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Abstract
We consider infinite argumentation frameworks and computational problems relating to the admissible, stable, and complete
semantics. We also consider the semantics demanding that extensions are infinite. We introduce computability theoretic
machinery as a method of measuring the difficulty of these undecidable decision problems. For each of these semantics,
we classify the complexity class of the problems of credulous and skeptical acceptance of arguments, and the existence
and uniqueness of extensions. For all computational problems considered, we also build a single argumentation framework
witnessing our hardness results: this means that solving these problems is not only hard for the class of all argumentation
frameworks, but also is not easier for a single given argumentation framework. We also propose a way of using Turing
degrees to classify, for a given infinite argumentation framework, the exact difficulty of computing an extension in a given
semantics and show that these problems give rise to a rich class of complexities.
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1. Introduction
Abstract argumentation theory is a fundamental research
area in AI, providing a powerful paradigm for reasoning
about knowledge representation and multi-agent systems.
Historically, the focus has predominantly been on finite
argumentation frameworks (AFs), leaving the infinite
case relatively unexplored. As noted in [2], this oversight
poses significant theoretical, conceptual, and practical
limitations.

Firstly, infinite frameworks align naturally with
Dung’s seminal approach [3], whose results do not pre-
suppose finiteness. Secondly, representing argumenta-
tion scenarios in an infinite manner captures the inher-
ently nonmonotonic nature of argumentation, where ar-
guments can always be challenged by the emergence of
new information, making any fixed limit on the space
of arguments somewhat artificial. Moreover, if one con-
ceives an argumentative scenario with arguments being
added as time proceeds, e.g., the collection of scientific
studies, then infinite frameworks naturally emerge as
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the union of the argumentation frameworks that we see
at each finite time. Thirdly, infinite AFs may arise in
practical contexts, such as logic programming [4] and
the logical analysis of multi-agent or distributed systems
[5] (the substantial introduction of [2] provides other
concrete examples of applications of infinite AFs, e.g., to
multiagent negotiations).

Fortunately, recent years have seen a growing interest
in infinite AFs, with special focus on how the existence
and interplay of various semantics—well-understood for
finite AFs—are affected in the infinite realm (see, e.g.,
[6, 7, 8, 9, 10]). This increasing recognition underscores
the importance of infinite AFs for a broad understanding
of argumentation theory.

However, the literature still lacks a comprehensive
framework for systematically exploring all logical as-
pects of infinite AFs, particularly regarding their core
computational issues. A significant research avenue in
finite AFs has been determining the algorithmic complex-
ity of tasks associated with finding coherent collections
of arguments (up to suitable collection of semantics),
with numerous complexity theoretic results highlight-
ing their inherent computational intractability (see, e.g.,
[11, 12, 13]). To our knowledge, no analogous study has
been conducted for infinite AFs.

This paper addresses this gap by initiating a systematic
study of the complexity of computational problems in
infinite AFs. For this endeavor, we bring into the subject
of argumentation theory the machinery of computability
theory, which may be regarded as an infinitary com-
panion of computational complexity theory and abounds
with concepts and hierarchies for measuring the complex-
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ity of computing and defining countably infinite objects,
providing the appropriate machinery for this endeavor.

The application of computability theoretic tools out-
side of mathematical logic is a well-established idea. Over
the past decades, computability theory has been applied
to a wide array of mathematical disciplines, and com-
putability theoretic concepts have found applications in
other formal subjects, such as theoretical computer sci-
ence, economics, and linguistics (see, e.g., [14, 15, 16]).

The present paper, we argue, provides compelling ev-
idence of the benefits of viewing infinite AFs through
computability theoretic lenses. We assess the complex-
ity of many computational problems—both established
and novel—within our framework, illustrating their un-
decidability while providing precise measures of their
complexity.

Organization of the paper

Section 2 briefly reviews the main semantic concepts
from argumentation theory that are relevant to this pa-
per, along with the fundamental computational problems
associated with them. In Section 3, we introduce the key
notions of computability theory employed in the work
and we define the concept of computable AFs and the
computational issues that emerges from it. Finally, in
Sections 4 through 6, we determine the lower and upper
bounds of the complexity for our computational prob-
lems: a critical technique for achieving hardness results
involves suitably encoding trees into AFs. Our main re-
sults are collected in Table 2, and Theorems 3.15, 5.4.

