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Abstract
Defect detection is the task of identifying defects in production samples. Usually, defect detection classifiers are trained
on ground-truth data formed by normal samples (negative data) and samples with defects (positive data), where the latter
are consistently fewer than normal samples. State-of-the-art data augmentation procedures add synthetic defect data by
superimposing artifacts to normal samples to mitigate problems related to unbalanced training data. These techniques often
produce out-of-distribution images, resulting in systems that learn what is not a normal sample but cannot accurately identify
what a defect looks like. In this paper, we show the research we are carrying out in collaboration with QUALYCO, a startup
spin-off of the University of Verona, on multimodal Latent Diffusion Models (LDMs) for accurate anomaly detection in
Industry 5.0. Unlike conventional image generation techniques, we work within a human feedback loop pipeline, where
domain experts provide multimodal guidance to the model through text descriptions and region localization of the possible
anomalies. This strategic shift enhances the interpretability of results and fosters a more robust human feedback loop,
facilitating iterative improvements of the generated outputs. Remarkably, our approach operates in a zero-shot manner,
avoiding time-consuming fine-tuning procedures while achieving superior performance. We demonstrate its efficacy and
versatility on the challenging KSDD2 dataset, achieving state-of-the-art results.
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1. Introduction
Surface Defect Detection (SDD) is a challenging problem
in industrial scenarios, defined as the task of individuat-
ing samples containing a defect [1]. In many real-world
applications, a human expert inspects every product and
removes those defective pieces. Unfortunately, human
experts are often inaccurate, and outputs can be incon-
sistent or biased. Moreover, humans are relatively slow
in accomplishing this task, and their performances are
subject to stress and fatigue.
Automated defect detection systems [2] can easily

overcome most of these issues by learning classifiers
on defective and nominal training products. The main
drawback is the data collection process required to train
a model effectively. Indeed, defective items (i.e., posi-
tive samples) are relatively rare compared to nominal
items (i.e., negative samples). Thus, the user may need
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to collect massive amounts of data to have enough pos-
itive samples. Moreover, with the rise of the Industry
5.0 [3] and the transition towards flexible manufacturing
processes where human operators and production line
components actively collaborate, there is an increasing
demand for systems that can quickly adapt to new pro-
duction setups, i.e., customized products manufactured
in small batches. Traditional automated systems cannot
comply with these demands since data collection could
easily involve the whole batch size.

Recent studies on SDD focused on limiting the impact
of the labeling process by formulating the problem under
the unsupervised learning paradigm [4] or training exclu-
sively on nominal samples [5], possibly using few-shot
learning strategies [6]. In both cases, the goal is to gener-
ate an accurate model of the nominal sample distribution
and predict everything with a low probability score as
anomalies. However, due to the limited restoration capa-
bility of these models, these approaches tend to generate
many false positives, especially on datasets with complex
structures or textures [7].

It is worth noting that, in industrial setups, anomalies
are not generated by Gaussian processes but are the out-
come of specific, often predictable, issues during the pro-
duction process. Consequently, the anomalous samples
are not randomly distributed outside the nominal distri-
bution; they can be modeled as a mixture of Gaussian
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Figure 1: Our pipeline. Starting from positive samples, we leverage a Latent Diffusion Model (LDM) to synthesize novel
in-distribution high-quality images of defective surfaces based on defect localization via gesture and textual prompts by a
human feedback loop. Then, these synthetic images are used as anomaly samples to train a TinyML-based binary classifier
directly on the production line for real-time anomaly detection.

