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Abstract
The embedding of description logic ontologies into low dimensional vector spaces is, e.g., in the context of knowledge graph embedding,
an established option to do for example link prediction or concept membership prediction with the help of background information in
form of an ontology. However, it is not only of interest to model expressive description logics such as 𝒜ℒ𝒞 but also to model temporal
aspects, thus the evolution of concepts over time geometrically. Therefore, there is a need to model operators such as, e.g., eventually
or next, thus temporal description logics geometrically. In this paper, an approach for embedding an expressive Boolean temporal
description logic based on the embedding of concepts as closed convex cones is presented and it is proven that an ontology is satisfiable
in the classical sense if and only if it is satisfiable in a geometric model based on the presented embedding. This model is a first step
towards a learning approach able to model background information in form of an expressive temporal description logic ontology.

Keywords
Temporal Description Logics, Neuro-symbolic AI, Knowledge Graph Embedding, Convex Cones

1. Introduction
Though subsymbolic learning approaches gained impor-
tance due to good-quality results in the last years, they
lack important features such as explainability and trustwor-
thiness. This led to the research area of Neuro-Symbolic
AI [1] which is based on the idea of combining subsym-
bolic and symbolic approaches to use both information
on similarity of instances and the ability to do deduc-
tive reasoning on the symbolic level. One way of tack-
ling this neuro-symbolic combination is pursued in the
area of knowledge graph embedding (KGE), where knowl-
edge graphs (thus, (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡)-triples
such as (𝑎𝑙𝑖𝑐𝑒, 𝑙𝑜𝑣𝑒𝑠, 𝑏𝑜𝑏)) are embedded into a low-
dimensional vector space by modeling instances (thus
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 and 𝑜𝑏𝑗𝑒𝑐𝑡) as points in this space and relations
(thus 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠) as geometric operations between these
points. This enables to do for example link prediction, thus
the prediction of new triples based on given ones. One
prominent example is TransE [2] where relations are repre-
sented as vector translations. However, not only instance
information but also information on concepts and their in-
teraction can be modeled, e.g., to predict only relations
fulfilling some background knowledge statements, for ex-
ample enforcing that the relation is capital of needs to have
the object being a country. Therefore, it is necessary to be
able to embed expressive background logic ontologies.

Those approaches are based on the idea of embedding
concepts as convex sets in a vector space and logical opera-
tions between concepts as geometrical operations between
those sets, e.g., representing concept conjunction as set
intersection. An instance belonging to a concept is then
modeled as a point in the convex set representing this con-
cept. For those instances, e.g., relations between them or
their concept membership can be predicted. The approaches
are, e.g., able to model the description logic (DL) ℰℒ++, e.g.,
by representing concepts as boxes [3] or spheres [4]. Some
approaches are even able to model full concept negation
and disjunction, thus the DL 𝒜ℒ𝒞, e.g., based on subspaces
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[5] or closed convex cones [6, 7]. The approach of Özçep et
al. [6, 7] shows that 𝒜ℒ𝒞-ontologies are satisfiable if and
only if they are satisfiable by a geometric model based on
closed convex cones.

However, concepts are normally not static but evolve
over time. A cured person is, for example, a person who has
recovered from an illness. Therefore, to model the concept
of cure, it is necessary to model both the concepts of health-
iness and of illness and a temporal combination thereof. To
model such ideas, temporal logic can be used and, in the con-
text of ontologies, this leads to the area of several different
temporal description logics (see, e.g., [8] for a survey).

This directly leads to the question whether existing ap-
proaches for embedding 𝒜ℒ𝒞 can be extended to model
also temporal aspects and especially whether such a model
has the same expressivity as the DL interpretation, thus,
whether a temporal DL-ontology is satisfiable if and only if
the corresponding geometric model is satisfiable.

Though, temporal knowledge graph embeddings are a
widely studied topic (see, e.g., [9] for a survey), to the best
of the author’s knowledge, there are no approaches incor-
porating background information in form of an expressive
temporal description logic ontology.

The basic idea is to extend the cone-based embedding of
Özçep et al. [6, 7] by modeling the passing of time as an
increasing distance to the point of origin. Thus, on each
sphere with the point of origin as center, the concepts of one
time point are modeled. An instance is represented as a ray
and thus the intersections of the ray with different spheres
can be considered to determine the concept membership
of the instance and especially the change of the concept
membership of this instance. Thus both are modeled, the
operators of classical description logic (by considering con-
cepts at the same distance) and the temporal operators (by
considering the concepts being on a ray starting at the point
of origin).

