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Abstract
In this conceptual paper we first make some general remarks on logic in real human reasoning, logic in mathematical reasoning and logic
in philosophy (sections 1, 2, 3). We then move on and consider logic in psychology (Section 4) and we describe a couple of psychological
studies where logical reasoning plays a decisive role. The psyhological studies in question involve what are called false-belief tests
(Section 5) and tests where an experimental subject has to judge whether a syllogism is valid, despite inconsistent contextual information
(Section 6). In Section 7 we make some remarks about further work.
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1. Introduction: Logic in real human
reasoning

Logic is usually taken to be the study of correct reasoning.
Apparently, people have an ability to do logical reasoning,
and to distinguish logically correct reasoning from incor-
rect.1

The history of logic goes back to the famous Greek
philosopher Aristotle (384–322 BC).2 Amongst many other
achievements, Aristotle worked out systematic principles
for correct reasoning, in particular, he identified and classi-
fied certain patterns of reasoning called syllogisms, having
two premises and one conclusion, like the following.

All men are humans
All humans have brains
—————————————————
Therefore, all men have brains

We say that a syllogism is valid if and only if the truth of the
premises imply the truth of the conclusion, just by virtue of
the logical form of the three statements. This is the case with
the syllogism above. Thus, the content of the statements
is irrelevant, in particular, the actual meaning of “men”,
“humans” and “have brains” does not matter, for example,
the word “men” could be replaced by “politicians” without
affecting validity. In this sense validity is a topic-neutral
notion.

Since Aristotle’s introduction of syllogisms, these pat-
terns of reasoning have been a benchmark for reasoning
studies in various different disciplines, including philosoph-
ical logic and psychology; see [2] for a comprehensive
overview and meta-analysis of 12 different psychological
theories of syllogistic reasoning.

Nowadays, the significance of logical reasoning in
everyday life is witnessed by the contemporary critical
thinking literature where logical notation is used to analyze
actual human reasoning. In particular, the structure of
informal arguments is described using what are called

10th Workshop on Formal and Cognitive Reasoning (FCR-2024) at the 47th
German Conference on Artificial Intelligence (KI-2024, September 23 - 27),
Würzburg, Germany
$ torben@ruc.dk (T. Braüner)
� http://akira.ruc.dk/~torben/ (T. Braüner)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1Possible objection: People make errors in logical reasoning tasks, some-
times even systematically! Response: True, but people usually under-
stand the correct solution when it is explained to them (with some
effort, perhaps). See also Footnote 5.

2At least as far as logic in the Western world is concerned. There are
other logic traditions, for example Indian logic, see [1].

argument diagrams, thereby helping to judge whether
an argument is valid or not. Example: A common
reasoning pattern is conditional reasoning, that is, we
often make an assumption (“for the sake of argument”),
and then work out the consequences of the assumption
in question. In the critical thinking textbook [3], page
122, the following notation is used for conditional reasoning.

Using such notation, the book [3] analyses many different
sorts of arguments: Scientific arguments, arguments
about God’s existence, strategic reasoning about nuclear
deterrence, and a number of others. The take-home
message here is that applications of logic abound in real
everyday human reasoning.

2. Logic in mathematical reasoning
Of course, a fantastic example of logical reasoning is the
reasoning that takes place in mathematics, which is based
on clear-cut logical reasoning principles. This is witnessed
by formalisations, where logical proofs built according to
the rules of a precisely defined proof-system can be used to
represent—describe the structure of—actual mathematical
proofs, carried out by real human mathematicians.

The idea of formalising mathematical proofs using such
precisely defined proof-rules traces back (at least) to Gerhard
Gentzen’s work in the 1930s, cf. [4], page 74.

We wish to set up a formalism that reflects
as accurately as possible the actual logical
reasoning involved in mathematical proofs.

To this end, Gentzen invented what are nowadays called
natural deduction style proof systems for first-order logic.
The goal of natural deduction systems to mimick actual
mathematical reasoning has been repeated many times since
then,3 in particular, it is the cornerstone in the works of Dag
Prawitz, see for example the classic book [5]. See [6] for a
general introduction to natural deduction systems.

