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Abstract
When humans evaluate the validity of a logical conclusion, they typically consider the meaning of the conclusion, taking into account
the context, leading to a naturally targeted approach that avoids irrelevant inferences. For example, if humans are asked to show that all
hammocks are also beds, they will certainly not draw conclusions about vehicles or weapons. However, automated theorem provers do
not usually take the context of the conclusion into account when selecting inference steps. Existing heuristics for selecting the clause for
the next inference step usually do not take into account the meaning of symbol names, overlooking this valuable source of information
about the context of a clause. Therefore, in the example above, clauses with symbol names such as weapon or vehicle could well be
found in the processed clauses. However, since these clauses are not required for the actual proof, they are not helpful to the prover and
tend to distract from the actual proof task. In this paper, we present an approach that uses natural language processing techniques to
align the selection of the clause for the next inference step with the meaning of the current proof goal. By mapping symbol names to
natural language words and representing them as vectors, we compute similarities between symbols and the proof goal, which inform
the selection of the clause for the next inference. The approach has been implemented and evaluated. The experimental results show a
significant reduction in the number of clauses processed during proof construction using the proposed method.
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1. Introduction
When humans evaluate the validity of a logical conclusion,
they naturally consider the context and meaning of the
conclusion and avoid irrelevant inferences. This intuitive
approach is in line with Daniel Kahneman’s model of human
cognition based on two systems [1], where system 1 repre-
sents fast, instinctive and contextual thinking, while system
2 involves slower, more deliberate and logical reasoning.
In the field of automated theorem proving (ATP), current
systems [2, 3] predominantly use logic-based approaches
similar to system 2, often not using the contextual insights
corresponding to system 1.

For example, a human being asked to prove that all ham-
mocks are also beds will intuitively avoid considering un-
related concepts such as vehicles or weapons. Conversely,
automated theorem provers typically do not consider the
contextual relevance of symbol names when selecting infer-
ence steps. Existing heuristics focus on syntactic properties
without exploiting the semantic content embedded in sym-
bol names, which can lead to the inclusion of irrelevant
clauses and an inefficient proof process.

It is a key strength of human reasoning that we are able to
combine both intuitive (system 1) and analytical (system 2)
processes. It is therefore plausible that automated theorem
proving could similarly benefit from integrating these two
approaches, using the contextual understanding of system 1
alongside the logical strictness of system 2. Currently, how-
ever, the meaning of symbol names, and thus the contextual
content of formulae, is not taken into account during proof
construction in automated reasoning.

To address this gap, we propose an approach that inte-
grates statistical methods from natural language processing
into the reasoning process to improve the selection of the
clause for the next inference step of a theorem prover. We do
this by mapping symbol names to natural language words
and representing them as vectors. This allows us to measure
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the semantic similarity between symbols and the goal of the
proof. We use these similarities to derive symbol weights,
which guide the selection of the clause for the next inference
step in a more goal-directed way.

Our approach has been implemented and evaluated using
the E theorem prover [2]. Experimental results show a
significant reduction in the number of clauses processed
during proof construction, indicating a more focused and
efficient proof process. This work highlights the potential
of combining logic-based and statistical methods to improve
automated reasoning, in line with Kahneman’s theory.

The main contributions of this paper are:

• The introduction of a heuristic for determining sym-
bol weights based on similarity to the proof goal.
These weights can be used to guide the selection of
the clause for the next inference step in automated
theorem proving.

• An evaluation of the approach, demonstrating a
significant reduction in the number of clauses pro-
cessed during proof construction for commonsense
reasoning tasks.

The paper is structured as follows: after discussing related
work (Sect. 2) and preliminaries (Sect. 3), we describe how
to determine symbol weights based on the similarity of the
symbol name to the proof goal in Sect. 4. In Sect. 5 we
present experimental results of our approach. Finally, we
summarize and discuss ideas for future work in Sect. 6.

