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Abstract
The integration of artificial intelligence (AI) into medical imaging has guided an era of transformation in healthcare. This
paper presents the research activities that a multidisciplinary research group within the Signals and Images Lab of the
Institute of Information Science and Technologies of the National Research Council of Italy is carrying out to explore the great
potential of AI in medical imaging. From the convolutional neural network-based segmentation of Covid-19 lung patterns to
the radiomic signature for benign/malignant breast nodule discrimination, to the automatic grading of prostate cancer, this
work highlights the paradigm shift that AI has brought to medical imaging, revolutionizing diagnosis and patient care.
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1. Introduction
Medical imaging modalities such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), and ultrasound (US) play
a key role in providing healthcare professionals with
detailed and exhaustive visual data of the human body.
These imaging techniques generate significant amounts
of data that require efficient analysis and interpretation.

This is where Artificial Intelligence (AI) comes in.
AI may emulate human cognitive processes in analyz-

ing and understanding healthcare data. By focusing on
the analysis of biomedical images using computational
techniques such as object detection, segmentation and
registration, AI has the potential to enhance diagnos-
tic and prognostic accuracy by identifying patterns and
correlations that may be difficult for humans to observe
[1].

In the past, the use of AI in medicine was constrained
by technological limitations until 1998, when the US
Food and Drug Administration (FDA) approved the first
computer-aided detection (CAD) system for mammogra-
phy [2]. Since then, there has been exponential growth
in the use of AI techniques in the medical field.

Today, hospitals are actively exploring AI solutions
to support operational efforts aimed at improving cost
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efficiency, increasing diagnostic accuracy, and fostering
greater patient satisfaction. However, it is important to
strike a delicate balance between promoting the benefits
of AI in clinical practice, which are evident, and address-
ing concerns about the transparency, trustworthiness,
and potential bias of AI algorithms.

This paper summarises the ongoing activities of a mul-
tidisciplinary research group within the Signals and Im-
ages Lab of the Institute of Information Science and Tech-
nologies of the National Research Council of Italy. The
group aims to explore the potential applications of AI in
promoting and supporting health and well-being, while
also addressing the challenges related to algorithms’ ex-
plainability and transparency.

2. AI for clinical diagnosis
In the following, we provide a brief overview of the re-
search conducted in the field of AI supporting clinical
diagnostics. The primary focus is on medical imaging,
given that radiology is expected to benefit most from
recent advancements in AI.

2.1. AI for Fatty Liver Content Estimation
from US Imaging

Hepatic steatosis, characterized by the accumulation of
fat within the liver, when coupled with inflammation,
can contribute to the advancement of fibrosis towards
cirrhosis and hepatocellular carcinoma [3]. Therefore,
early detection and quantification of steatosis (via fat
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fraction assessment) are crucial tasks for predicting the
disease progression. Magnetic Resonance Spectroscopy
is the gold standard for the fat fraction assessment, while
US imaging is commonly used to identify liver steatosis
during screenings. Despite being non-invasive, US is
highly operator-dependent [4].

In collaboration with a team from the IFC-CNR and
Pisa University Hospital, we conducted a systematic com-
parison between three Deep Learning (DL) models in
estimating, from US images, the fat fraction [5]. The
compared models were the following: (i) a determinis-
tic Convolutional Neural Network (CNN), similar to the
one in [6], (ii) an MC Dropout CNN model, and (iii) a
Bayesian CNN with probabilistic output.

In comparison to [6], the multi-center dataset in-
creased up to 186 subjects.

Regression results showed good prediction perfor-
mance for all architectures on the 5-fold test sets (Nor-
malized RMSE 5.87%, 5.35%, and 5.82% for deterministic,
MC Dropout, and Bayesian CNN, respectively). How-
ever, the introduction of uncertainty quantification (UQ),
contributes to decreasing the percentage of mispredicted
cases (from 32.4% for classical CNN to less than 9% for
Bayesian one). Furthermore, the possibility of having
access to information about the confidence with which
the network produces its outputs is a great advantage,
especially from the point of view of physicians who want
to use neural networks as computer-aided diagnosis.

2.2. AI for Covid-19 Pulmonary Patterns
Identification

During the Coronavirus Disease 2019 (COVID-19) pan-
demic, High-Resolution Computed Tomography (HRCT)
of the chest has been adopted as a method to visually iden-
tify two distinct abnormal pulmonary patterns: Ground
Glass Opacity (GGO), characterized by increased attenu-
ation and hazy density in lung lobes, and Consolidation,
indicated by bilateral areas of lung tissue filled with fluid
instead of air [7]. However, these patterns appear scat-
tered with undefined contours and often lack contrast
with surrounding healthy tissue.