3Comment from the author: It is definitely an arguable claim that natural
deduction rules reflect actual mathematical reasoning step-by-step, but
it is surprising that there does not seem to much published work trying
to provide empirical evidence for the claim in the form of statistically
valid experimental studies.
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But how does a natural deduction system look? Well, a
natural deduction system for ordinary propositional logic
can be seen in Figure 1. There are two main ideas behind
such a system:

The first idea is that there are two different kinds of rules
for each logical connective: one to introduce it and one to
eliminate it (rules are read from top to bottom). Introduction
rules have names in the format (...𝐼...) and elimination rules
have names in the format (...𝐸...).

The second idea behind a natural deduction system is that
conditional reasoning is hardwired into the system, that is,
at any stage in a deduction we can

1. make a new assumption,
2. work out its consequences,
3. and then discharge it (disregard it).

The definition of this discharge mechanism is a bit technical,
but briefly put, discharged assumptions are indicated by
putting parantheses [ . . . ] around them, see the rules in
Figure 1. Note that the rule (⊥) formalize the standard
mathematical proof technique called proof by contradiction:
If it is assumed that 𝜑 is false, that is, ¬𝜑 is true, and this
assumption implies a contradiction, denoted ⊥, then it can
be concluded that 𝜑 is true.

Conditional reasoning is a very common reasoning pat-
tern in mathematics as well as in informal reasoning (note
the similarity between the rule (→ 𝐼) in Figure 1 and the
above notation for conditional reasoning taken from the
critical thinking book [3]). Also, there is some experimental
backing for the claim that natural deduction style reasoning
is a mechanism underlying human thinking more generally,
cf. what is called the mental logic school in the psychology
of reasoning, which we describe in Subsection 4.1.

The natural deduction system for propositional logic
has desirable mathematical properties: The system can be
equipped with reduction (rewrite) rules that can remove
detours when the introduction of a connective is followed
by an elimination, see Figure 2 where 𝜏 ⇝ 𝜃 means that
the derivation 𝜏 is rewritten to the derivation 𝜃. This leads
to the following:

Definition 1. A derivation is normal if no reductions can
be applied.

Theorem 1. (Normalization) Any derivation can be rewrit-
ten to a normal derivation by repeated applications of reduc-
tions.

Theorem 2. (Subformula property) All formulas in a normal
derivation, except some trivial cases, are subformulas of the
end-formula or undischarged assumptions.

The exact formulations and proofs of the above proper-
ties can be found in many different places, for example [5].
Nowadays, natural deduction systems are available in many
different variants for many different logics.

3. Stepping stone: Logic from a
philosophical point of view

Two main branches of logic can be distinguished, in terms
of the subject as well as the way researchers identify them-
selves. A notable difference between the branches is that
they have distinct success criterias regarding what a “good”
proof-system is.

𝜑 𝜓
(∧𝐼)

𝜑 ∧ 𝜓

𝜑 ∧ 𝜓
(∧𝐸1)

𝜑

𝜑 ∧ 𝜓
(∧𝐸2)

𝜓

[𝜑]
···
𝜓

(→ 𝐼)
𝜑→ 𝜓

𝜑→ 𝜓 𝜑
(→ 𝐸)*

𝜓

[¬𝜑]
···
⊥

(⊥)⋆

𝜑

* This proof principle usually goes under the name modus
ponens.
⋆ Side-condition for technical reasons: 𝜑 is a propositional
symbol (¬𝜑 abbreviates 𝜑→ ⊥). This proof principle is usually
called proof by contradiction.

Figure 1: Natural deduction rules for propositional logic

··· 𝜋1
𝜑

··· 𝜋2
𝜓
(∧𝐼)

𝜑 ∧ 𝜓
(∧𝐸1)

𝜑

⇝
··· 𝜋1
𝜑

[𝜑]
··· 𝜋1
𝜓

(→ 𝐼)
𝜑→ 𝜓

··· 𝜋2
𝜑
(→ 𝐸)

𝜓

⇝

··· 𝜋2
𝜑
··· 𝜋1
𝜓

Figure 2: Natural deduction reduction (rewrite) rules for propo-
sitional logic

The first branch is model-theory: It is basically what
we nowadays call semantic. Propositions and logical con-
nectives are interpreted in terms of set-theoretic models, a
notion which can be traced back to Alfred Tarski’s definition
of truth from the 1930s, [7]. That is, this branch takes as a
cornerstone the relation between formulas and models de-
fined by recursive truth-conditions, where models in many
cases are thought of as representing a specific part of reality.
In this way model-theory lends itself towards realism, that
is, the philosophical view that reality exists independently of
what human beings think or say about it. A model-theorist
will typically ask whether a given proof-system is sound and
complete wrt. a model-theoretic semantics (in propositional
logic: a formula is provable if and only if it is a tautology).