distributions in the feature space instead. While general,
unpredictable anomalies can still happen, expert opera-
tors can easily define the main problems they can expect
from the manufacturing process, such as which kind of
defects, in which locations, and how often they wish to
appear. Thus, generative AI can represent a powerful
tool for SDD, with defect image generation emerging as
a promising approach to enhance detector performance.
Specifically, in this paper, we report the result of our

research on Latent Diffusion Models (LDMs), a power-
ful class of generative models, to produce fine-grained
realistic defect images that can be used as positive sam-
ples to train an anomaly detection model. We name
our approach DIAG, a training-free Diffusion-based In-
distribution Anomaly Generation pipeline for data aug-
mentation in the SDD task. By leveraging pre-trained
LDMs with multimodal conditioning, we can exploit do-
main experts’ knowledge to generate plausible anoma-
lies without needing real positive data. When using
these augmented images to train an anomaly detection
model, we show a notable increase in the detection perfor-
mance compared to previous state-of-the-art augmenta-
tion pipelines. Specifically, this research is being carried
out in collaboration with QUALYCO1, a startup spin-off
of the University of Verona. Figure 1 outlines our ap-
proach.

The main contributions of our research are as follows:

• We present a complete pipeline for training
anomaly detection models based on nominal im-
ages and textual prompts. We showcase the su-
perior outcomes achieved by utilizing generated

1https://qualyco.com.

defective samples compared to previous state-of-
the-art approaches.

• We dive into spatial control approaches to en-
able the synthesis of defect samples incorporat-
ing regional information and exhibit enhanced
controllability of the image generation through a
human feedback loop pipeline, effectively utiliz-
ing domain expertise to generate more plausible
in-distribution anomalies.

2. Related Work
Research on SDD has been conducted according to differ-
ent setups: unsupervised approaches [8] use a mixture of
unlabelled positive and negative sample images for train-
ing; supervised approaches require labeled samples in the
form of binary masks representing the defects (full super-
vision) [9] or simply as a tag for the whole image (weak
supervision) [10]. Supervised methods demonstrated
superior accuracy in the identification of anomalies. Nev-
ertheless, the effort required to provide good annotations
is not always justified. Collecting positive samples can
be time and resource-consuming due to the low rate of
defective products generated by industrial lines.
Thus, many recent approaches adopt a “clean” setup,

where the training set consists of only nominal samples.
Two strategies can be adopted in clean setups: model
fitting and image generation. Model fitting approaches
aim at generating an accurate model of the nominal dis-
tribution, considering an outlier in every sample with
a likelihood lower than –or a distance from the nomi-
nal prototype higher than– a predefined threshold [11].

https://qualyco.com.


On the contrary, data augmentation approaches lever-
age generative methods to synthesize images of defects
and use these images as positive samples for training
a supervised model. Specifically, this work focuses on
generation-based data augmentation under clean setups.

The most popular data augmentation pipeline for SDD
consists of a series of random standard transformations
of the input image –such as mirroring, rotations, and
color changes– followed by the super-imposition of noisy
patches [12].
In MemSeg [12], the pipeline for the generation of

the abnormal synthetic examples is divided into three
steps: i) a Region of Interest (ROI) indicating where the
defect will be located is generated using Perlin noise
and the target foreground; ii) the ROI is applied to a
noise image to generate a noise foreground ROI; iii) the
noise foreground ROI is super-imposed on the original
image to obtain the simulated anomalous image. How-
ever, all these approaches are based on generating out-
of-distribution patterns that do not faithfully represent
the target-domain anomalies.
More recently, the first work that draws attention to

in-distribution defect data is In&Out [13], in which we
empirically show that diffusion models provide more
realistic in-distribution defects. Here, we significantly
improve the generation of in-distribution anomalous sam-
ples of [13], incorporating domain knowledge provided
by an expert user through textual prompts and localiza-
tion of salient regions in a training-free setup.