Consequently, the segmentation and quantification of
pathological lung regions from HRCT data have proven
to be very challenging.

In [8], we compared four state-of-the-art CNNs based
on the encoder-decoder paradigm for the binary seg-
mentation of COVID-19 infections (UNet [9], Attention-
UNet [10], Recurrent–Residual UNet (R2-UNet) [11], R2-
Attention UNet [12]), after training and testing them on
90 HRCT volumetric scans of COVID-19 patients. The
images were collected from the database of the Pisa Uni-
versity Hospital (in the framework of the regional project
"Optimised - An Optimised Path for the Data Flow and

Clinical Management of COVID-19 Patients", funded by
Tuscany Region).

We conducted a comparison between them to ascertain
insights into the cognitive mechanisms that can drive
a neural model towards optimal performance for this
task, as well as to identify the optimal balance between
the volume of data, time, and computational resources
necessary. From the results of the analysis, it can be
concluded that Attention-UNet outperforms the other
models by achieving the best performance of 81.93%, in
terms of 2D Dice score on the test set.

2.3. AI for Alzheimer disease detection
On top of the work [13], the cerebrospinal fluid of 21 sub-
jects who received a clinical diagnosis of Alzheimer’s dis-
ease (AD) as well as of 22 pathological controls has been
collected and analysed by Raman Spectroscopy (RS). The
aim of this research is to understand if the Raman spectra
could be used to distinguish AD from controls, after a pre-
processing procedure. We applied machine learning to a
set of topological descriptors extracted from the spectra,
achieving a high classification accuracy of 86% (the best
performing combination is the Ridge classifier applied
to the persistence landscapes vectorization).Our experi-
mentation indicates that RS and topological analysis may
be effective to confirm or disprove a clinical diagnosis of
Alzheimer’s disease. Also, it opens the way to possibly
increasing and/or confirming the knowledge about the
precise molecular events and biological pathways behind
the Alzheimer’s disease, e.g., by identifying the bands of
the Raman spectrum relevant for AD detection.

2.4. AI for the Diagnosis of Eosinophilic
Esophagitis

Eosinophilic esophagitis (EoE) is a chronic disease charac-
terized by esophageal symptoms and eosinophilic inflam-
mation of the esophagus. Among patients with dyspha-
gia, EoE and non-EoE patients should receive different
therapies and therefore must be timely and correctly iden-
tified from the clinical history or by using more invasive
procedures (endoscopic and/or histological information).
In [14], an RDF-based ML model was trained on a multi-
center international database (273 EoE and 55 non-EoE
dysphagia patients clinical and endoscopic data, collected
from Guy’s and St. Thomas’ Hospital NHS Foundation
Trust (GSTT, London, United Kingdom), Pisa Univ. Hos-
pital (Pisa, Italy), and Padua Univ. Hospital (Padua, Italy))
to provide indications for the investigation of EoE in
adults reporting dysphagia or to inform point-of-care
decision-making for performing esophageal biopsies in
adults with dysphagia.
The model was further evaluated on an independent co-
hort of 93 consecutive patients with dysphagia, result-



ing in an AUC of 0.90 (using clinical data) and an AUC
of 0.94 (using a combination of clinical and endoscopic
data) The model, re-trained on the whole dataset, has
been integrated into an open-access online tool (https:
//webapplicationing.shinyapps.io/PointOfCare-EoE/).

3. AI for cancer grading
AI algorithms are showing potential in improving the
current protocol for grading various cancers, such as
breast and prostate cancer. In the following sections, we
provide a brief description of our research in this area.

3.1. AI for the discrimination between
benign/malignant breast nodules in
ABVS and DBT images

Although imaging techniques are commonly used for
breast cancer screening, biopsy is the only method avail-
able to categorize a breast lesion as benign or malignant.
However, biopsies are invasive and costly procedures
that can cause discomfort in patients [15].

Radiomic analysis of biomedical images shows promise
in addressing various clinical challenges, such as early
detection and classification of breast tumors.

In the P.I.N.K study [16], 66 women were enrolled.
Their paired Automated Breast Volume Scanner (ABVS)
and Digital Breast Tomosynthesis (DBT) images, an-
notated with cancerous lesions, populated the first
ABVS+DBT dataset. This allowed for radiomic analy-
sis to differentiate between malignant and benign breast
cancer.