2. Related Work
The selection of the clause for the next inference step has a
very large influence on the performance of theorem provers.
A perfect selection can make a search unnecessary, and a
proof can be found directly. Most heuristics for selecting
the clause for the next inference step are based on simple
counting of symbols and the like [4]. In this way, weights are
specified for symbols and then used to determine weights
for clauses, which are used to select the clause for the next
inference step.
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To make it possible to adjust symbol weights, the theorem
prover E [2] offers the option of assigning a weight to each
symbol. This can be done by specifying a weight function
with FunWeight1. Although this option allows you to set
symbol weights, it does not describe how to determine them.

In [5], the selection of symbol weights is investigated.
The proposed approach employs a graph neural network to
predict symbol weights based on the structure of the clause
normal form of the input problem. The system is trained
using prior proof successes, and a novel scheme is intro-
duced to balance positive clauses (derived from a proof) and
negative clauses (not derived from a proof) during training.

Another approach is to use machine learning to derive
new clause selection strategies from successful proofs [6].

The ENIGMA [7, 8, 9, 10] method represents a key ad-
vancement in internal guidance within ATPs by integrating
machine learning models directly into the theorem proving
process to influence decisions such as clause selection. Uti-
lizing techniques like gradient-boosted trees and recursive
neural networks, ENIGMA has significantly enhanced the
performance of saturation-based provers like E, particularly
in large-theory settings like the Mizar Mathematical Library
[11].

To the best of our knowledge, none of the currently used
approaches to determining symbol weights take into ac-
count the meaning of symbol names.

The problem of premise selection, where relevant for-
mulae for a given proof task have to be selected from a
knowledge base, is related to the problem considered in
this paper. Especially in the area of large mathematical
libraries, there are many approaches to premise selection
that rely on machine learning methods [12]. The ATPBOOST

method improves premise selection by framing it as a bi-
nary classification task and using the XGBoost algorithm.
DeepMath [13] uses neural networks for premise selection.
It is worth noting that DeepMath does not use manually
created features. Another notable technique uses recurrent
neural networks to capture dependencies between premises
[14]. In addition, the work in [15] applies the transformer
architecture to premise selection, achieving superior perfor-
mance compared to earlier recurrent neural network-based
methods. Similarly, the transformer-based Magnushammer
[16] shows significant improvements in detection success
rates through effective retrieval and ranking of relevant
premises.

The Semantic Web [17] is one domain where the signifi-
cance of symbol names has been assessed, revealing that the
semantics embedded in the names of IRIs (Internationalized
Resource Identifiers) reflect a type of social semantics that
aligns with the formal meaning of the referenced resource.

Regarding premise selection in commonsense knowledge
bases, there are a few approaches that consider the meaning
of symbol names. One such approach is Similarity SInE [18],
an extension of SInE selection that uses word embeddings
to account for symbol similarity. Similarity SInE ensures
that all the formulae selected by SInE are included, and
additionally selects formulae for symbols that are similar to
those appearing in the goal. Furthermore, [19] introduces a
vector-based technique for premise selection which uses a
word embedding to vectorize the formulae of a knowledge
base and to use vector similarity for selection purposes.
The SeVEn [20] selection takes the idea of vectorizing a

1See the manual of E for details: https://wwwlehre.dhbw-stuttgart.de/
~sschulz/WORK/E_DOWNLOAD/V_2.4/eprover.pdf

knowledge base one step further by using a large language
model for the vectorization step. These three methods take
into account the meaning of the symbol names, but they are
not used to select the clause for the next inference step.

We are not aware of any approaches that use the mean-
ing of symbols to select the clause to be used in the next
reasoning step.

3. Preliminaries
We consider the following first-order logic reasoning task
in this paper: given of a set of formulae called the knowl-
edge base (KB) and a goal 𝐺. The task is to show that the
KB implies 𝐺 which can be reduced to showing that the
conjunction of KB and ¬𝐺 is unsatisfiable. To show the
unsatisfiability, usually the conjunction of the KB and the
negated goal are transformed into an equisatisfiable clause
normal form and a contradiction is inferred from the clause
set.