2. Argumentation theoretic
background

To keep our paper self-contained, we now briefly review
some key concepts of Dung-style argumentation theory,
focusing on the semantics notions considered in this
paper and the fundamental computational problems asso-
ciated with them (the surveys [17, 18] offer an overview
of these topics).

An argumentation framework (AF) ℱ is a pair
(𝐴ℱ , 𝑅ℱ ) consisting of a set 𝐴ℱ of arguments and an
attack relation 𝑅ℱ ⊆ 𝐴ℱ × 𝐴ℱ . If some argument 𝑎
attacks some argument 𝑏, we may write 𝑎 ↣ 𝑏 instead
of (𝑎, 𝑏) ∈ 𝑅ℱ . Collections of arguments 𝑆 ⊆ 𝐴ℱ are
called extensions. For an extension𝑆, the symbols𝑆+ and
𝑆− denote, respectively, the arguments that 𝑆 attacks
and the arguments that attack 𝑆:

𝑆+ = {𝑥 : (∃𝑦 ∈ 𝑆)(𝑦 ↣ 𝑥)};

𝑆− = {𝑥 : (∃𝑦 ∈ 𝑆)(𝑥 ↣ 𝑦)}.

𝑆 defends an argument 𝑎, if any argument that attacks
𝑎 is attacked by some argument in 𝑆 (i.e., {𝑎}− ⊆ 𝑆+).

The characteristic function of ℱ is the following mapping
𝑓ℱ which sends subsets of 𝐴ℱ to subsets of 𝐴ℱ :

𝑓ℱ (𝑆) := {𝑥 : 𝑥 is defended by 𝑆}.

All AFs investigated in this paper are infinite.
A semantics 𝜎 assigns to every AF ℱ a set of exten-

sions 𝜎(ℱ) which are deemed as acceptable. A huge
number of semantics, fueled by different motivations,
have been proposed and analyzed. Here, we focus on
three prominent choices, whose computational aspects
are well-understood in the finite setting: admissible, com-
plete, and stable semantics (abbreviated by ad, stb, co, re-
spectively).

Let ℱ = (𝐴ℱ , 𝑅ℱ ) be an AF. Denote by cf(ℱ) the
collection of extensions of ℱ which are conflict-free (i.e.,
𝑆 ∈ cf(ℱ) iff 𝑎 ̸↣ 𝑏, for all 𝑎, 𝑏 ∈ 𝑆). Then, for 𝑆 ∈
cf(ℱ),

• 𝑆 ∈ ad(ℱ) iff 𝑆 is self-defending (i.e., 𝑆 ⊆
𝑓ℱ (𝑆));

• 𝑆 ∈ co(ℱ) iff 𝑆 is a fixed point of 𝑓𝐹 (i.e., 𝑆 =
𝑓ℱ (𝑆));

• 𝑆 ∈ stb(ℱ), iff 𝑆 attacks all arguments outside
of it (i.e., 𝑆+ = 𝐴ℱ ∖ 𝑆).

In discussing the complete extensions, we will also
briefly mention the grounded extension, which is the
unique smallest fixed point of 𝑓𝐹 ; in any AF, the
grounded extension always exists [3, Theorem 3].

For a given semantics 𝜎, the following are some well-
known computational problems related to 𝜎:

• Cred𝜎 (for credulous acceptance) is the decision
problem whose accepting instances are the pairs
(ℱ , 𝑎) so that 𝑎 ∈ 𝑆 for some 𝑆 ∈ 𝜎(ℱ);

• Skept𝜎 (for skeptical acceptance) is the decision
problem whose accepting instances are the pairs
(ℱ , 𝑎) so that 𝑎 ∈ 𝑆 for all 𝑆 ∈ 𝜎(ℱ);

• Exist𝜎 is the decision problem whose accepting
instances are the AFs ℱ so that 𝜎(ℱ) ̸= ∅;

• NE𝜎 is the decision problem whose instances are
the AFs ℱ so that 𝜎(ℱ)∖ {∅} ̸= ∅;

• Uni𝜎 is the decision problem whose accepting
instances are the AFs ℱ so that |𝜎(ℱ)| = 1.