The second branch is proof-theory: It is basically
syntactic, but attempts to locate the meaning of a connective
in the role it plays in logical rules. This has developed into a
separate semantic paradign called proof-theoretic semantics,
sometimes associated with Ludwig Wittgenstein’s language
games cf. his slogan ‘meaning is use’. See the paper [8] for
a presentation of proof-theoretic semantics, and note that
that paper, page 9, points out that Wittgenstein’s slogan
‘meaning is use’ should be understood in a normative way
as ‘meaning is correct use’ to distinguish it from factual
linguistic behaviour of speakers.
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Now, a proof-theorist will typically ask whether a natural
deduction system can be equipped with reduction rules such
that a normalization result can be proved, where normal
derivations satisfy a subformula property, as we saw earlier
in Section 2. In the case of a sequent system, a proof-theorist
will ask for a cut-elimination theorem (preferably proved
in a syntactic, rather than semantic, way). Such a theorem
says that for any derivation including applications of the
cut rule (that is, lemmas), there exists a derivation of the
same end-sequent, but without applications of cuts. In most
sequent systems, cut-free derivations satisfy a subformula
property. To quote the famous proof-theorist Jean-Yves
Girard: “A logic without cut-elimination is like a car without
an engine.”4

The dichotomy between model-theory and proof-theory
can be found in philosophical-, mathematical- as well as
computational logic, even though it is not always explic-
itly articulated. See [8] for a presentation of a number of
different semantic paradigms.

4. Logic in psychology
How are logic and psychology related, if at all related? There
are basically two different claims:

The first claim is that psychology is relevant to logic.
This claim has been rejected by Gottlob Frege (1848–1925)
and many later logicians, who said that psychology is de-
scriptive whereas logic is normative: How people actually
reason is irrelevant to how they should reason.

The second claim is that logic is relevant to psy-
chology. This claim is rejected by some psychologists, one
reason being that people do not perform well in certain
logical reasoning tests, for example what is called the Wa-
son Card Task.5 The rejection of the second claim has been
criticized for several reasons, in particular for being based
on a too narrow view of logic, see for example the book [12],
which gives a detailed account of the relationship between
logic and psychology, historically as well as more recent
developments.

In the book [12], logic is used to explain the reasoning of
experimental subjects in a number of different psychological
reasoning tasks, thus, the book uses normative considera-
tions when explaining actual human reasoning; which in
the paper [13] is called normatively informed descriptive
work. We shall later in the present paper corroborate the
second claim by giving two case studies, also showing the
relevance of logic to psychology.

4There are dissenting voices, though, for example the paper [9] defends
analytic cuts (where the cut formula is a subformula of the end-sequent)
on the basis that the elimination of all cuts gives rise to various kinds
of anomalies, like it is in [10] pointed out that there are first-order
formulas whose derivations in cut-free systems are much larger than
their derivations in natural deduction systems, which implicitly allow
unrestricted cuts (in one case more than 1038 symbols compared to
less than 3280 symbols).

5Johan van Benthem gave the following succint remark in connection
with the Wason Card Task, cf. [11], page 77: “A psychologist, not
very well-disposed toward logic, once confessed to me that despite all
problems in short-term inferences like the Wason Card Task, there was
also the undeniable fact that he had never met an experimental subject
who did not understand the logical solution when it was explained to
him, and then agreed that it was correct. Why should the latter slightly
longer-term ‘reflective fact’ be considered less of a cognitive reality
than the former?”

4.1. Using logic in psychology, more
concretely

In Section 3 we briefly described the two main branches in
logic namely model-theory and proof-theory. These two
branches correspond (roughly) to two schools in the psy-
chology of reasoning (there are other schools, for example
based on probability theory, but they are omitted here).

The model-theory branch of logic corresponds to
the “mental models" school, according to which the cog-
nitive mechanism underlying human reasoning is the con-
struction of models. The structure of such a mental model
is analogous to the structure of the situation it represents.
This view is held by Philip Johnson-Laird and others, see
[14].