Three Machine Learning (ML) methods were em-
ployed: Random Decision Forests (RDF), Support Vector
Machines (SVM), and Logistic Regression (Logit). They
were trained and validated using an ad hoc nested LOO
cross-validation procedure to ensure a minimally biased
estimation of the model’s generalization ability, even
with a limited sample size. The study’s main finding
highlights the superior effectiveness of RDF model in
accurately predicting tumor classification using radiomic
features in both ABVS and DBT acquisitions. It achieved
AUC-ROC values of 89.9% with a subset of 19 features.

Additionally, promising outcomes were achieved using
solely textural radiomic features to train RDF model, with
AUC-ROC values of 71.8% and 74.1% for ABVS and DBT,
respectively. This suggests the potential for integrating
virtual biopsy into routine medical practice.

3.2. AI for prostate cancer grading from
MRI acquisitions

Current methods for determining Prostate cancer (PCa)
aggressiveness rely on biopsy, an invasive and uncomfort-

able procedure. Multi-parametric Magnetic Resonance
Imaging (mpMRI) is frequently employed to get an initial
assessment of the tumor. To this end, numerous studies
have explored ML/DL models for automatic PCa grading
from mpMRI images [17].

However, developing accurate and generalizable DL
models for medical imaging, where data is often scarce,
presents a significant challenge. Few-shot learning (FSL)
offers a promising solution, particularly since the ad-
vancements in meta-learning [18]. For this reason, we
investigated FSL techniques for assessing PCa aggres-
siveness from mpMRI images. We proposed a two-step
approach: a disentangled self-supervised learning (SSL)
pre-training step for robust feature extraction, followed
by meta-fine-tuning utilizing finer-grained classes and
the coarser-grained ones in meta-testing for enhanced
generalization [19]. Our approach achieved a mean AU-
ROC of 0.821 for a 4-way (ISUP 2-5) 5-shot setting. We
further explored enhancing FSL models performance by
leveraging synthetic image generation, employing a De-
noising Diffusion Probabilistic Model (DDPM).

Also, we proposed a new technique to discover and
exploit causality signals from images via neural networks
for classification purposes [20, 21]. We model how the
presence of a feature in one part of the image affects
the appearance of others in different parts of the image.
Our method consists of a convolutional backbone and
a causality-factors extractor computing weights to en-
hance feature maps according to their causal influence
in the scene. We evaluated our method on a dataset of
prostate MRI images for cancer diagnosis and studied its
effectiveness of our module both in fully-supervised and
1-shot learning. On the binary classification of cancer
versus no-tumor cases, our method led to a maximum
test accuracy of 0.72, representing a 5 % increase to the
baseline [21]. On distinguishing ISUP grades in 1-shot
learning, we obtained a 0.71 AUROC for the classification
ISUP 2 vs. all the others, with 13 % increasing to the base-
line [20]. Our attention-inspired improved the overall
classification and produced more robust XAI predictions
focusing on relevant parts of the image.

3.3. AI for chondrosarcoma grading from
Raman Spectroscopy

Raman Spectroscopy (RS) allows for the observation of
changes in biochemical constituents (such as proteins,
lipid structures, DNA, and vitamins) among different
tissues by obtaining their biochemical maps. Recently,
RS has been applied to chondrogenic tumor classification
with excellent results [22].

Chondrogenic tumors are the second largest group of
bone tumors worldwide. They are generally classified as
primary chondrosarcomas when they occur in previously
normal bone. Secondary chondrosarcomas result from
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Figure 1: Representative histologic images of the tumours
analyzed in this study (hematoxylin and eosin staining). EC
(Panel a); CS G1 (Panel b); CS G2 (Panel c); CS G3 (Panel d),
from [23].

the malignant transformation of a benign cartilaginous
lesion and are classified into three grades: CS G1, CS G2
and CS G3. Enchondroma (EC) is a non-cancerous tumor.
Distinguishing between EC and CS G1 is a critical issue
for pathologists, as it generates many false positive and
false negative diagnoses [24].

In [23] we showed that the combination of persistent
homology and ML techniques can support the classifica-
tion of Raman spectra extracted from cancerous tissues
to achieve a reliable chondrosarcomas grading.