In contrast to classical KGE-approaches, the focus lies
here on representing concepts and their temporal aspects
and not on relations. Thus, a Boolean temporal 𝒜ℒ𝒞-
ontology is considered. The main result is that it is actually
possible to model temporal DL-ontologies via those mod-
els based on cones, namely that a temporal DL-ontology is
satisfiable if and only if it is satisfiable in such a geometric
model.
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After a short introduction to the description logic 𝒜ℒ𝒞
and to the temporal description logic 𝐿𝑇𝐿𝒜ℒ𝒞 in Section 2,
in Section 3, the cone embedding of Özçep et al. [6, 7] is
introduced. In Section 4, the extension of the cone embed-
ding to the temporal case is presented and the expressivity
of this approach is discussed in Section 5. The paper ends
with a short conclusion.

2. Preliminaries
In the following, the description logic𝒜ℒ𝒞 and the temporal
description logic 𝐿𝑇𝐿𝒜ℒ𝒞 is shortly introduced.

2.1. Description Logic
We are going to work with the description logic of Boolean
𝒜ℒ𝒞, i.e., 𝒜ℒ𝒞 without considering roles [10]. We assume
that there is a DL vocabulary given by a set of constants 𝑁𝑐

and a set of concept names𝑁𝐶 . The𝒜ℒ𝒞 concepts (concept
descriptions) over 𝑁𝐶 are described by the grammar

𝐶 −→ 𝐴 | ⊥ | ⊤ | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶

where 𝐴 ∈ 𝑁𝐶 is an atomic concept and 𝐶 stands for ar-
bitrary concepts. A classical 𝒜ℒ𝒞 interpretation is a pair
(∆, (·)ℐ) consisting of a set ∆, called the domain, and an
interpretation function (·)ℐ which maps constants to ele-
ments in ∆, concept names to subsets of ∆, and role names
to subsets of ∆ × ∆. The semantics of arbitrary concept
descriptions for a given interpretation ℐ is as follows:

• ⊤ℐ = ∆

• ⊥ℐ = ∅
• (𝐶 ⊓𝐷)ℐ = 𝐶ℐ ∩𝐷ℐ

• (𝐶 ⊔𝐷)ℐ = 𝐶ℐ ∪𝐷ℐ

• (¬𝐶)ℐ = ∆ ∖ 𝐶ℐ

An ontology 𝒪 is defined as a pair 𝒪 = (𝒯 ,𝒜) of a termi-
nological box (TBox) 𝒯 and an assertional box (ABox) 𝒜. A
TBox consists of general inclusion axioms (GCIs) 𝐶 ⊑ 𝐷 (“𝐶
is subsumed by 𝐷”) with concept descriptions 𝐶,𝐷. An
ABox consists of a finite set of assertions, i.e., facts of the
form 𝐶(𝑎) for 𝑎 ∈ 𝑁𝑐. An interpretation ℐ models a GCI
𝐶 ⊑ 𝐷, for short ℐ |= 𝐶 ⊑ 𝐷, iff 𝐶ℐ ⊆ 𝐷ℐ . An interpre-
tation ℐ models an ABox axiom 𝐶(𝑎), for short ℐ |= 𝐶(𝑎),
iff 𝑎ℐ ∈ 𝐶ℐ . An interpretation is a model of an ontology
(𝒯 ,𝒜) iff it models all axioms appearing in 𝒯 ∪ 𝒜. An
ontology 𝒪 entails a (TBox or ABox) axiom 𝑎𝑥, for short
𝒪 |= 𝑎𝑥, iff all models of 𝒪 are also models of 𝑎𝑥.

Each TBox 𝒯 generates a Boolean algebra, the so-called
Lindenbaum-Tarski algebra, as follows: For concepts 𝐶,𝐷
let ∼ be the relation defined by 𝐶 ∼ 𝐷 iff 𝒯 |= 𝐶 ⊑ 𝐷
and 𝒯 |= 𝐷 ⊑ 𝐶 . Relation ∼ is an equivalence relation
inducing for each concept 𝐶 an equivalence class [𝐶]. De-
fine operations ⊓, ⊔, ¬ on the equivalence classes by setting
[𝐶]⊓[𝐷] = [𝐶⊓𝐷], [𝐶]⊔[𝐷] = [𝐶⊔𝐷] and¬[𝐶] = [¬𝐶]
which can be shown to fulfill the axioms of a Boolean alge-
bra.