On the other hand, the proof-theory branch of logic
corresponds to the “mental logic" school, according to
which the mechanism underlying human reasoning is not
the construction of models, but rather the application of
topic-neutral formal rules. To be more precise, according to
this school, natural deduction style rules are somehow built
into the human cognitive architecture. Thus, the starting
point is here linguistic (syntactic) representations. This view
has for example been held by Lance Rips, see the book [15]
where he provides experimental support for the claim.

. . . a person faced with a task involving de-
duction attempts to carry it out through a
series of steps that takes him or her from an
initial description of the problem to its solu-
tion. These intermediate steps are licensed
by mental inference rules, such as modus po-
nens, whose output people find intuitively
obvious. ([15], p. x)

Note that modus ponens is the natural deduction rule (→ 𝐸)
in Figure 1. See also [16] which is a reproduction of some
chapters from the book [15].

Both of the above schools are reflected in different psy-
chological theories of syllogistic reasoning, see the account
given in [2]. See also the discussion of syllogisms in [12],
in particular, the book’s discussion of the mental models
theory of syllogistic reasoning.

5. Case study: Logical formalization
of false-belief tasks

In this section, we describe a line of work where we use
logic to investigate psychological reasoning tests called
false-belief tasks. More precisely, the goal is to analyze and
give logical formalizations of false-belief tasks using proof-
systems for hybrid modal logic, and moreover, to use such
logical analyses to explicate how individuals with Autism
Spectrum Disorder (ASD)6 reason in false-belief tasks.

A well-known example of a false-belief task is what is
called the Smarties test. The following is one version of this
test.

A child is shown a Smarties tube where un-
beknownst to the child the Smarties have

6Autism Spectrum Disorder is a psychiatric disorder with the follow-
ing diagnostic criteria: 1. Persistent deficits in social communication
and social interaction. 2. Restricted, repetitive patterns of behavior,
interests, or activities. For details, see Diagnostic and Statistical Manual
of Mental Disorders, 5th Edition (DSM-V), published by the American
Psychiatric Association.
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been replaced by pencils. The child is asked:
“What do you think is inside the tube?" The
child answers “Smarties!" The tube is then
shown to contain pencils only. The child is
then asked: “If your mother comes into the
room, and we show this tube to her, what
will she think is inside?"

It is well-known from experimental studies that most chil-
dren above the age of four correctly say “Smarties" (thereby
attributing a false belief to the mother) whereas younger
children say “Pencils" (what they know is inside the tube).
For children with autism, the cutoff age is higher than four
years. This difference was observed already in [17] in con-
nection with another false-belief task called the Sally-Anne
task.

Passing the Smarties test involves taking the perspective
of another agent namely the mother, and reasoning about
what she believes. The child has to put himself/herself in the
mother’s shoes to get the answer right. Since the ability to
take a different perspective is a precondition for figuring out
the correct answer to the Smarties (and other) false-belief
tasks, the fact that children with ASD have a higher cutoff
age is taken by many researchers to support the hypothesis
that there is a link between autism and a lack of what is
called theory of mind, which is the ability to ascribe mental
states, for example, beliefs, to oneself and to others. For a
general formulation of the theory of mind deficit hypothesis
of autism, see the book [18].

In [19] we formalized the Smarties task described above,
as well as the Sally-Anne task, using a natural deduction
proof system for hybrid modal logic. Hybrid (modal) logic is
an appropriate tool to analyze the reasoning in these false-
belief tasks since it can explicitly represent perspectives.

More formally, hybrid logic is an extension of ordinary
modal logic allowing explicit reference to individual points
in a Kripke model, where—as usual in modal logic—the
points stand for times, possible worlds, persons, or some-
thing else. The extra expressive power is obtained by adding
what are called nominals, which are propositional symbols
of a new sort, each being true at exactly one point in the
Kripke model. In the temporal case, this means that we can
formalize statements like

it is Christmas Eve 2023.

This statement is true at exactly one time, namely Christmas
Eve 2023. Besides nominals, a new kind of modal operators
called satisfaction operators are added, enabling the formu-
lation of statements being true at a particular point, for
example, again in the temporal case

at Christmas Eve 2023, it is snowing

In general, if 𝑎 is a nominal and 𝜑 is a formula, then a new
formula@𝑎𝜑 can be built, where@𝑎 is a satisfaction operator.
A formula of the form @𝑎𝜑 is called a satisfaction statement.
The formula @𝑎𝜑 expresses that the formula 𝜑 is true at
one particular point, namely the point to which the nominal
𝑎 refers. Thus, @𝑎𝜑 can be used to formalize statements
like the one above saying that it snows at a particular point
in time, namely Christmas Eve 2023. See [20, 21] for more
details on hybrid logic.