3. Methodology

3.1. Multimodal Diffusion-based image
generation

LDMs [14, 15] are a class of deep latent variable mod-
els that work by modeling the joint distribution of the
data over a Markovian inference process. This process
consists of small perturbations of the data with a variance-
preserving property [16], such that the limit distribution
after the diffusion process is approximately identical to a
known prior distribution. Starting with samples from the
prior, a reverse diffusion process is learned by gradual
denoising the sample to resemble the initial data by the
end of the procedure.
We leveraged the natural ability of LDMs to incor-

porate multimodal conditioning in the generation pro-
cess, taking inspiration from [17, 18, 19]. Specifically,
we use as textual descriptions a prompt and a negative
prompt, i.e., a prompt which guides the image generation
“away” from its concepts of the desired output, result-
ing in high-quality images that comply with the given
descriptions [20, 21].
In particular, we do not do full image generation to

effectively enhance spatial control, opting to utilize an
inpainting model, as demonstrated in [14, 18]. Given an
image with a masked region, inpainting seamlessly fills
it with content that harmonizes with the surrounding im-
age. Although typically employed to eliminate undesired
artifacts, the inpainting process ensures that the masked
area incorporates the provided prompt, effectively merg-
ing textual and visual content.

3.2. Our proposed pipeline
To generate an anomalous image 𝑖𝑎, the process starts
by sampling a random negative image, an anomaly de-
scription, and a mask, forming the triplet (𝑖𝑛, 𝑑𝑎, 𝑚𝑎).
These pieces of information will then be fed to a text-
conditioned LDM to perform inpainting on image 𝑖𝑛 using
the mask 𝑚𝑎.

The anomaly description 𝑑𝑎 guides the generation, fill-
ing the masked region of 𝑖𝑛 with an anomaly that com-
plies with the prompt. To generate images resembling
real anomalous samples, domain knowledge from indus-
trial experts is exploited, providing textual descriptions
of the potential anomalies’ type, shape, and spatial infor-
mation.
The LDM is then conditioned on this information to

inpaint plausible anomalies on defect-free samples. For-
mally, given pictures of defect-free (negative) samples
𝐼𝑛, domain experts will provide textual descriptions 𝐷𝑎
of what different anomalies may look like. At the same
time, regions where these anomalies may appear on the
defect-free samples will be designated. We define this
set of regions as a set of binary masks 𝑀𝑎 of possible
anomalies, shapes, and locations. The result of this oper-
ation is 𝑖𝑎, an anomalous version of 𝑖𝑛, where an anomaly
has been inpainted in the masked region 𝑚𝑎. Due to the
stochastic nature of LDMs, this process can be repeated
multiple times to generate an augmented set of anoma-
lous sample images 𝐼𝑎. Finally, the set 𝐼𝑎 can be used as
data augmentation for training anomaly detection mod-
els, as presented in the following section.

3.3. The anomaly detection task
We approach the anomaly detection problem as a binary
classification problem, where the objective is to predict
whether a sample belongs to one of two classes. Specifi-
cally, we utilized a ResNet-50 [22] backbone trained with
a binary cross-entropy loss function denoted as ℒBCE.
Mathematically, it is defined as:

ℒBCE(𝑦 , ̂𝑦) = − 1
𝑁

𝑁
∑
𝑖=1

[𝑦𝑖 log( ̂𝑦𝑖) + (1 − 𝑦𝑖) log(1 − ̂𝑦𝑖)] ,

(1)
where, 𝑦 represents the ground truth labels, ̂𝑦 represents
the predicted probabilities, and 𝑁 is the number of sam-



ples. In detail, 𝑦𝑖 denotes the true label for sample 𝑖,
which can be either 0 or 1, while ̂𝑦𝑖 signifies the predicted
probability that sample 𝑖 belongs to class 1.
Ongoing developments aim to optimize a model

through TinyML [23] techniques in order to have an ultra-
efficient system that can work smoothly in real-time on
a production line.

4. Experiments

4.1. Experiment setup
Datasets We use the Kolektor Surface-Defect Dataset 2
(KSDD2) [10], one of the most recent, complex, and real-
world SDD datasets. This dataset comprises 246 positive
and 2085 negative images in the training set and 110 pos-
itive and 894 negative images in the testing set. Positive
images are images with visible defects, such as scratches,
spots, and surface imperfections. Since the images have
different dimensions, we standardize the dataset reso-
lution, resizing all the images to 224 × 632 pixels while
keeping the number of normal and anomalous samples
unchanged.