To achieve this contradiction, saturation-based provers or-
ganise the execution of their inferences using a given-clause
algorithm as shown in Alg. 1. This algorithm maintains two
sets of clauses: The set of processed clauses and the set of
unprocessed clauses. Initially, all clauses are added to the
set of unprocessed clauses, and the set of processed clauses
is empty. In each step, the algorithm selects a so-called
given clause from the set of unprocessed clauses, adds it
to the set of processed clauses, and then performs all the
inferences possible with the given clause and the set of pro-
cessed clauses. The resulting new clauses are added to the
set of unprocessed clauses. This process is repeated until
either the empty clause is inferred, or the set of unprocessed
clauses is empty (or a resource or time limit is reached).

Algorithm 1 Given Clause Algorithm
Require: Initial set of clauses initial_clauses

1: processed_set← {}
2: unprocessed_set← initial_clauses
3: while True do
4: if empty_clause ∈ processed_set then
5: return “Proof Found”
6: end if
7: if unprocessed_set is empty then
8: return “No Proof Found”
9: end if

10: given_clause← select_clause(unprocessed_set)
11: remove given_clause from unprocessed_set
12: add given_clause to processed_set
13: new_clauses← generate_new_clauses(given_clause,

processed_set)
14: simplified_clauses← simplify_clauses(new_clauses)
15: for each clause in simplified_clauses do
16: if clause /∈ unprocessed_set then
17: add clause to unprocessed_set
18: end if
19: end for
20: end while

The choice of the given clause (line 10 in Alg. 1) strongly
influences whether and how fast a proof is found. An unskil-
ful choice of given clause can quickly lead to a large number
of irrelevant clauses in the set of unprocessed clauses, mak-
ing it difficult to find a proof. On the other hand, a skilful
choice of the given clause can lead to only those inferences
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being made that are relevant to the proof task, so that a
proof can be found directly.

To select the given clause, heuristics are usually used that
assign a weight to each clause. The clause with the lowest
weight is then selected as the given clause. Common heuris-
tics use the age of the clause (older clauses are favoured and
receive a lower weight) or are based on a weighted symbol
count. These heuristics are often used in combination. The
ratio of clauses selected by age to clauses selected by symbol
count is called the pick-given ratio. A well-known ratio is
the pick-given ratio of 5, which means that the heuristic
selects the clause with the lowest weighted symbol count
five times and the oldest clause once. There are many other
heuristics for selecting clauses. See Sect. 2 for some pointers
in this regard.

In the following, the set of all predicate and function
symbols in a formula 𝐹 is represented as sym(F ). In a
slight abuse of notation, we use sym(KB) to denote the set
containing all predicate and function symbols occurring in
a knowledge base KB .

3.1. Distributional Semantics
Our approach uses the meaning of the names of the function
and predicate symbols. To do this, we rely on the distribu-
tional semantics of natural language. This is best explained
using Firth’s famous statement:

You shall know a word by the company it
keeps. [21]

In other words: If we look at very large texts, we can observe
that words that occur in a similar context are similar [22].

One approach in this area are word embeddings [23], [24].
These are vector representations of words, usually learned
using neural networks on very large amounts of text. For
a given set of words 𝑉 , also called a vocabulary, a word
embedding is a function, 𝑓 : 𝑉 → R𝑛, that assigns an
𝑛-dimensional vector to each word in the vocabulary. Since
our approach uses existing word embeddings and does not
train new ones, we refrain from going into details on the
training process of word embeddings.

It is very interesting that words with similar meanings
are mapped to similar vectors. Usually, the similarity of
two word vectors is calculated with the help of the cosine
similarity.

Definition 1 (Cosine similarity of two vectors). Let 𝑢, 𝑣 ∈
R𝑛, both non-zero. The cosine similarity of 𝑢 and 𝑣 is defined
as:

cos_sim(𝑢, 𝑣) =
𝑢 · 𝑣
||𝑢|| ||𝑣||

The cosine similarity of two vectors 𝑢 and 𝑣 takes values
between -1 and 1. For exactly opposite vectors the value is
-1, for orthogonal vectors the value is 0 and for equal vectors
the value 1. The more similar two vectors are, the greater is
their cosine similarity.