2.2. Temporal Description Logic
There are several different temporal description logics, for
a survey, see, e.g., [8]. Here, 𝐿𝑇𝐿𝒜ℒ𝒞 [11] is considered,
as it is a widely known, expressive temporal description
logic. Here, a slight adaptation is used, namely roles are

not considered, thus the consideration is restricted to the
Boolean part. As temporal operators, ∘ (at the next moment),
◇ (eventually), □ (always in the future) and 𝒰 (until) are
used. The temporal 𝒜ℒ𝒞 concept descriptions over 𝑁𝐶

are described by the grammar for 𝒜ℒ𝒞 extended with the
following

𝐶 −→ · · · | ∘𝐶 | ◇𝐶 | □𝐶 | 𝐶𝒰𝐶

Note that ◇𝐶 is used as shorthand for ⊤𝒰𝐶 and □𝐶 as
shorthand for ¬ ◇ ¬𝐶 .

A temporal interpretation 𝒥 = (∆, (·)𝒥 ) is based on a
non-empty domain ∆ and an interpretation function𝒥 that
maps every concept name𝐴 ∈ 𝑁𝐶 to a subset𝐴𝒥 ⊆ N×∆
and every individual name 𝑎 ∈ 𝑁𝑐 to an element 𝑎𝒥 ∈ ∆.
(𝑛, 𝑑) ∈ 𝐴𝒥 describes that 𝑑 is an instance of 𝐴 at time
point 𝑛. Constants are considered as rigid, meaning they are
interpreted the same way at every time point. Additionally,
the constant domain assumption is assumed to be valid, mean-
ing that constants are not destroyed or created over time.
Though, there are different interpretations possible, here the
standard assumption of a bounded past and an unbounded
future is used, where the time flow is discrete. Thus, the
time is represented as (N, <). Alternatively, it is possible to
interpret a temporal interpretation as an infinite sequence
𝒥 (0),𝒥 (1), . . . of (non-temporal) interpretations based on
the same domain ∆.

The semantic is defined based on the semantic for 𝒜ℒ𝒞
with the extension of

• (∘𝐶)𝒥 = {(𝑛, 𝑑) | (𝑛+ 1, 𝑑) ∈ 𝐶𝒥 }
• (𝐶𝒰𝐷)𝒥 = {(𝑛, 𝑑) | ∃𝑚 ≥ 𝑛((𝑚, 𝑑) ∈ 𝐷𝒥 ∧
(𝑘, 𝑑) ∈ 𝐶𝒥 for 𝑛 ≤ 𝑘 < 𝑚)}.

A temporal interpretation 𝒥 is a model of a concept 𝐶 if 𝐶
is satisfied at time point 0, i.e., (0, 𝑑) ∈ 𝐶𝒥 for some 𝑑 ∈ ∆.
An interpretation 𝒥 is a model of a TBox 𝒯 if and only if
𝐶𝒥 ⊆ 𝐷𝒥 for all 𝐶 ⊑ 𝐷 in 𝒯 .

3. Cone Embeddings
The geometric interpretation that is used as basis for the
embedding approach introduced in this paper was presented
by Özçep et al [6, 7] and is based on closed convex cones and
a special case of it, the axis-aligned cones. A closed convex
cone 𝑋 is a non-empty set for which if 𝑣, 𝑤 ∈ 𝑋 , then also
𝜆𝑣 + 𝜇𝑤 ∈ 𝑋 for all 𝜆, 𝜇 ≥ 0. In the following, the term
“cone” refers to closed convex cones. A polar cone 𝑋∘ of a
closed convex cone 𝑋 is defined as

𝑋∘ = {𝑣 | for all 𝑤 ∈ 𝑋 : ⟨𝑣, 𝑤⟩ ≤ 0},

where ⟨·, ·⟩ denotes the usual scalar product. Now, the DL-
interpretation can be interpreted geometrically: The domain
∆ is interpreted as R𝑛 and a concept interpretation 𝐶ℐ is
interpreted as cone 𝐶 , the negation of this concept (¬𝐶)ℐ

as its polar 𝐶∘, the conjunction of two concepts as set in-
tersection between the respective cones and disjunction via
de Morgan. An instance belonging to a concept is then rep-
resented as a point in the respective cone. Based on this
interpretation, it can be shown that each set of cones in
R𝑛 closed under set-intersection and polarity leads to an
orthologic [7]. It is possible to restrict the cones to so-called
axis-aligned cones (al-cones for short). Özçep et al [7] show
that an 𝒜ℒ𝒞-ontology is satisfiable if and only if there is
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Figure 1: Left: cone model for TBox {𝐴 ⊑ 𝐵}; middle: al-cone model for TBox {𝐴 ⊑ 𝐵}; right: example for a geometric model based
on a sphere.

an al-cone model of that ontology. An al-cone is defined as
follows:

𝑋 is al-cone :⇔
𝑋 = 𝑋1 × · · · ×𝑋𝑛, 𝑋𝑖 ∈ {R,R+,R−, {0}},

where R+ = {𝑥 ∈ R | 𝑥 ≥ 0} and R− = {𝑥 ∈ R |
𝑥 ≤ 0}. Thus, al-cones can be considered as unions of
neighboring hyperoctants. So, in 𝑛 dimensions we have 4𝑛

possible al-cones. Conjunction, disjunction and negation
are defined analogously to the case of closed convex cones,
as al-cones are a specialization.