The hybrid-logical natural deduction system used in [19]
to formalize the Smarties and Sally-Anne tasks stems from
our book [22] and can be traced back to [23]. The system
in question is obtained by extending the natural deduction

system for propositional logic of Figure 1 with the rules in
Figure 3 (in fact, the system of [22] also includes rules for
modal operators, but they are omitted here since we do not
need them for the fomalizations we are interested in).

As usual in natural deduction systems, this system has
proof rules for respectively introducing and eliminating a
connective, which in the case of the satisfaction operator
are the rules (@𝐼) and (@𝐸), cf. Figure 3. These rules
formalizes respectively the two informal arguments

It is Christmas Eve 2023
It is snowing
———————————————————–
At Christmas Eve 2023, it is snowing

It is Christmas Eve 2023
At Christmas Eve 2023, it is snowing
————————————————————
It is snowing

The hybrid-logical natural deduction system includes a
further rule that we need to formalize the Smarties and Sally-
Anne tasks, namely the somewhat technical rule denoted
(Term), cf. Figure 3. This rule allows us to jump to a
hypothetical time (or whatever the points stand for), do
some reasoning, and then jump back to the present time
again. The hypothetical time is the time referred to by
the nominal discharged by the rule, indicated by [𝑎]. This
nominal might be called the point-of-view nominal. Recall
from Section 2 that parantheses [ . . . ] around an assumption
means that it is discharged. Intuitively, the side-condition
on (Term) marked with ⋆ says that statements whose truth-
values do not depend on time can be moved in and out of the
hypothetical reasoning delimited by the rule (the vertical
line of dots).

The rule (Name) in Figure 3 is needed to prove a com-
pleteness theorem, see [22], but we do not need this rule for
the formalizations we are interested in in the present paper,
so we shall not comment more on it.

The hybrid-logical proof system in Figure 3 allows us to
formalize the Smarties task as described in the beginning of
this section. To this end we let nominals stand for persons.
Then the shift of perspective in the Smarties task can be
formalized very directly as the derivation in Figure 4 where
we make use of the following symbolizations

𝐷 Deduces that ...
𝐵 Believes that ...
𝑝 There are Smarties inside the tube
𝑎 The imagined mother

and where the axiom 𝐷𝜑 → 𝐵𝜑 embodies the principle
that if a person (an agent) deduces 𝑝, then the person comes
to believe 𝑝. The reader might recognize the instance of
the rule (→ 𝐸) that was exhibited in Figure 1 and also the
instances of hybrid-logical rules from Figure 3.

Note that in Figure 4, the nominal 𝑎 stands for the moth-
ers perspective and the end-formula @𝑎𝐵𝑝 of the derivation
says that the mother believes that there are Smarties inside
the tube. Moreover, note that the shift to the mothers per-
spective is dealt with by the (Term) rule.

The Smarties test is described in many places in the
psychological literature, and passing the test is usually de-
scribed as involving a perspective shift. Such descriptions
are informal, but we here consider a fully formal account
of the child’s reasoning in terms of a formalization using a
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𝑎 𝜑
(@𝐼)

@𝑎𝜑

𝑎 @𝑎𝜑
(@𝐸)

𝜑

𝜑1 . . . 𝜑𝑛

[𝜑1] . . . [𝜑𝑛][𝑎]
···
𝜓

(Term)⋆

𝜓

[𝑎]
···
𝜓

(Name)†

𝜓

⋆ The formulas 𝜑1, . . . , 𝜑𝑛 and 𝜓 are all satisfaction statements
and there are no undischarged assumptions in the derivation of
𝜓 besides the specified occurrences of 𝜑1, . . . , 𝜑𝑛 and 𝑎.
† The nominal 𝑎 does not occur in 𝜓 or in any undischarged
assumptions other than the specified occurrences of 𝑎.