Evaluation metrics The anomaly detection perfor-
mance was evaluated based on Average Precision (AP),
Precision, and Recall, following the evaluation protocol
defined in [13].

4.2. Implementation details
In this section, we specify all the implementation de-
tails for reproducibility. All training and inferences were
conducted on an NVIDIA RTX 3090 GPU.

Inpainting via Diffusion Models We use the pre-
trained implementation of SDXL [21] from Diffusers as
our text-conditioned LDM. Following the procedure out-
lined in Section 3.2, we use the negative images of KSDD2
as the set 𝐼𝑛. As the set of anomaly descriptions 𝐷𝑎,
we used the prompts “white marks on the wall” and
“copper metal scratches”. Instead, “smooth, plain,
black, dark, shadow” were used as a negative prompt
to improve the performance further. These prompts were
chosen after a series of tests, simulating the iterative pro-
cess of our human feedback loop pipeline until the result-
ing images resembled plausible anomalies. We used the
segmentation masks of positive samples in the KSDD2
dataset to simulate the domain experts’ definition of plau-
sible anomalous regions. Then, these data are fed to the
pre-trained SDXL model to perform inpainting on the
negative images in a training-free process, generating
the set of augmented anomalous images 𝐼𝑎 as described in
Section 3.2. Finally, the generated images 𝐼𝑎 are added to

Table 1
Results between MemSeg, In&Out and DIAG when no
anomalous samples are available. In bold, the best results.
Underlined, the second best.

Model Naug AP ↑ Precision ↑ Recall ↑

MemSeg [12] 80 .514 .733 .436
MemSeg [12] 100 .388 .633 .432
MemSeg [12] 120 .511 .683 .470

In&Out [13] 80 .556 .530 .655
In&Out [13] 100 .626 .742 .568
In&Out [13] 120 .536 .699 .534

DIAG (ours) 80 .769 .851 .673
DIAG (ours) 100 .801 .924 .664
DIAG (ours) 120 .739 .944 .609

the training set, which will be used to train the anomaly
detection model.

ResNet-50 training and testing For a fair comparison
with [13], we use the same PyTorch implementation of
the ResNet-50 [22] as our anomaly detection model, in
which we substitute the fully connected layers after the
backbone to make it a binary classifier. The network is
trained for 50 epochs with Adam [24] as an optimizer, a
learning rate of 0.0001, and a batch size of 32. Tomaintain
consistency with the training and evaluation procedures
of KSDD2, our setup is the same as presented in [10, 13],
where only the images and ground truth labels are used
to train the model.

4.3. Quantitative results
Zero-shot data augmentation Here, we emulate the
situation where no original positive samples are avail-
able in the training set. This scenario makes generating
augmented positive samples necessary and restricts the
users to augmentation procedures that do not rely on pos-
itive images. To do this, we build the set of augmented
anomalous images 𝐼𝑎 by generating 𝑁𝑎𝑢𝑔 augmented pos-
itive samples with different pipelines, i.e., MemSeg [12],
In&Out [13] and DIAG. Then, we train the ResNet-50
model on a dataset that includes the original negative
samples 𝐼𝑛 and the augmented positive samples 𝐼𝑎. Finally,
we evaluate the model on the original test set.

Table 1 reports the comparison between the models
trained with MemSeg, In&Out, and DIAG augmented
data at different values of 𝑁𝑎𝑢𝑔. As we can see, our pro-
posed method achieves the highest AP (.801), recorded
at 100 augmented images, while also resulting in a con-
sistently higher AP when compared to the MemSeg and
In&Out pipelines. These impressive results highlight
how, through domain expertise in the form of anomaly



Table 2
Results between MemSeg, In&Out and DIAG when all the
anomalous samples are available. In bold, the best results.
Underlined, the second best.