Example 1. An example for a cone-model can be seen in
Figure 1 on the left, an example for an al-cone model in Figure 1
in the middle. In both of them, the TBox {𝐴 ⊑ 𝐵} is modeled.
First consider the cone model: The dashed cone on the upper
left is the interpretation of the concept 𝐴, fulfilling the TBox-
axiom, as it is a subset of the gray cone, the interpretation of
𝐵. The negation of concept 𝐴 is interpreted as the polar cone
of cone 𝐴ℐ , thus the cone containing all rays having an angle
of 90∘ or more to all rays in in𝐴ℐ . Conjunction is interpreted
as set intersection, thus (𝐵 ⊓ ¬𝐴)ℐ is the gray, dashed cone
in the top right. Disjunction can be determined via de Morgan,
thus, e.g., (𝐴 ⊔ ¬𝐵)ℐ would be (¬(¬𝐴 ⊓ 𝐵))ℐ , thus the
polar of the gray, dashed cone in the upper right, therefore the
convex hull of the cones of 𝐴ℐ and (¬𝐵)ℐ . ABox-instances
are interpreted as points in the space, therefore an instance 𝑎
with 𝐴(𝑎) would be placed in the cone 𝐴ℐ as 𝑎ℐ .

The al-cone example in Figure 1 in the middle represents
the same TBox, however, based on a restricted cone model
not based on arbitrary but axis-aligned cones. There, 𝐴 is
interpreted as positive 𝑥-axis and 𝐵 is interpreted as upper
right quadrant. The polar al-cones are defined the same as
for the case of classical cones, thus, for example, (¬𝐵)ℐ is the
lower left quadrant.

In both cases, ⊥ is interpreted as point of origin, as there
all cones intersect, leading to a contradiction, thus to ⊥ℐ .

An al-cone interpretation can be defined formally as fol-
lows:

Definition 1. [6, Definition 1] A Boolean al-cone interpreta-
tion ℐ is a structure (∆, (·)ℐ) where ∆ is R𝑛 for some 𝑛 ∈ N,
and where (·)ℐ maps each concept symbol 𝐴 to some al-cone
and each constant 𝑎 to some element in ∆ ∖ {0⃗}. An al-cone
interpretation for arbitrary Boolean 𝒜ℒ𝒞 concepts is de-
fined recursively as (⊤)ℐ = ∆, (⊥)ℐ = {0⃗}, (𝐶 ⊓𝐷)ℐ =
𝐶ℐ∩𝐷ℐ , (¬𝐶)ℐ = 𝐶∘, and (𝐶⊔𝐷)ℐ = (¬(¬𝐶⊓¬𝐷))ℐ .

The notions of an al-cone being a model and that of entail-
ment are defined as in the classical case (but using al-cone
interpretations).

This then leads to the following proposition:

Proposition 1. [6, Proposition 2] Boolean 𝒜ℒ𝒞-ontologies
are classically satisfiable if and only if they are by a geometric
model on some finite R𝑛 based on al-cones of the form 𝑏1 ×
· · · × 𝑏𝑛 with 𝑏𝑖 ∈ {{0},R+,R−,R} for 𝑖 ∈ {1, . . . , 𝑛}.

The aim of this paper is to show a similar result for tem-
poral description logics.

4. Embedding of Temporal DL
When considering those cone models, it gets apparent that
on each ray (a ray through a point 𝑥 ∈ R𝑛 contains all
𝜆𝑥 for 𝜆 ≥ 0) only one concept is represented and that
instances placed on such a ray are indistinguishable on a
conceptual level. Therefore, without loss of expressivity
it is possible to model an al-cone model instead of in R𝑛

on the unit 𝑛-sphere (an unit 𝑛-sphere can be defined as
𝑆𝑛 = {𝑥 ∈ R𝑛 : ‖𝑥‖ = 1}) and thus gain the space to
model temporal aspects.