In our approach, we use a trained word embedding to
determine similarities between the names of symbols in
a knowledge base and the proof task. The next section
describes how we do this.

KB

extraction of symbol names

set sym(KB) of symbol names in KB

vector transformationword embedding

vector representation 𝑣𝑠 for all 𝑠 ∈ sym(KB)

Figure 1: Overview of the preprocessing step which determines
a vector representation for all function and predicate names oc-
curring in a knowledge base KB .

4. Guiding the Reasoning Process by
the Meaning of Symbol Names

Automated theorem provers usually calculate the weight
of a clause from the weights of the symbols occurring in
the clause. For example, the theorem prover E can be given
values for weights for function and predicate symbols. These
weights then determine which weights the clauses receive
and therefore which clauses are preferred in the reasoning
process.

We now present an approach to determine symbol
weights, and thus clause weights, that uses the meaning
of symbol names. As described above, we assume that there
are multiple proof tasks to solve for a given knowledge base.
In the following, when we talk about a knowledge base or
a goal, we refer to the knowledge base or the goal in this
scenario.

Our approach uses a word embedding. It is important
that the word embedding fits to the domain of the knowl-
edge base. For example if the knowlege base is Yago [25]
it would be suitable to use a word embedding which was
learnt on wikipedia articles. In the following, we refer to
the word embedding used, as introduced above, as a func-
tion 𝑓 : 𝑉 → R𝑛, where 𝑉 is the vocabulary of the word
embedding.

Fig. 1 shows the first step of our approach, which deter-
mines a vector representation for all function and predicate
symbols occurring in the knowledge base under considera-
tion. To achieve this, in a first step, all function and predicate
symbols are extracted from the knowledge base resulting in
the set sym(KB). Next, during the vector transformation,
all extracted symbols 𝑠 ∈ sym(KB) are mapped to the
vocabulary 𝑉 of a word embedding. This mapping step is
typically not trivial and highly depends on the knowledge
base in use. It builds upon an existing WordNet mapping
for the knowledge base, if available, which is then semi-
automatically extended. We do not go into detail here and
refer the reader to [26] for more information. In the follow-
ing we assume that this step is possible for all symbols ex-
tracted from the knowledge base and that there is a mapping
function map : sym(KB)→ 𝑉 which performs this step.
Once a function or predicate symbol 𝑠 ∈ sym(KB) has
been assigned a word map(s) from the vocabulary of the
word embedding used, the vector 𝑣𝑠 = 𝑓(map(s)) corre-
sponding to the word is assigned to the symbol. This vector
𝑣𝑠 is used as the vector representation of the symbol 𝑠. This
step only needs to be performed once for a knowledge base.
Therefore, it can be considered as a pre-processing step.

Since we assume that for a large number of goals it has to
be proven that they are entailed from the same knowledge
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base, the effort of this preprocessing step is relativized.
Fig. 2 provides an overview of the process of proving a

goal using the symbol-name heuristic. First, a vector repre-
sentation of the goal is computed for a given goal 𝐺. To do
this, all function and predicate symbols are extracted from
the goal leading to the set sym(G) and mapped to words
in the vocabulary of the word embedding used. For this,
the above mentioned function map is used. It is important
to use the same word embedding that was chosen for the
knowledge base in the pre-processing step. The next step is
to compute the vector representation for the goal: For each
symbol 𝑠 ∈ sym(G) in the goal, the vector 𝑣𝑠 of the word
map(s) is looked up in the word embedding. The vectors
of all symbols in sym(G) are summed and divided by the
number of symbols in the goal resulting in vector 𝑣𝐺:

𝑣𝐺 =

∑︁
𝑠∈sym(G)

𝑣𝑠

|sym(G)| (1)

In other words, the vector representation of a goal corre-
sponds to the average of the vector representations of all
the symbols in the goal.