Figure 3: Natural deduction rules for hybrid logic

@𝑎𝐷𝑝

[𝑎]

[𝑎] [@𝑎𝐷𝑝]
(@𝐸)

𝐷𝑝
(Axiom)

𝐷𝑝→ 𝐵𝑝
(→ 𝐸)

𝐵𝑝
(@𝐼)

@𝑎𝐵𝑝
(Term)

@𝑎𝐵𝑝

Figure 4: Formalization of the child’s correct response in the
Smarties task (both person and temporal shift versions)

hybrid-logical proof system. Thus, a child’s reasoning when
giving a correct answer is explained by logical principles
embodied in the hybrid-logical proof system.

In the terminology of the paper [13], the above line of
work constitutes normatively informed descriptive work
since we use logic to explain the reasoning of experimental
subjects in a concrete reasoning task, thereby corroborating
the second claim at the beginning of Section 4 that logic is
relevant to psychology.

5.1. A second version of the Smarties task
Now, in the version of the Smarties task described above,
the child had to take the mother’s perspective, but there
is a second version of the Smarties task requiring a shift
of temporal perspective, but no shift of perspective to an-
other person. The second version of the task is obtained by
replacing the second question

“If your mother comes into the room and we
show this tube to her, what will she think is
inside?"

by the following

“Before this tube was opened, what did you
think was inside?"

See [24] for more on the temporal version of the Smarties
task. Of course, the correct answer is “Smarties" in both
cases.

According to [19], the two versions of the Smarties task
have the same formalization, where the nominal 𝑎 in the
temporal version refers to the time when the first question
is asked. Thus, when formalizing the temporal version, the
nominals stand for times. It follows that in the temporal

version, the end-formula @𝑎𝐵𝑝 of the derivation in Figure 4
says that at the time the first question is asked, the child
believes that there are Smarties inside the tube.

By formalizing the two versions of the Smarties task,
we have not only shown that we can use logic to explain
the reasoning in the two tasks, but we have also disclosed
that the two seemingly different tasks have exactly the same
underlying logical structure. Thus, passing the two tests can
be explained by exactly the same logical principles. Again,
we have corroborated the claim of Section 4 that logic is
relevant to psychology.

5.2. Second-order false-belief tasks
The line of work described above dealt with first-order false-
belief tasks; they are psychological tests where the experi-
mental subject must ascribe a false-belief to oneself or an-
other person. In a second-order false-belief task, the subject
must keep track of a second person’s belief about a third per-
son’s belief—it thus requires understanding of the recursive
character of mental states.

Much less is known about second-order false-belief un-
derstanding than its first-order variant, in particular when it
comes to children with ASD; see [25]. In the papers [26, 27],
we considered a hybrid-logical formalization of a second-
order false-belief task namely a second-order version of the
above-mentioned (first-order) Sally-Anne task. This formal-
ization highlights the importance of recursion: It shows
that second-order reasoning can be viewed as the recursive
embedding of first-order reasoning about different agents.
More concretely, the hybrid-logical proof formalizing the
second-order Sally-Anne task can be viewed as the embed-
ding of the formalization of the first-order Sally-Anne task
into a larger proof structure, capturing the second-order
reasoning. Thus, another level of nesting is added to the
perspectival analysis.

The paper [27] includes a logical comparison of the four
well-known second-order false-belief tasks that can be found
in the literature, showing that they are logically distinct and
can be classified across two dimensions of variation. The em-
pirical significance of the task classification was investigated
in [28], where responses (for 41 neurotypical children and
62 children with ASD) on the four second-order false-belief
tasks were analyzed using a Latent Class Analysis, which
is a statistical method allowing the discovery of patterns
in data that were not hypothesized beforehand. We were
particularly interested in patterns involving combinations
of tasks, for example, it turned out that for children with
ASD, the conditional probability of passing the second-order
Sally-Anne task, given that what is called the ice-cream task
is passed, is close to 100 percent, but the converse condi-
tional probability is 59 percent (note that this is stronger
than just the observation that more subjects gave correct
answers to the Sally-Anne task than to the ice-cream task).
The results of [28] were based on data collected by Irina
Polyanskaya as part of her PhD on second-order false beliefs
in children with ASD, [29].