Example 2. In Figure 1 on the right an example for a geomet-
ric model based on a sphere can be seen for a simple ontology
with only one concept 𝐴. This concept is represented as a
sphere part with radius one in the upper right quadrant. It is
based on the al-cone of the upper right quadrant where each
vector in this al-cone is set to unit length. 𝐴ℐ can easily be
extended into an al-cone by considering the convex closure
of it. The easiest way to determine the negation of 𝐴 is to
consider the al-cone extension of 𝐴ℐ (thus, the upper right
quadrant), taking the polarity (the lower left quadrant) and
then intersect it with a sphere of radius one, leading to the
sphere part that can be seen in the figure. An instance 𝑎 with
𝐴(𝑎) can then be placed on the sphere part representing 𝐴
with ||𝑎ℐ || = 1.

It can be shown that both the al-cone model and the
sphere model have in fact the same expressivity.

Proposition 2. Boolean 𝒜ℒ𝒞-ontologies are satisfiable by
a geometric model on some finite R𝑛 based on al-cones of
the form 𝑋1 × · · · × 𝑋𝑛 with 𝑋𝑖 ∈ {{0},R+,R−,R}
for 𝑖 ∈ {1, . . . , 𝑛} if and only if they are satisfiable by a
geometric model on some finite 𝑆𝑚 (with 𝑚 ≤ 2𝑛) where
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concepts are represented as intersection between al-cones and
the unit sphere.

Proof. → The concept representation can be directly
transformed to a spherical representation without
loss of expressivity, as for a concept 𝐶ℐ for each
𝑥 ∈ 𝐶ℐ , 𝑥

||𝑥|| ∈ 𝐶ℐ . Therefore, it is possible to

interpret a concept𝐶ℐ = {𝑥 | 𝑥 ∈ 𝐶ℐ,cone&||𝑥|| =
1}, where 𝐶ℐ,cone represents the original concept
representation as al-cone. It can be trivially seen
that the represented TBox-axioms do not change.
The instances can then be placed on the unit sphere
in the same manner as it is done for the construction
of the al-cone model in the proof of Proposition 1
(as can be seen in [6]). The only problem arises if a
concept lies on an axis, as then only one instance can
be represented as belonging to this concept. This
can, however, be solved by using the same construc-
tion principle as in the proof of Proposition 8 of
[7], namely increasing the number of dimensions by
creating a geometric mod of size R2𝑛 based on two
concatenations of the original model in R𝑛. Thus,
if a concept is, e.g., placed at point (1, 0), then two
dimensions can be added having the same concept
memberships as the first two dimension. Then, this
concept is no longer at point (1, 0) but on the cir-
cle segment between (1, 0, 0, 0) and (0, 0, 1, 0) and
thus allows for placing arbitrary many different in-
stances on this segment.
A difference to the cone-based model is that⊥ℐ is no
longer represented as {0} but as ∅ which, however,
does not influence the satisfiability.

← Assume a geometric model based on a sphere 𝑆𝑚 for
𝑚 > 0 is given. As each concept 𝐶ℐ is based on the
intersection of the unit sphere with an al-cone, it is
trivially possible to extend the representation on the
sphere to an al-cone again such that for 𝐶ℐ,𝑐𝑜𝑛𝑒 =
{𝜆𝑥 | 𝑥 ∈ 𝐶ℐ&𝜆 ≥ 0} (thus by considering the
convex hull).
The interpretation of instances does not change.

Note that the increase of dimensions depends on the struc-
ture of the cone-based model and thus, the doubling of di-
mensions is only an upper bound.

When reducing an al-cone model to a sphere model, this
opens up the opportunity to model spheres of different radii
in a vector space, thus modeling different geometric models
in the same vector space, as Proposition 2 is trivially adapt-
able to a sphere of a different radius. This directly leads to
the possibility of modeling temporal description logics: As
each temporal interpretation can be modeled as a sequence
𝒥 (0),𝒥 (1), . . . of non-temporal interpretations, it is pos-
sible to model each 𝒥 (𝑖) on a sphere with radius 𝑖+ 1 in
the vector space (𝑖+ 1 is considered, as 𝒥 (0) is interpreted
as model on the unit sphere). To follow the assumption that
instances are rigid, each instance is represented as a ray,
interfering with all spheres, thus with concepts of all time
points. Then, an instance has an interpretation for each
time point, thus for each distance 1, 2, . . . to the point of
origin.

