100 77.11 ± 2.31 65.49 ± 1.22 72.63 ± 2.55 72.92 ± 2.78 72.27 ± 2.92
150 81.83 ± 2.01 66.99 ± 1.38 77.34 ± 2.95 77.80 ± 3.03 77.31 ± 3.06
175 83.46 ± 1.87 67.54 ± 1.08 78.96 ± 3.00 79.49 ± 2.90 79.07 ± 2.91
185 83.97 ± 1.80 67.82 ± 1.01 79.39 ± 2.93 79.88 ± 2.88 79.49 ± 2.79
195 84.49 ± 1.72 68.14 ± 1.01 79.94 ± 2.87 80.51 ± 2.80 80.07 ± 2.68
200 84.65 ± 1.62 68.30 ± 0.94 80.14 ± 2.78 80.71 ± 2.71 80.27 ± 2.58

Then, we look deeper at the results on the mushroom dataset shown in Figure 2. We observe
that the speed of performance improvement in the three methods presented is initially higher
than that of local learning (refer to the dashed box in the lower left part of Figure 2). However,
this difference decreases after several stages, eventually reaching less than 5% in the last rounds
(see the dashed box in the upper right part of Figure 2). This suggests that a client with initially
limited data cannot effectively compete with aggregated methods. With access to more data,
the client may better understand the problem and achieve strong performance independently
close to aggregated methods.

In all the experiments with the chess dataset, there are significant differences between
the performance of the proposed methods and local learning performance. If you compare
the dashed boxes in Figure 3, you’ll notice that individual clients cannot achieve the same
performance as aggregated methods even after 200 rounds. However, similar to the results of
the mushroom dataset, the performance of the aggregated methods improves quickly in the
initial rounds in this dataset as well.
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Figure 2: The performance of Syn, Sem, and Ind strategies, along with local and centralized learning of
experiments on the mushroom dataset. The x-axis represents the number of communication rounds
between clients and servers, and the y-axis represents the accuracy.
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Figure 3: The performance of Syn, Sem, and Ind strategies, along with local and centralized learning of
experiments on the chess dataset. The x-axis represents the number of communication rounds between
clients and servers, and the y-axis represents the accuracy.

7. Conclusion

This paper introduces a framework for horizontal federated learning using an Extremely Fast
Decision Tree (EFDT) as the underlying model and streaming data on the client side. We propose
three strategies to aggregate this type of underlying method. With our strategies, you can merge
the information on multiple EFDTs at each round, which helps to enhance the performance
at the client level. We also insist on having only one tree on the client side because a single



(shallow) tree is inherently explainable. We avoid using black-box models due to concerns about
using post-hoc explanation methods.

We compared these three strategies with local and centralized learning. All three strategies
produce similar results, and their performance is higher than local learning and close (yet low)
to centralized learning. Experiments show that although, in some cases, the performance of
the proposed methods might not differ too much from local learning after some rounds, they
always grow very fast in the first rounds.
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