In the next step, weights for symbols in the knowledge
base are computed based on the vector representations of
the function and predicate symbols in the knowledge base
and the vector representation of the goal. To compute the
weight of a symbol 𝑠 ∈ sym(KB), we first compute the
similarity of its vector representation 𝑣𝑠 and the vector
representation of the goal 𝑣𝐺. Cosine similarity is used for
this. The values of cosine similarity are between -1 and
1. The higher the similarity of the two vectors, the higher
the value. On the other hand, symbol with a low value
are preferred by provers. Therefore, we convert the cosine
similarities into weights as follows:

We assume a default weight of 1000. From this we subtract
1000 times the cosine similarity. This allows us to account
for three decimal places in the cosine similarity. This results
in the weight of a symbol as

weight(𝑠,𝐺) = 1000− cos_sim(𝑣𝑠, 𝑣𝐺) (2)

The weights of the symbols calculated in this way are
now passed to the theorem prover together with the proof
task. The prover calculates the weights for the clauses from
the weights for the symbols and uses them to control the
proof process.

A first approach would be to pass all calculated weights
for symbols to the theorem prover. Experiments have shown
that this does not necessarily lead to the best results. Our
experiments have shown that it is most advantageous to
pass only the weights of the 10 highest scoring symbols and
leave all other symbol weights at the default value of 1000.

5. Experimental Results
To evaluate the approach, we need a knowledge base with
function and predicate symbols that are, or can be, mapped
to natural language words. We also need a large number
of proof tasks for this knowledge base. Adimen SUMO
[27] is a first-order logic ontology based on the Suggested
Upper Merged Ontology (SUMO). Since a mapping to Word-
Net synsets is available for most of the symbols of Adimen
SUMO, this ontology is interesting for our evaluation. Word-
Net is an extensive lexical database of the English language,

goal 𝐺

vector transformationword embedding

vector representation of 𝐺

symbol weight computation
vector representation 𝑣𝑠

for all 𝑠 ∈ sym(KB)

weight(s,G) for all 𝑠 ∈ sym(KB)

prover

prover output

KB

Figure 2: Overview of the process of proving goal 𝐺 from knowl-
ege base KB using the symbol name heuristic. Note that the
vector representation of KB used here was computed in the
preprocessing step depicted in Fig. 1 which determines a vector
representation for all function and predicate names occurring in
a knowledge base KB .

which groups words according to their meaning and forms
synonymous groups, called synsets. For the vectorization
we use the pretrained word embedding ConceptNet Num-
berbatch [28] which is well suited for the commonsense
area.

The proof tasks considered in the experiments were cre-
ated to test the application of the closed world assumption
(CWA) to first-order logic ontologies [29]. Each proof task
consists of a single formula, the goal, for which it must be
shown that it can be inferred from the Adimen SUMO on-
tology. We call the set of all of these proof tasks the Adimen
SUMO CWA problems in the following.

These Adimen SUMO problems are challenging even for
highly optimised theorem provers. Usually theorem provers
use selection techniques for this kind of problems, which
try to select the formulas relevant for a given proof task
from the knowledge base.

In all our experiments, we use the theorem prover E with
a timeout of 10 seconds. We call it with different parameters
combinations2:

Table 1
Prover configurations considered in the experiments.

Name in the Diagrams Description

noAuto E without any parameters
auto E with auto parameter
weighted_topk E with symbol weights for the 𝑘

symbols most similar to the goal
weighted_top10_auto E with symbol weights for the 10

symbols most similar to the goal
and auto parameter

In the first experiments we omitted the selection and ran
E (without any parameters) on the Adimen SUMO CWA
problems and collected problems where E was able to find a
proof within a timeout of 10 seconds. This resulted in 129
problems that we used for the first experiments. This test
set is rather small, as there are not many problems that E
can solve without parameters and without preselecting the

2Detailed information on the different parameters used for the
theorem prover E can be found in the manual which is avail-
able at: https://wwwlehre.dhbw-stuttgart.de/~sschulz/WORK/E_
DOWNLOAD/V_2.4/eprover.pdf
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Figure 3: Number of proofs found on the 129 problems E was
able to find a proof without any parameters within 10 seconds.
The different E configurations listed in Tab. 1 were considered.