Model Naug AP ↑ Precision ↑ Recall ↑

MemSeg [12] 80 .744 .851 .691
MemSeg [12] 100 .774 .814 .752
MemSeg [12] 120 .734 .772 .707

In&Out [13] 80 .747 .764 .734
In&Out [13] 100 .775 .868 .720
In&Out [13] 120 .782 .906 .689

DIAG (ours) 80 .869 .912 .755
DIAG (ours) 100 .911 .978 .800
DIAG (ours) 120 .924 .896 .864

descriptions and segmentationmasks, it is possible to gen-
erate in-distribution images able to meaningfully guide
an anomaly detection network, even in a complicated
scenario where no real anomalous data is available.
Surprisingly, the DIAG performance with 𝑁𝑎𝑢𝑔 = 120

augmented images is lower than using a smaller num-
ber of augmented images. We hypothesize this is due
to the stochastic nature of the LDMs image generation.
While it allows the generation of various images given
the same guidance, it can also lower, in some cases, the
predictability of the quality of the generated samples,
which sometimes may not faithfully comply with the
prompt. Future works will focus on studying quality
consistency in the image generation pipeline.

Full-shot data augmentation To showcase DIAG as
a general data augmentation technique, we also explore
the scenario where real positive samples are available in
the training set. To this aim, we include all the 246 real
positive samples 𝐼𝑝 in the training set, together with the
real negative images 𝐼𝑛 and the 𝑁𝑎𝑢𝑔 augmented positive
images 𝐼𝑎.

As we can see from Table 2, DIAG achieves the highest
average AP yet (.924), surpassing the .782 set by the pre-
vious state-of-the-art data augmentation pipeline [13].
When comparing these results to the ones obtained in
the “zero-shot data augmentation” scenario, it is clear
how more in-distribution images improve model per-
formance during training. This is highlighted by the
improvement in performance of all the models when
adding the real positive images 𝐼𝑝 to the training set. At
the same time, the inclusion of DIAG augmented images
allows the model to explore the anomaly distribution fur-
ther, resulting in the difference in performance between
the different data augmentation pipelines.

Figure 2: First row displays some negative samples from
the KSDD2 dataset. The second row shows some images
of positive samples from the same dataset. The third row
shows the MemSeg-generated defect samples. The fourth
row shows In&Out generated defect samples. Lastly, the final
row showcases some images generated with DIAG. Notably,
the defect images that DIAG generated are more realistic and
in-distribution.

4.4. Qualitative results
The main goal of our data augmentation pipeline is to
generate in-distribution synthetic positive images, mean-
ing images that closely resemble the real ones. Figure 2
shows qualitative results. It’s evident that the images
produced by DIAG are markedly more realistic compared
to those generated by MemSeg [12] and In&Out [13].

5. Conclusions
This work presents DIAG, a novel data augmentation
pipeline that leverages visual languagemodels to produce
training-free positive images for enhancing the perfor-
mance of an SDD model. We introduced domain experts
in the generation pipeline, asking them to describe with
textual prompts how a defect should look and where it
can be localized. Then, we adopt a pre-trained LDM to
generate defective images and train a binary classifier
for isolating the anomalous images. We focus our ex-
periments on the KSDD2 dataset and establish ourselves
as the new state-of-the-art data augmentation pipeline,
surpassing previous approaches in both the zero-shot
and full-shot data augmentation scenarios with an AP
of .801 and .924, respectively. These results highlight
the potential of in-distribution data augmentation in the
anomaly detection field, where training-free generative
model pipelines such as DIAG can provide meaningful
data for downstream classification, making them appeal-
ing solutions in scenarios where real anomalous data is
difficult to collect or unavailable. These promising results
promote further exploration across various datasets, par-
ticularly investigating how robust the image generation
is compared to noisy textual prompts.
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