In formal argumentation theory, evaluating the compu-
tational complexity of the aforementioned problems for
various semantics has been a noteworthy research thread
for more than 20 years[18]. Table 1 collects known com-
plexity results for the admissible, stable, and complete
semantics. This analysis refers only to finite AFs. In the
next section, we introduce our computability theoretic
perspective that allows us to tackle complexity issues
concerning infinite AFs.
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𝜎 Cred𝜎 Skept𝜎 Exist𝜎 NE𝜎 Uni𝜎
ad NP-c trivial trivial NP-c coNP-c
stb NP-c coNP-c NP-c NP-c DP-c
co NP-c P-c trivial NP-c coNP-c

Table 1
Computational problems for finite AFs. 𝒞-c denotes complete-
ness for the class 𝒞.

3. Computational problems for
AFs through the lens of
computability theory

In this section, we introduce computable AFs and we
revisit the computational problems of the last section
through the lens of computability theory. We aim at con-
veying the main ideas without delving into too many
technical details. A more formal and comprehensive ex-
position of the fundamentals of computability theory can
be found, e.g., in the textbooks [19]. We begin by estab-
lishing standard notation and terminology for some com-
binatorial notions that appear frequently in our proofs.

3.1. Sequences, strings, and trees
As is common in computability theory, we denote the set
of natural numbers by 𝜔. Since there is no risk of ambigu-
ity, we simply refer to the elements of 𝜔 as numbers. The
symbol 𝜔𝜔 denotes the set of all functions from 𝜔 to 𝜔.
For our purposes, it is convenient to represent elements
of 𝜔𝜔 as infinite sequences of numbers (where the 𝑖+1th
bit of 𝜋 ∈ 𝜔𝜔 will be the output of the function 𝜋 on in-
put 𝑖). We denote by 0∞ the infinite sequence consisting
of only 0’s (or, equivalently, the constant function to 0).
The restriction of an infinite sequence 𝜋 ∈ 𝜔𝜔 to its first
𝑛 bits is denoted by 𝜋 ↾𝑛.

We use standard notation and terminology about
strings: The set of all finite strings of numbers is denoted
by 𝜔<𝜔 . The symbol 𝜆 denotes the empty string. The
concatenation of strings 𝜎, 𝜏 is denoted by 𝜎⌢𝜏 . The
length of a string 𝜎 is denoted by |𝜎|. If there is 𝜌 so that
𝜎⌢𝜌 = 𝜏 , we say that 𝜎 is a prefix of 𝜏 and we write
𝜎 ⪯ 𝜏 . Similarly, if 𝜋 ∈ 𝜔𝜔 and 𝜎 = 𝜋 ↾𝑛 for some 𝑛,
we write 𝜎 ≺ 𝜋.

In order to formulate our problems as subsets of 𝜔,
it will be convenient to encode pairs of numbers into
single numbers. The pairing function does this. Fix 𝑝 :
𝜔 × 𝜔 → 𝜔 to be a computable bijection. We adopt the
common habit of denoting 𝑝(𝑥, 𝑦) by ⟨𝑥, 𝑦⟩.

The encodings discussed in Section 4 heavily rely on
the difficulty of calculating paths through trees. As is
common in computability theory, we say that a tree is
a set 𝒯 ⊆ 𝜔<𝜔 closed under prefixes. We picture trees
growing upwards, with 𝜎⌢𝑖 to the left of 𝜎⌢𝑗, when-

ever 𝑖 < 𝑗. A path 𝜋 ∈ 𝜔𝜔 through a tree 𝒯 ⊆ 𝜔<𝜔

is an infinite sequence so that 𝜋 ↾𝑛 ∈ 𝒯 , for all num-
bers 𝑛. The set of paths through a tree 𝒯 is denoted by
[𝒯 ]. 𝒯 is well-founded if [𝒯 ] = ∅ and otherwise is ill-
founded. Note that we follow the standard terminology
in computability theory requiring that paths be infinite.
Indeed, if one were to allow paths to be finite, then these
notions trivialize, since one could computably find a path
through any given computable tree. For example, the set
of strings