Figure 4: Average number of clauses processed during proof
construction. Different parameters for E were considered. Prob-
lems considered were 129 Adimen SUMO problems E (without
any parameters) was able to find a proof within a timeout of
10 seconds. The different E configurations listed in Tab. 1 were
considered.

formulas.
Fig. 3 shows the number of proofs found for the different

E configurations we considered. We see that the configura-
tion with no parameters finds the highest number of proofs
with 129 proofs, which is not surprising because of the way
the problems were chosen. Furthermore, we see that the
number of proofs found using the configuration with the
auto parameter (121 proofs), as well as the configurations
using the similarity-based weights, results in slightly fewer
proofs being found (122 for all configurations of E using
similarity-based symbol weights without auto parameter).

Since our approach aims at influencing the selection of
the clause for the next inference step in such a way that
the selected clause fits the thematic context of the goal,
the number of processed clauses is of particular interest
for the evaluation. This number is usually much larger
than the number of clauses in the actual proof. The smaller
the number of processed clauses, the more targeted the
proof. Ideally, the number of processed clauses is equal to
the number of clauses in the proof, and no unnecessary
conclusions have been drawn.

Fig. 4 shows the average number of clauses processed by
the different E configurations we considered. We can see
that E with the auto parameter processes the most clauses.
The number of clauses processed for E without any param-
eter and E using the similarity-based weight for only the
symbol most similar to the goal are comparable. Again, this
is not surprising as one would not expect a single symbol
weight to have much influence. The configurations of E

Figure 5: Number of clauses processed by E with the calculated
symbol weights of the 10 symbols most similar to the goal (x-axis)
and number of clauses processed by E without any parameters
(y-axis). Problems considered were 129 Adimen SUMO problems
E was able to find a proof within a timeout of 10 seconds. Each
point corresponds to one proof. Points on the first bisector corre-
spond to proofs where both configurations have processed the
same number of clauses. Points above (below) the first bisector
correspond to proofs where E without any parameters has pro-
cessed more (fewer) clauses than E with the set symbol weights.

using similarity-based symbol weights for the 5 to 25 sym-
bols most similar to the goal are comparable in terms of the
number of clauses processed. The best configuration seems
to be the one with 10 symbol weights. Compared to the con-
figuration using E without parameters, the configurations
using symbol weights for 5 to 25 symbols process only about
half the number of clauses. This shows the usefulness of the
presented approach. We have also investigated whether the
combination of the auto parameter and the symbol weights
for the 10 symbols most similar to the goal has advantages.
However, we observe that the number of clauses processed
by this configuration is comparable to the use of the auto
parameter alone.

Fig. 5 shows a direct comparison of the number of pro-
cessed clauses for the E configuration without using any
parameters and the E configuration using the similarity
based weights for the 10 symbols most similar to the proof
goal. We observe that the majority of the points in Fig. 5 are
above the first bisector. Thus, we see that for most problems
the number of clauses processed could be reduced by using
the similarity-based symbol weights.
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Figure 6: Number of clauses processed by E with the calculated
symbol weights of the 10 symbols most similar to the goal (x-axis)
and number of clauses processed by E using the auto parameter
(y-axis). Problems considered were 129 Adimen SUMO problems
E (without any parameters) was able to find a proof within a
timeout of 10 seconds. Each point corresponds to one proof.
Points on the first bisector correspond to proofs where both
configurations have processed the same number of clauses. Points
above (below) the first bisector correspond to proofs where E
using the auto parameter has processed more (fewer) clauses
than E with the 10 similarity-based symbol weights.