Note that the line of work described above constitutes
normatively informed descriptive work, cf. [13], in two
different ways: i) Logic is used to explain the reasoning in
a concrete reasoning task namely the second-order Sally-
Anne task, and ii) a logical classification of reasoning tasks is
used as the basis of a statistical analysis of data in a concrete
empirical study.
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6. Case study: Syllogistic reasoning
with bias

In this section we describe an analysis of certain logical rea-
soning tasks where autistic individuals perform not worse,
but better, than typically developing individuals. This is for
example what is reported in the paper [30], which compares
a person’s level of autistic-like traits to the person’s ability
to do syllogistic reasoning, cf. Section 1. See also [31].

Some syllogisms are consistent with reality: All birds
have feathers. Robins are birds. Therefore robins have feath-
ers, but others are not: All mammals walk. Whales are
mammals. Therefore whales walk. Both of these syllogisms
are valid, in fact they have exactly the same logical struc-
ture. These two syllogisms are of the respective types of
valid-believable and valid-unbelievable (this terminology
should be self-explanatory). But there are also the types
invalid-believable and invalid-unbelievable. An example
syllogism of the invalid-believable type is: All flowers need
water. Roses need water. Therefore Roses are flowers. An
invalid-unbelievable syllogism with exactly the same struc-
ture is: All insects need oxygen. Mice need oxygen. Therefore
mice are insects.

It is well-known, cf. for example [32], that whether or not
a syllogism is valid is easier to detect for congruent syllo-
gisms (valid-believable and invalid-unbelievable) than for in-
congruent ones (invalid-believable and valid-unbelievable),
this being the case because the correct answer to incon-
gruent syllogisms is inconsistent with reality.7 Thus, prior
knowledge of reality can affect the judgment of validity.
However, it also turns out this reasoning bias is smaller for
autistic-like persons than for others: The study [30] shows
that there is a negative correlation between this bias and
what is called the AQ-score8, thus, the more autistic-like a
person is, the better the person is to judge syllogisms with-
out being affected by irrelevant prior knowledge of reality.

To be more specific, in the study [30], each experimental
subject judged four congruent syllogisms and four incongru-
ent ones. With a 1-point score for each correct judgement,
this gave rise to a 0-4 scale for congruent syllogisms and
0-4 scale for incongruent ones. Belief bias was calculated by
subtracting the score for incongruent syllogisms from that
of congruent ones, resulting in a possible belief bias score
between -4 and 4 points for each subject. The paper [30]
reports a correlation at −0.39 (𝑝 < 0.001) between AQ and
belief bias. The study [30] does not break the -4 to 4 bias
scale down into two -2 to 2 subscales for respectively valid
and invalid syllogisms, so this work cannot clarify whether
the judgement of valid and invalid syllogisms separately
correlates negatively with the AQ-score, that is, whether
autistic-like persons are better to judge both valid and in-
valid syllogisms, or only one of the types.

Now, in our paper [35] we asked the following question:
What does it precisely mean that an experimental subject
can judge a syllogism without bias, that is, without involv-
ing irrelevant contextual information? We assume that the
validity of syllogisms is defined in the usual manner using
first-order models (the syntax and semantics here are the
standard machinery of first-order logic, so definitions are left
out). Using this machinery, we can define a mathematical

7Such a reasoning bias is even found in inferences carried out by large
language models, cf. [33, 34].

8The Autism-Spectrum Quotient (AQ) is a self-report questionnaire that
measures the level of autistic-like traits.

function valid which maps syllogisms to truth-values, that
is, elements in the set {0, 1}. For example, if 𝑆 is one of the
first two syllogisms mentioned above, then valid(𝑆) = 1,
and if 𝑆 is one of the last two syllogisms mentioned, then
valid(𝑆) = 0. Formally, the variable 𝑆 here stands for a
triple with three formulas that constitute a given syllogism,
namely the two premises and the conclusion. With this
definition, the function valid formalizes the normatively
correct judgment of syllogisms.

Now, a subject’s judgment of a syllogism takes place in a
specific context, that is, in a specific state of affairs namely
the actual state of affairs, where for example the statement
Robins have feathers is true, but the statement Whales walk is
false. Such a state of affairs is formalized by a model in first-
order logic. This means that a specific subject’s judgment
of syllogisms in a context can be modeled by a function
believable similar to the function valid, but with an
extra parameter namely a model, representing a context.
Thus, the function believable maps a pair consisting of a
syllogism and a model to a truth-value, and the requirement
of context-independence can be formulated as

(1) believable(𝑆,ℳ1) = believable(𝑆,ℳ2)

for any syllogism 𝑆 and any models ℳ1 and ℳ2. Thus, a
subject’s judgment of syllogisms is context-independent if
and only if the corresponding believable function satis-
fies the above requirement.