A total of 410 Raman spectra from 10 patients with
primary chondrogenic tumors of the skeleton, treated
at Azienda Ospedaliera Universitaria Pisana (Pisa), were
used to train the machine learning models. Despite the
small size of the experimental dataset, the results show
that the method not only achieved high accuracy on
previously unseen data samples; also such a methos can
be easily integrated into a Raman spectroscopic system as
an automatic tool to assist clinicians in grading tumors.

4. AI for predicting
radiotherapy-induced toxicity in
prostate cancer

Radiotherapy is a commonly used treatment for prostate
cancer (PCa). In recent years, there has been a surge of in-
terest in leveraging ML methods to analyze radiomic fea-
tures derived from multiparametric MRI (mpMRI) scans
of PCa. However, little attention has been given to pre-
dicting radiation-induced toxicity [25] before starting
radiotherapy. In the work carried out in the framework
of the EU H2020 ProCAncer-I project [26], we aimed to
predict radiotherapy-induced side effects, including both
genito-urinary and rectal toxicity.

A RDF model was trained on radiomic features ex-

tracted from 134 T2-weighted Magnetic Resonance Imag-
ing (MRI) images of patients who underwent radiother-
apy. The MRI scans were obtained from ProstateNet
(https://prostatenet.eu), the repository designed within
the framework of the EU H2020 ProCAncer-I project.
Data regarding the presence and severity of rectal and
urinary side effects after treatment were also included.

The results demonstrated that radiomics-based ap-
proaches can be effective in predicting radiotherapy-
induced side effects, achieving an AUROC of 70.8%. Also,
a set of simplified model variants was used to estimate
epistemic uncertainty and provide a reliability score to
complement the main model’s prediction.

5. AI for the newborn and infant

5.1. Thermal imaging for stress and
well-being

In this field, we investigated also the use of thermal imag-
ing for stress discrimination [27, 28], to the aim of detect-
ing stress in adults under stress stimuli, and of assessing
the efficacy of the hortotherapy for female adolescence af-
fected by anorexia nervosa. Notably, we are moving to a
more challenging task: deepen the understanding of ther-
mal profiles in the newborn (possibly pre-term) in order
to develop or improve new treatment techniques related
to the maturation of the newborn thermo-regulation sys-
tem. A study protocol, joint work with the lab NINA
and the NICU of Santa Chiara Hospital in Pisa, is under
review.

5.2. AI for baby facial gestures
recognition

One open issue related to children’s research concerns
neonatal imitation (NI), namely the primitive ability of
infants to mirror the actions of others [29]. The question
of whether imitation is present from birth is of great
importance as it can foster a deeper understanding of how
it contributes to later developmental outcomes, which is
crucial for the preterm newborn.

Computer vision methods may unobtrusively detect
and analyze the most relevant facial features, thus provid-
ing clinicians (or parents, caregivers, etc.) with objective
data about children’s health status [30]. However, for in-
fants, this is a challenging task, due to significant changes
in their facial morphology compared to adults, and to
the increased complexity in data collection caused by
unpredictable variations in their facial poses [31].

In [32], we analyzed videos of 10 newborns (8 preterms,
2 at term, ≤ 4 weeks post-term equivalent age), perform-
ing tasks such as tongue protrusion and mouth opening,
to classify open/closed mouths. The videos were analyzed
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Figure 2: Data preparation procedure: the original image
is processed using Face Landmarker of Google MediaPipe
Solutions to identify a rough contour of the mouth (a). This
imprecise contour is used to crop/reorient the image. An
adaptive brightness/contrast enhancement is applied to the
final image (b).

at frame-level, for a total of 41000 labeled frames. In each
frame, we identified mouth landmarks and cropped the
images around the mouth, then we applied an image pre-
processing pipeline (which included mouth orientation,
resizing, brightness and contrast enhancement, see Fig-
ure 2) to improve classification performance. A CNN was
trained using a ten-fold cross-validation, which resulted
in highly reliable results: accuracy, precision, and recall
over 92% on unseen data.

6. Conclusions
AI has a big potential to improve care and health sys-
tems, specially for diagnostic tasks, even if facing very
important technical issues like unbalance dataset, data
drift, heterogeneous acquisition protocols, and input data
and annotations of variable quality. Also, future research
should involve healthcare professionals and caregivers as
designers and users, comply with health-related regula-
tions, improve transparency and privacy, integrate with
healthcare technological infrastructure, explain their de-
cisions to the users, and establish evaluation metrics and
design guidelines.
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