Fig. 6 shows a direct comparison of the number of clauses
processed for the E configuration using the auto parameter
and the E configuration using the similarity-based weights
for the 10 symbols most similar to the proof goal. The vast
majority of the points in Fig. 6 are above the first bisector.
Many are also at a large distance from it. For example, we
see a cluster of problems for which E with auto-parameter
processed around 17500 clauses, but for which the config-
uration with symbol weights processed only about 7500
clauses. This illustrates that the use of similarity-based sym-
bol weights was able to drastically reduce the number of
clauses processed in many cases.

Since we observe large differences in the number of
clauses processed, the question arises whether the sizes of
the proofs found also differ. In Fig. 7 we see the direct com-
parison of the sizes of proofs constructed with E using the
auto parameter with the sizes of proofs constructed with E
and the similarity-based symbol weights of the 10 symbols
most similar to the goal. We observe that the proofs are often
smaller when E was using similarity-based symbol weights.
In future work, we plan to analyze the different proofs in
more detail to determine how they differ and whether the
shorter proofs are easier to understand.

Fig 8 shows the corresponding comparison, where we
compared the proof size for proofs constructed with E with-
out any parameters with the proof sizes of proofs con-
structed with E and the similarity-based symbol weights of
the 10 symbols most similar to the goal. Here we observe
that the size of some proofs is smaller using the configura-
tion of E with symbol weights. However, the differences are
not as large as in Fig 7, and in most cases the sizes do not
differ.

In a second set of experiments, we selected formulas from
500 of the Adimen SUMO CWA problems with the SInE
selection [30] (recursion depth 3, generosity 5.0) and used
the resulting formula sets as test data for our evaluation. It
is important to note that the SInE selection is incomplete.
It is therefore possible that not all the necessary formulae

Figure 7: Sizes of proofs found with E using the calculated sym-
bol weights of the 10 symbols most similar to the goal (x-axis)
and number of clauses processed by E using the auto parameter
(y-axis). Problems considered were 129 Adimen SUMO problems
E (without parameters) was able to find a proof within a timeout
of 10 seconds. Each point corresponds to one proof. Points on
the first bisector correspond to proofs where the proofs of both
configurations have the same size. Points above (below) the first
bisector correspond to larger (smaller) proof sizes for E with the
auto parameter compared to E with 10 similarity-based symbol
weights.

Figure 8: Sizes of proofs found with E using the calculated sym-
bol weights of the 10 symbols most similar to the goal (x-axis) and
number of clauses processed by E without any parameter (y-axis).
Problems considered were 129 Adimen SUMO problems E was
able to find a proof within a timeout of 10 seconds. Each point
corresponds to one proof. Points on the first bisector correspond
to proofs where the proofs of both configurations have the same
size. Points above (below) the first bisector correspond to larger
(smaller) proof sizes for E without any parameters compared to E
with 10 similarity-based symbol weights.

for a proof were selected. Consequently, it is unlikely that a
proof can be found for all of these 500 problems.

Since the E configuration, which combines symbol
weights with the auto parameter, performed poorly in our
first experiments, we do not include this configuration in
the following experiments.

In Fig. 9 we can see that nearly the same number of proofs
can be found by the different configurations of E. The low
number of around 200 found proofs can be explained by the
incompleteness of the SInE selection.

Fig. 10 shows the average number of clauses which were
processed during proof construction. We observe that the
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Figure 9: Number of proofs found on the result of selecting with
SInE (recursion depth 3, benevolence 5.0) for 500 Adimen SUMO
problems. For a description of the used E configurations see
Tab. 1.

Figure 10: Average number of clauses processed during proof
construction. Different parameters for E were considered. Prob-
lems considered were 500 Adimen SUMO problems for which
formulae were preselected using SInE (recursion depth 3, benev-
olence 5.0). For a description of the used E configurations see
Tab. 1.

average number of clauses processed by E with the auto
parameter is the highest value with 1213.85. The average
number of clauses processed by E without parameters is
slightly lower with 1103.68. In comparison, E with the 10
best similarity-based symbol weights processes on average
only 473.10 clauses, which is much less.