Now, the classical operators need to be adjusted to model
the temporal case and the temporal operators need to be
defined. The domain ∆ is, in contrast to the 𝒜ℒ𝒞-case
not represented as R𝑛 but as the set of unit vectors in R𝑛,

thus ∆ = {𝑥 | ||𝑥|| = 1&𝑥 ∈ R𝑛}. The tuple (𝑖, 𝑑), thus
an instance at a specific time point is then represented as
(𝑖 + 1) · 𝑑 for 𝑑 ∈ ∆ and a concept 𝐶𝒥 is represented as
𝐶𝒥 = {(𝑖+ 1) · 𝑑 | 𝑑 ∈ 𝐶𝒥 (𝑖)}. Then, the interpretation
of ∘ and 𝒰 can be straightforwardly adapted.

(∘𝐶)𝒥 ={(𝑖+ 1) · 𝑑 | (𝑖+ 2) · 𝑑 ∈ 𝐶𝒥 } (1)

(𝐶𝒰𝐷)𝒥 ={(𝑖+ 1) · 𝑑 | ∃𝑚 ≥ 𝑖 : (𝑚+ 1) · 𝑑 ∈ 𝐷𝒥

&(𝑘 + 1) · 𝑑 ∈ 𝐶𝒥 for 𝑖 ≤ 𝑘 < 𝑚)}

The temporal interpretation of each time step leads to
the representation of concepts as sphere parts. Now the
question arises how the concepts look like when consid-
ering them in a combination of all time steps. The main
observation is that the resulting sets are neither closed con-
vex cones nor al-cones anymore, as for a point in a concept
not necessarily the ray through this point is contained in
that concept. It needs to be examined in a practical setting
whether there are concepts which are rigid or at least con-
stant in several successive time steps to be able to use the
advantages of convexity as much as possible. However, if
only one time step is considered, then it is again possible to
consider closed convex cones, resp. al-cones by using the
construction mentioned in the proof of Proposition 2.

This directly leads to the definition of a temporal cone
interpretation, following and extending the ideas of the
classical cone interpretation of Definition 1.

Definition 2. A temporal al-cone interpretation 𝒥 is a
structure (∆, (·)𝒥 ) where ∆ is the set of unit vectors in R𝑛

for some 𝑛 ∈ N and where (·)𝒥 maps each concept symbol
𝐴 for each radius 𝑖 to a union of intersections of al-cones and
the sphere with radius 𝑖 for 𝑖 ∈ {1, . . . ,𝑚} for 𝑚 ∈ N or for
𝑖 ∈ N and each constant to an element of ∆.

• (𝐴 ⊓𝐵)𝒥 = 𝐴𝒥 ∩𝐵𝒥

• (¬𝐴)𝒥 defined based on the polarity of 𝐴𝒥 inter-
sected with a sphere of radius ||𝑥|| for 𝑥 ∈ 𝐴

• ∘,𝒰 as denoted in Equation (1) and
• ◇,□ and⊔ interpreted via the other operators as stated

above

The construction is in the following illustrated by an
example taken from [11].

Example 3. As an example, a TBox is modeled which con-
tains the statement that any non-EU country has to be first
an EU-member candidate before it can be an EU-member:

¬𝐸𝑈_𝑚𝑒𝑚𝑏𝑒𝑟 ⊓ ◇𝐸𝑈_𝑚𝑒𝑚𝑏𝑒𝑟 ⊑
◇(𝐸𝑈_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝒰 𝐸𝑈_𝑚𝑒𝑚𝑏𝑒𝑟)

One exemplary model can be seen in Figure 2. The first model
for time step 0 is on the sphere with radius 1. At this time
point, there aren’t any EU-candidates but some EU-members.
Then, to fulfill the axiom, there must be a point in time where
a non-EU-member is included into the EU, this is modeled
here in the second time step (in the al-cone model concate-
nated with a sphere with radius three) in the upper right
quadrant. To model the subsumption mentioned in the axiom,
it is necessary to incorporate the concept of a EU-candidate.
Whereas at time step 0, there weren’t any EU-candidates, in
the first time step, the instances in the upper right quadrant
became EU-candidates. Those instances are in the second time
step EU-members, thus, the axiom is fulfilled for the upper
right quadrant. The other three quadrants do not fulfill the
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premise of the subsumption, as either the instances are not
a non-member of the EU or they aren’t becoming a mem-
ber eventually. In this low dimensional example, there are
concepts represented by a point at a time step, meaning that
only one instance can be placed in this concept. This can be
solved by increasing the dimension of the model, as described
in the proof of Proposition 2 and is omitted here for readability
reasons.

One basic property of cone-based models is their ability
to model unknown or indeterminable information: the so-
called faithfulness [6] of the model. This term denotes that,
e.g., in Figure 1 in the middle an instance placed in the lower
right quadrant can belong to𝐴 or to¬𝐴. Thus, if in an ABox
no information on the membership to 𝐴 of this instance is
given, then it is not necessary to chose one of the two, but
it is possible to model this missing knowledge. This ability
can also be used in the cone-based model in the temporal
description logic setting, as will be argued in detail below
based on the previous example.