𝒯 := {𝜆} ∪ {𝜎, 𝜎⌢1 : (∀𝑛 < |𝜎|)(𝜎(𝑛) = 0)}

is an ill-founded tree with [𝒯 ] = {0∞}.
If 𝒯 contains strings of arbitrary length, then 𝒯 has

infinite height. Note that there are trees of infinite height
which are well-founded, e.g., 𝒯 = {𝜆} ∪ {𝑛⌢𝜎 : |𝜎| ≤
𝑛}.

3.2. Computable argumentation
frameworks

A basic problem that one encounters when attempting
to calibrate the algorithmic complexity of infinite AFs is
that of describing infinite objects in a finitary way. Com-
putability theory offers a wide range of tools designed
for this endeavour. Here, we will concentrate on AFs
that are computably presentable, in the sense that there
are Turing machines (or, equivalently, modern computer
programs) that, in finitely many steps, decide whether a
given pair of arguments belongs to the attack relation.

Notation. Let (Φ𝑒)𝑒∈𝜔 be a uniform enumeration of all
partial computable functions from 𝜔 to {0, 1}.

Definition 3.1. A number 𝑒 is a computable index for
an AF ℱ = (𝐴ℱ , 𝑅ℱ ) with 𝐴ℱ = {𝑎𝑛 : 𝑛 ∈ 𝜔} so that

Φ𝑒(⟨𝑛,𝑚⟩) =

{︃
1 if 𝑎𝑛 ↣ 𝑎𝑚

0 otherwise.

An AF ℱ is computable, if it has a computable index 𝑒 ∈ 𝜔.

We use the notation ℱ𝑒 to refer to the AF with com-
putable index 𝑒 (note that every computable AF possesses
infinitely many computable indices.).

Remark 3.2. The collection of computable indices for AFs
just defined is noncomputable (in particular, any index 𝑒
for a non-total computable function Φ𝑒 cannot be a com-
putable index for an argumentation framework). There
are alternative indexings that circumvent this issue; yet,
adopting another indexing would not alter the complexity
of the computational problems we analyze, though it would
make the proofs slightly more cumbersome. Hence, we opt
for the simplicity of Definition 3.1.
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The benefit of dealing with computable AFs is that
the complexity of the decision problems associated with
them do not arise due to complexity of the argumenta-
tion framework itself, but rather reflects the inherent
complexity of the decision problem. Further, the compu-
tational problems associated with computable AFs can be
naturally represented as subsets of 𝜔, which are suitable
to be classified by computability theoretic means:

Definition 3.3. For a semantics 𝜎:

1. Cred∞
𝜎 := {⟨𝑒, 𝑛⟩ : (∃𝑆 ∈ 𝜎(ℱ𝑒))(𝑎𝑛 ∈ 𝑆)};

2. Skept∞𝜎 := {⟨𝑒, 𝑛⟩ : (∀𝑆 ∈ 𝜎(ℱ𝑒))(𝑎𝑛 ∈ 𝑆)};

3. Exist∞𝜎 := {𝑒 : (∃𝑆 ⊆ 𝐴ℱ𝑒))(𝑆 ∈ 𝜎(ℱ𝑒))};

4. NE∞
𝜎 := {𝑒 : (∃𝑆 ∈ 𝜎(ℱ𝑒))(𝑆 ̸= ∅)};

5. Uni∞𝜎 := {𝑒 : (∃!𝑆 ⊆ 𝐴ℱ𝑒)(𝑆 ∈ 𝜎(ℱ𝑒))}.

For items 1. and 2. above, it’s also natural to consider
their restrictions to a specific computable AF ℱ𝑒. That is,
we define

Cred∞
𝜎 (ℱ𝑒) = {𝑛 : ⟨𝑒, 𝑎𝑛⟩ ∈ Cred∞

𝜎 }

Skept∞𝜎 (ℱ𝑒) = {𝑛 : ⟨𝑒, 𝑎𝑛⟩ ∈ Skept∞𝜎 }.