Fig. 10 shows that the similarity-based weights lead to a
reduction in the average number of clauses processed. How-
ever, it is not clear how this reduction is distributed across
the individual problems. Therefore, in Fig. 11 we directly
compare the number of processed clauses of E without any
parameters (y-axis) with the number of processed clauses of
E with the symbol weights of the 10 symbols most similar
to the goal (x-axis). For each proof we see a point in the
graph. We observe that, with a few exceptions, the number
of processed clauses is significantly lower for the E configu-
ration with goal similarity-based symbol weights than for E
without parameters.

As in the previous experiments, we also compare the sizes
of the found proofs. Fig. 12 and Fig. 13 show the correspond-
ing results. We observe that for the problems considered
in the experiments with preselected formulae, the differ-
ences in proof size are not that large. There are many proofs
where the proof sizes are the same. Furthermore, for both
E configurations, there are proofs where the proof size is
smaller and proofs where the proof size is larger. Compar-
ing the proof sizes of E without any parameters with the
configuration using 10 similarity-based symbol weights, we

observe slightly more cases where the proof size is lower
using symbol weights. But the differences are really small.

Compared to the experiments with the non preselected
formulas (see Fig. 7 and Fig. 8), the differences in the proof
sizes are much smaller here. A possible explanation for this
could be the pre-selection of formulae with SInE. This pre-
selection means that there are significantly fewer formulae
available, which considerably limits the choices when con-
structing the proofs. We intend to investigate this in more
detail in future work.

Figure 11: Number of clauses processed by E with the calculated
symbol weights of the 10 symbols most similar to the goal (x-axis)
and number of clauses processed by E without any parameters
(y-axis). Problems considered were 500 Adimen SUMO problems
for which formulae were preselected using SInE (recursion depth
3, benevolence 5.0). Each point corresponds to one proof. Points
on the first bisector correspond to proofs where both configura-
tions have processed the same number of clauses. Points above
(below) the first bisector correspond to proofs where E without
any parameters has processed more (fewer) clauses than E with
the set symbol weights.

Figure 12: Sizes of proofs found with E using the calculated
symbol weights of the 10 symbols most similar to the goal (x-axis)
and number of clauses processed by E using the auto parameter
(y-axis). Problems considered were 500 Adimen SUMO problems
for which formulae were preselected using SInE (recursion depth
3, benevolence 5.0). Each point corresponds to one proof. Points
on the first bisector correspond to proofs where the proofs of
both configurations have the same size. Points above (below)
the first bisector correspond to larger (smaller) proof sizes for E
with the auto parameter compared to E with 10 similarity-based
symbol weights.
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Figure 13: Sizes of proofs found with E using the calculated
symbol weights of the 10 symbols most similar to the goal (x-axis)
and number of clauses processed by E without any parameter
(y-axis). Problems considered were 500 Adimen SUMO problems
for which formulae were preselected using SInE (recursion depth
3, benevolence 5.0). Each point corresponds to one proof. Points
on the first bisector correspond to proofs where the proofs of
both configurations have the same size. Points above (below)
the first bisector correspond to larger (smaller) proof sizes for E
without any parameters compared to E with 10 similarity-based
symbol weights.

6. Summary and Future Work
In this paper we have developed an approach to clause se-
lection in automated theorem provers that aims to make
the selection of the clause for the next inference step more
goal-directed. The approach is based on the assumption
that symbol names in knowledge bases have meaningful
names that can be mapped to natural language words. If this
assumption is correct, techniques from natural language pro-
cessing can be used to determine the similarity between the
proof goal and the symbols in the knowledge base. These
similarities are then used to derive symbol weights that
guide the selection of clauses for the next inference step.
The approach has been implemented and evaluated using
the theorem prover E. Our experimental results show a
significant reduction in the number of clauses processed
during proof construction, indicating a more goal-directed
and efficient proof process.

In our experiments, we further observed that the use of
similarity-based symbol weights has an impact on proof
size (especially compared to the configuration using the
auto parameter). In future work, we would like to ana-
lyze the differences in the proofs we found in more detail
and investigate whether there are also differences in the
comprehensibility of the proofs.
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