Example 4 (Example 3 continued). As stated before, the up-
per right quadrant of the model in Figure 2 fulfills the premise
and the conclusion of the stated axiom. The axes represent
some atomic concepts. The other three quadrants, however,
allow for the incorporation of faithfulness: The most obvious
case is the lower left quadrant, there it is at no time point
known whether a state is member of the EU or not, however, it
is known that the state is definitely not a candidate (assume
for example that someone has created the ABox knowledge-
able about EU-candidates and the plans which states will be
candidates, but not as knowledgeable about the history of
the EU and the actual members). The lower right quadrant
denotes states which are at the moment neither member nor
candidate but for which it is at least thinkable of that they
are maybe later on a candidate and a member. The upper left
quadrant denotes states where it is known for some point in the
future that they will be EU-members, however, it is not known
whether they are members already or need to be candidates
first.

This example illustrates the wide possibilities of using
faithfulness in the context of temporal models. Due to the
restricted size of the model, it is not possible to model each
possibility for unknown information, it is however, possible
to focus on specific possibilities which should be modeled.

These temporal cone models can be used as basis for a
learning approach. One option would be to extend the ap-
proach to the handling of relations (and thus to leave the
Boolean case) and to do temporal knowledge graph em-
bedding. The cone models in the form presented here also
enable for embedding approaches by themselves, e.g., hav-
ing a training set with instances, their attributes and their
concept memberships and a test set only with instances
and their attributes to predict the concepts. Additionally,
possibly a temporal DL-ontology is given. Then, an embed-
ding can be learned, e.g., via a neural network, where the
optimizing function is on the one hand based on the axioms
of the ontology and on the other hand based on the correct
placement of instances. By choosing a sufficient dimension
of the cone model, it is possible to find a trade of between
faithfulness on the one site and recall on the other.

(¬𝐸𝑚)0(¬𝐸𝑐)0

𝐸0
𝑚

(¬𝐸𝑚)1

𝐸1
𝑐

(¬𝐸𝑐)1

𝐸1
𝑚

𝐸2
𝑚

(¬𝐸𝑐)2

(¬𝐸𝑚)2

𝑎𝒥

1 2 3

Figure 2: Example for a cone-based temporal geometric model,
here restricted to three time steps modeling the axiom mentioned
in Example 3. For better readability, 𝐶𝑖 is used as a shorthand
for 𝐶𝒥 (𝑖).

5. Expressivity
The construction principle mentioned in the last section is
usable for modeling background knowledge in form of an
ontology in a learning approach, as there it is mostly appro-
priate to model an approximation of the ontology. However,
when there is a need for modeling the ontology exactly, it is
necessary to prove that each classically satisfiable ontology
is also satisfiable when considering the proposed embed-
ding. In the following, a theorem proves this statement for
𝐿𝑇𝐿𝒜ℒ𝒞 ontologies and temporal embeddings as proposed
in Definition 2. The proof for the case of Boolean 𝒜ℒ𝒞
in [7] without temporal aspects is based on the fact that
the ontology consists of a finite number of atomic concepts
which can be placed on the half axes of the geometric model
(thus, e.g., on R+×{0}× · · · × {0}) and thus are the basis
for the other concepts. This is in this case not possible, as
here not only one interpretation 𝒥 needs to be considered
but a number of interpretations for different time points
𝒥 (0),𝒥 (1), . . . . To solve this problem, the ultimately pe-
riodic model property for temporal logic is used to restrict
the number of time steps needed for the model.

Theorem 1 (Ultimately Periodic Model Property). [12, 13] A
LTL formula𝜑 is satisfiable if and only if there is an ultimately
periodic model𝜓 such that𝜑 is fulfilled, thus there is𝑚, 𝑖 ∈ N
such that there is a model where 𝒥 (𝑘) = 𝒥 (𝑘 +𝑚) for all
𝑘 ≥ 𝑖 and period 𝑚, where 𝑖 is a finite starting index.

With the help of this theorem, it is possible to prove the
following main result of this paper, stating the strong con-
nection between temporal cone embeddings and 𝐿𝑇𝐿𝒜ℒ𝒞
ontologies.

Theorem 2. A Boolean𝐿𝑇𝐿𝒜ℒ𝒞-ontology with constant do-
mains is satisfiable iff it has a geometric model on some finite
R𝑛 based on a temporal al-cone-interpretation as introduced
in Definition 2.