We note that in the finite setting, Cred𝜎(ℱ) or
Skept𝜎(ℱ) for a finite AF ℱ , is simply a finite subset
of 𝐴ℱ , so it does not encode much complexity in it-
self. In constrast, in the infinite setting, Cred∞

𝜎 (ℱ𝑒) and
Skept∞𝜎 (ℱ𝑒) are infinite subsets of 𝜔, and it makes sense
to ask about whether this set is decidable; and if not, to
understand its complexity. In these definitions, we use
the number 𝑛 in place of 𝑎𝑛 so that these sets are subsets
of 𝜔, thus amenable to computability-theoretic analyses,
yet when working with a given AF ℱ , we often write the
argument 𝑎𝑛 in place of the number 𝑛.

We also introduce new semantics which make sense
only in the infinite setting. This is motivated by the idea
that, given an infinite AF, we might hope for our accepted
sets to give us infinitely much information.

1. 𝑆 ∈ infad(ℱ) if and only if 𝑆 ∈ ad(ℱ) and 𝑆 is
infinite;

2. 𝑆 ∈ infco(ℱ) if and only if 𝑆 ∈ co(ℱ) and 𝑆 is
infinite;

3. 𝑆 ∈ infstb(ℱ) if and only if 𝑆 ∈ stb(ℱ) and 𝑆 is
infinite.

The complexity classes that most naturally match the
problems of Definition 3.3 are those of theΣ1

1 andΠ1
1 sets.

TheΣ1
1 sets are formally defined as those subsets of𝜔 that

are definable in the language of second-order arithmetic
using a single second-order existential quantifier ranging

over subsets of 𝜔 followed by number quantifiers and the
first order functions and relations (+, ·, <, 0, 1,∈); for
more details, see [19, §16]. Π1

1 sets are the complements
of Σ1

1 sets.

Proposition 3.4. Cred∞
𝜎 , Exist∞𝜎 , and NE∞

𝜎 are Σ1
1, for

𝜎 ∈ {ad, stb, co, infad, infstb, infco}.

Proof. We first consider 𝜎 ∈ {ad, stb, co}. To define
Cred∞

𝜎 , we see from Definition 3.3: Cred∞
𝜎 := {⟨𝑒, 𝑛⟩ ∈

𝜔 : (∃𝑆 ∈ 𝜎(ℱ𝑒)(𝑎𝑛 ∈ 𝑆))} uses a single existential
quantifier over sets 𝑆. This is similarly true for the def-
initions of Exist∞𝜎 and NE∞

𝜎 in Definition 3.3. Thus, it
suffices to see that the condition 𝑆 ∈ 𝜎(ℱ𝑒) can be de-
fined with only quantification over arguments, which are
in bijection with 𝜔, not needing quantification over sets
of arguments.

Note that the definition of 𝑆+ and 𝑆− use only quanti-
fiers over arguments. Thus the definition of 𝑓ℱ (𝑆) given
by 𝑎 ∈ 𝑓ℱ (𝑆) if and only if {𝑎}− ⊆ 𝑆+ uses only
quantifiers over arguments. Finally, 𝑆 ∈ ad(ℱ), 𝑆 ∈
stb(ℱ), 𝑆 ∈ co(ℱ) are all defined from 𝑓ℱ (𝑆) and 𝑆+

using only quantifiers over arguments.
In the case of 𝜎 ∈ {infad, infstb, infco}, we need

to also observe that 𝑆 being infinite is defined via
∀𝑛∃𝑚(𝑎𝑚 ∈ 𝑆 ∧ 𝑚 > 𝑛), which uses only quanti-
fiers over numbers.

Proposition 3.5. Skept∞𝜎 is Π1
1, whenever 𝜎 is in

{ad, stb, co, infad, infstb, infco}. Furthermore, for 𝜎 ∈
{ad, co}, Uni∞𝜎 is Π1

1.

Proof. The definition of Skept∞𝜎 in Definition 3.3 uses a
single universal set-quantifier followed by only number
quantifiers in the definition of 𝜎(ℱ𝑒).