A stronger requirement than context-independence is
correctness, that is,

(2) believable(𝑆,ℳ) = valid(𝑆)

for any syllogism 𝑆 and any model ℳ. In particular, one
may expect that a believable function is correct in this
sense if it corresponds to a subject with logical training,
who for example figures out whether a syllogism is valid
by carrying out a paper-and-pencil calculation. Note that
correctness is a strictly stronger requirement than context-
independence, for example, a believable function that
always gives the incorrect answer would obviously not be
correct, but it would be context-independent. Note also that
the model ℳ does not occur on the right-hand side of (2),
which reflects that the notion of validity is topic-neutral, cf.
Section 1.

Note that the stimulus-response pattern of one exper-
imental subject is modeled by one believable function.
According to the definition above, the domain of such func-
tions is constituted by all pairs consisting of a syllogism
together with a first-order model determining the truth val-
ues of the premises and the conclusion of the syllogism.
There are countably many such pairs, but of course, this
infinite domain can be cut down to a finite domain by re-
stricting to a finite set of syllogisms, for example in relation
to a concrete psychological experiment.

In a sense, a believable function “measures” how log-
ically correct a subject’s reasoning is, and moreover, a
believable function allows us to formulate precisely what
it means that an experimental subject can judge syllogisms
without bias. Concludingly, in the case study described in
this subsection, logic is obviously relevant since the reason-
ing task itself is of a logical nature, so it is again corroborated
that logic is relevant to psychology, cf. Section 4. Moreover,
logic is the basis for a mathematically precise definition of
what it means to be logically correct, cf. the paper [35]. In
the terminology of the paper [13], the above line of work
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can be characterized as normatively informed descriptive
work.

7. Concluding remarks
In the present paper we have discussed common logical
structures in various reasoning tasks: As discussed in Sub-
section 5.1, and originally pointed out in [19], two seem-
ingly different versions of the Smarties task have exactly
the same underlying logical structure, as demonstrated by
hybrid-logical formalizations. Similarly, as discussed in Sub-
section 5.2, in [27] it was demonstrated that four second-
order false-belief tasks share a certain logical structure, but
they are also distinct in a logically systematic way. Our pa-
per [36] compares the syllogistic reasoning task described
in Section 6 to other psychological tasks where people with
ASD outperform typically developing people, namely two
decision-making task from behavioral economics as well
as a task from the heuristics and biases literature, and in
that paper we identified common formal structures (and
differences). In fact, common logical structures in reasoning
tasks were discussed already in the book [12] where it was
demonstrated that a false-belief task has a logical structure
similar to the structure of certain other reasoning tasks.

Now, besides being interesting in their own right, such
analyses might also explain empirical results: If two ex-
periments make use of distinct reasoning tasks, but which
have the same underlying logical structure, then one might
expect similar empirical results, in which case the identity
of the logical structures can be seen as an explanation of
the similarity of the results. Following such a strategy, our
paper [28] investigated the empirical significance of a logi-
cal classification of four second-order false-belief tasks, as
discussed in Subsection 5.2. Not only can logical analyses
in such cases explain existing empirical results; we believe
that logical analyses might even motivate new empirical
experiments.

This raises the following question: How broad is the
range of reasoning tasks are susceptible to formal and log-
ical analyses? For example, can visual reasoning tasks be
included? What we here have in mind are visual pattern
matching tests where individuals with ASD or autistic-like
traits have been known for a while to show superior perfor-
mance, as manifested in the Embedded Figure Test (EFT),
where experimental subjects have to spot a simple shape
within a more complex one. Thus, the EFT test measures
the ability to disentangle information from a context. See
the meta-analysis [37].

Also, the above kind of research questions might not only
be asked at the psychological level (with no reference to
biology), but such questions can also be asked at the neu-
robiological level, for example along the lines of the fMRI
study [38], which investigated brain correlates of syllogistic
reasoning—it was found that two different types of syllo-
gistic reasoning activated respectively what are called a
parietal system and a left hemisphere temporal system. See
also the more recent editorial [39] of a selection of papers
that investigates the interplay between cognitive theories
of reasoning and neuroimaging studies.
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