Proof. → The ultimately periodic model property of
Theorem 1 can be used as a basis for the geomet-
ric model based on cones. Based on this theorem,
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it is enough to model a finite set of interpretations
𝒥 (0), . . . ,𝒥 (𝑖) up to the starting index 𝑖 and addi-
tionally the first period, thus, 𝒥 (𝑖+ 1), . . . ,𝒥 (𝑖+
𝑚). After the time point 𝑖+𝑚, the information on
the period can be used to define all following time
points based on the preceding ones, thus a further
modeling is not necessary. Therefore, there are only
finite many atomic concepts possible. Then it is
possible to create an intermediate al-cone model
where analogously to the proof of Proposition 1
each concept is placed on one half-axis. The in-
stances can then be interpreted as points in this
space as done in Proposition 1. This al-cone model
can then be modified to lead to a temporal cone-
interpretation as follows: First, for each atomic con-
cept, a temporal representation (thus based on a rep-
resentation for each time step) is created following
the rules of Equation (1). Then, the point 𝑥 repre-
senting an instance 𝑎 in the intermediate model is
changed to a ray through the point of origin, mean-
ing 𝑎ℐ = {𝜆𝑥 | 𝜆 ≥ 0}.

← Proposition 2 in combination with Proposition 1
shows that each sub-model 𝒥 (𝑖) for 𝑖 ≥ 0 repre-
sents a satisfiable𝒜ℒ𝒞-ontology. As a temporal DL-
interpretation can be interpreted as combination of
classical interpretations𝒥 (𝑖) for 𝑖 ≥ 0 and the oper-
ators modeled can be straightforwardly interpreted
as classical operators, the classical interpretation is
also satisfiable.

Analogously to the case of cone models introduced in Sec-
tion 3, for the temporal case it is also possible to use instead
of al-cones cones as basis for the concept representation
and thus increase the expressivity beyond 𝐿𝑇𝐿𝒜ℒ𝒞 .

6. Related Work
The embedding of temporal description logic is an important
research topic in KGE, as the triples stored in knowledge
graphs, e.g., (𝑎𝑙𝑖𝑐𝑒, 𝑙𝑜𝑣𝑒𝑠, 𝑏𝑜𝑏) can be extended with tem-
poral information, as not all triples are valid at every time
point. If 𝑎𝑙𝑖𝑐𝑒 and 𝑏𝑜𝑏 are separated today, the triple can
be extended to (𝑎𝑙𝑖𝑐𝑒, 𝑙𝑜𝑣𝑒𝑠, 𝑏𝑜𝑏, 2023). There are several
KGE-approaches handling the embedding of this temporal
information (see, e.g., an extension of the classical KGE-
approach TransE, TTransE [14] or [9] for a survey). They
are, however, mostly only based on link prediction and don’t
incorporate concept information, e.g., in form of ontologies.
One related approach, though not incorporating ontologi-
cal information, has been presented by Dasgupta et al [15],
modeling time points explicitly, however, not like in this
approach based on the distance to the point of origin but by
modeling each time point as an individual hyperplane. Thus,
an al-cone-like structure is used, however, not for modeling
conceptual information but time points. One approach able
to model first order logic is TFLEX [16], however, it still does
not incorporate concepts as set of a specific geometric struc-
ture (e.g., convex sets). Zhang [17] introduces an embedding
based on a similar principle of modeling time steps based
on distances, however, does not model concepts explicitly.
There are several other approaches for embedding ontolo-
gies geometrically, e.g., modeling ℰℒ++ with the help of

boxes [3] or spheres [4] or 𝒜ℒ𝒞 based on subspaces [5].
However, they do not incorporate temporal information.

7. Conclusion
In this paper, I have presented a model showing that for tem-
poral description logics similar approaches as for classical
description logics can be used to embed them into a vector
space, here demonstrated based on an adaptation of a model
based on closed convex cones. This is a first step towards a
learning approach which is not only able to model temporal
aspects regarding instances but also modeling their concep-
tual behavior, thus it enables designing a learning approach
respecting background knowledge information. This model
opens up the opportunity to be extended to metric temporal
description logics (see, e.g., the work of Gutiérrez-Basulto
et al [18]) due to the possibility of representing distances
geometrically. Another possible extension of this approach
regards the consideration of roles. There are many KGE-
approaches incorporating temporal information, therefore,
it would be interesting to consider whether some of the
existing approaches of modeling relations can be used to
extend this approach and whether then Theorem 2 can be
extended to full 𝒜ℒ𝒞. Leaving the context of description
logics, it would also be interesting to examine the expres-
sivity of a model not based on al-cones but on adaptations
of closed convex cones in general.
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