For 𝜎 ∈ {ad, co}, 𝑒 ∈ Uni∞𝜎 if and only if there are
not two different 𝜎 extensions (as there is always at least
one 𝜎 extension). This is defined by the negation of the
following formula:

(∃𝑆1∃𝑆2)(∃𝑥 ∈ 𝑆1∖𝑆2 ∧ 𝑆1 ∈ 𝜎(ℱ𝑒)∧ 𝑆2 ∈ 𝜎(ℱ𝑒)).

Note that ∃𝑆1∃𝑆2 can be replaced by a single existen-
tial quantifier by encoding the pair (𝑆1, 𝑆2) as a single
set {⟨1, 𝑥⟩ : 𝑥 ∈ 𝑆1} ∪ {⟨2, 𝑦⟩ : 𝑦 ∈ 𝑆2}. This shows
that Uni∞𝜎 is the complement of a Σ1

1 set, thus is Π1
1.

Remark 3.6. The above argument does not suffice to
show that Uni∞stb is alsoΠ1

1, since some AFs have no stable
extension. The most obvious definition says there exists
one stable extension and there does not exist two, which
gives a definition which is a conjunction of a Σ1

1 and
a Π1

1 condition, i.e., a so-called d-Σ1
1 definition. This is

analogous to the fact that in the finite case Unistb is DP-
complete. Similarly, the argument above does not show
that Uni∞𝜎 is Π1

1 for 𝜎 ∈ {infad, infstb, infco}. Yet, it is
true that Uni∞𝜎 is Π1

1 for 𝜎 ∈ {stb, infad, infstb, infco} as
we show below in Corollaries 6.5,6.10, and 6.14.
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We note that knowing that a problem is Σ1
1 does not

necessarily mean the problem is complicated. This only
gives an upper-bound for its complexity. Sometimes,
a simpler definition is achievable. As an example, we
consider Credcf := {⟨𝑒, 𝑛⟩ : (∃𝑆 ∈ cf(ℱ𝑒))(𝑎𝑛 ∈ 𝑆)}.
Though the given definition is Σ1

1, to know if an argu-
ment 𝑎𝑛 belongs to a conflict-free extension of ℱ𝑒, it
suffices to check whether 𝑎𝑛 is non-self-defeating, i.e.,
𝑎𝑛 ̸↣ 𝑎𝑛, which is equivalent to checking the com-
putable fact that Φ𝑒(⟨𝑛, 𝑛⟩) = 0. In contrast, we will
show that for the computational problems associated to
the admissible, stable, and complete semantics, the use
of the quantifier ranging over all sets cannot be avoided.

We will heavily rely on the following fundamental
theorem by Kleene which offers a natural way of repre-
senting Σ1

1 sets:

Theorem 3.7 (Kleene [20]). A set 𝑋 ⊆ 𝜔 is Σ1
1 if and

only if there is a computable sequence of computable trees
(𝒯 𝑋

𝑛 )𝑛∈𝜔 so that 𝑛 ∈ 𝑋 iff 𝒯 𝑋
𝑛 is ill-founded.

We call (𝒯 𝑋
𝑛 )𝑛∈𝜔 a tree-sequence for 𝑋 . As a corollary

of Kleene’s theorem, one obtains that the problem of
deciding which computable trees in 𝜔<𝜔 are ill-founded
(or well-founded) is as hard as any other Σ1

1 (resp., Π1
1)

problem.
Theorem 3.7 gives a reason to consider the Σ1

1 sets as
the natural infinite analogs of the NP problems. Namely,
given an ill-founded computable tree 𝒯 and a sequence 𝜋
which is a path through 𝒯 , it is relatively simple to check
that 𝜋 ∈ [𝒯 ] (it requires checking infinitely many simple
facts: 𝜋 ↾𝑛 ∈ 𝒯 , for each 𝑛), but finding a sequence 𝜋 ∈
[𝑇 ]—or even knowing whether there exists a sequence
𝜋 ∈ [𝑇 ]—is a far harder problem.

Our main goal is to exactly characterize the complexity
of the computational problems described in Definition
3.3. To do so, we need to show that they are complete
for their respective complexity classes. The following
definition formalizes this notion.

Definition 3.8. Let Γ be a complexity class (e.g., Γ ∈
{Σ1

1,Π
1
1}). A set 𝑉 ⊆ 𝜔 is Γ-hard, if for every 𝑋 ∈ Γ

there is a computable function 𝑓 : 𝜔 → 𝜔 so that 𝑥 ∈ 𝑋
if and only if 𝑓(𝑥) ∈ 𝑉 . If 𝑉 is Γ-hard and belongs to Γ,
then it is Γ-complete.

Proposition 3.9. It follows from Theorem 3.7 that the
set of indices for ill-founded computable trees is a Σ1

1-
complete set. Similarly, the set of indices for well-founded
computable trees is a Π1

1-complete set.

The following example is far less obvious, but will be
useful below to examine Uni∞𝜎 .

Theorem 3.10 ([21, Theorem 18.11]). The set UB of in-
dices for computable trees with exactly one path is a Π1

1-
complete set.

Remark 3.11. The hardness in Theorem 3.10 is quite
easy. We can reduce the question of whether a tree 𝒯 is
well-founded to whether a tree 𝒯 ′ has two paths, where
𝒯 ′ always has at least one path, by simply giving 𝒯 ′ one
more path than 𝒯 (e.g. 𝒯 ′ = {1⌢𝜎 : 𝜎 ∈ 𝒯 } ∪ {𝜎 :
(∀𝑛 < |𝜎|)𝜎(𝑛) = 0}). The fact that UB is itself Π1

1 is
the subtle part of this example.

Theorem 3.7 along with Definition 3.8 suggest a nat-
ural approach for gauging the complexity of the com-
putational problems of Definition 3.3. Namely, given
another Σ1

1 (or Π1
1) set 𝑋 , we translate the question ask-

ing whether 𝑛 ∈ 𝑋 to the question of if the tree 𝒯 𝑋
𝑛

is ill-founded (resp., well-founded), and then we need
to computably find an instance of our computational
problem which should be accepted if and only if 𝒯 𝑋

𝑛 is
ill-founded (resp., well-founded). This involves coding a
tree, or more precisely, the collection of paths through
a tree into the 𝜎 extensions in an argumentation frame-
work. We do exactly this in Section 4.

Table 2 collects our results regarding complexities of
the computational problems examined for computable
argumentation frameworks.

Remark 3.12. As noted before, the Σ1
1 sets are natural

analogs in the infinitary setting of the NP sets, and the
Π1

1 sets are the natural analogs of the coNP sets. With
the exception of Skept∞co and Uni∞stb , Table 2 follows this
translation from Table 1 for the first three rows. These
two results mark surprising differences in the infinite
setting.

The trivial entries are due to the fact that ∅ is always
an admissible extension and the grounded extension is
always a complete extension.

3.3. Spectra of 𝜎 extensions
We propose a way to more fully understand the complex-
ity of the problem of finding a 𝜎 extension in a given AF
ℱ .

Definition 3.13. For each 𝑒 ∈ 𝜔 and semantics 𝜎, let
Spec¬∅

𝜎 (ℱ𝑒) be the set of Turing degrees of non-empty sets
𝑋 ⊆ 𝜔 so that {𝑎𝑛 : 𝑛 ∈ 𝑋} is a 𝜎 extension in ℱ𝑒.

The notion Spec¬∅
𝜎 (ℱ𝑒) exactly captures the difficulty

of computing a non-empty 𝜎 extension in ℱ𝑒. We will
be relating the problem of computing a 𝜎 extension in
ℱ𝑒 to the problem of finding a path through a particular
tree. So, we define the analogous notion of the spectrum
of a tree.

Definition 3.14. Given any computable tree 𝒯 , we let
Spec(𝒯 ) be set of Turing degrees of paths 𝑋 ∈ [𝒯 ].

Our main result in this direction is the following:
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𝜎 Cred∞
𝜎 Skept∞𝜎 Exists∞𝜎 NE∞

𝜎 Uni∞𝜎
ad Σ1

1-c 4.2,3.4 trivial trivial Σ1
1-c 4.2 3.4 Π1

1-c 4.3,3.5
stb Σ1

1-c 4.2,3.4 Π1
1-c 4.4,3.5 Σ1

1-c 4.2, 3.4 Σ1
1-c 4.2,3.4 Π1

1-c 4.3, 6.10
co Σ1

1-c 4.2, 3.4 Π1
1-c *, 3.5 trivial Σ1

1-c 4.2, 3.4 Π1
1-c 4.3,3.5

infad Σ1
1-c 4.2,3.4 Π1

1-c 4.4,3.5 Σ1
1-c 4.2, 3.4 Σ1

1-c 4.2, 3.4 Π1
1-c 4.3,6.5

infstb Σ1
1-c 4.2,3.4 Π1

1-c 4.4,3.5 Σ1
1-c 4.2, 3.4 Σ1

1-c 4.2, 3.4 Π1
1-c 4.3,6.10

infco Σ1
1-c 4.2,3.4 Π1

1-c 4.4,3.5 Σ1
1-c 4.2, 3.4 Σ1

1-c 4.2, 3.4 Π1
1-c 4.3, 6.14

Table 2
Computational problems for computable AFs. 𝒞-c denotes completeness for the class 𝒞. The entry with an asterisk is not fully
proved in this paper. Rather, the Π1

1-hardness for Skept∞co is deferred to future work focusing on the grounded semantics. It is
included in the table here (though partially unproved) to give a more complete picture. The numbers in each cell of the table
refer to the Theorem number providing the lower bound and upper bounds for the result in that cell.

Theorem 3.15. For 𝜎 ∈ {ad, stb, co, infad, infstb, infco}
and for any computable tree 𝒯 , there exists a computable
AF ℱ𝑒 so that Spec¬∅

𝜎 (ℱ𝑒) = Spec(𝒯 ).
When 𝜎 ∈ {ad, stb, infad, infstb}, the converse holds:

i.e., for every 𝑒 there is a computable tree 𝒯 so that
Spec¬∅

𝜎 (ℱ𝑒) = Spec(𝒯 ).

We will prove each part of the above theorem in Sec-
tions 4 (Theorem 4.5) and 6 (Corollaries 6.3,6.4,6.8,6.9).
We now discuss a few of its implications for the problem
of computing 𝜎 extensions of computable AFs.

The hyperarithmetical sets are often used as a yard-
stick to measure complexity of undecidable problems.
A set is hyperarithmetical if and only if it is both Σ1

1

and Π1
1. The hyperarithmetical degrees are particularly

useful as a yardstick of complexity because a set 𝑋 is
hyperarithmetical if and only if it is computed from a set
𝑌 which can be reached by (transfinitely) iterating the
halting jump operator. Thus, the number of iterations of
the halting jump needed to compute 𝑋 yields a useful
yardstick for the complexity of 𝑋 . For more information
about the hyperarithmetical hierarchy, see [19, §16.8].

Proposition 3.16. There is a computable argumentation
framework ℱ𝑒 which has continuum many non-empty 𝜎
extensions, yet no hyperarithmetical non-empty 𝜎 exten-
sion, whenever 𝜎 is in {ad, stb, co, infad, infstb, infco}.

Proof. There exists a computable tree with uncountably
many paths yet no hyperarithmetical path [19, Corollary
XLI(b)]. Applying Theorem 3.15 to this tree yields a
computable argumentation framework with uncountably
many non-empty 𝜎 extensions, yet no hyperarithmetical
non-empty 𝜎 extension.

In the case of Proposition 3.16, there are 𝜎 extensions
that are not particularly computationally powerful. For
example, there are two 𝜎 extensions, each undecidable, so
that the only sets they both compute are the computable
sets. Thus, though there is no hyperarithmetical solution,
there is also no undecidable information coded into ev-
ery solution. This is always the case if an infinite AF has

continuum many 𝜎 extensions. On the other hand, if a
computable argumentation framework has only count-
ably many 𝜎 extensions, the picture is quite different.

The following theorem is Corollary 6.15 below.

Theorem 3.17. Let 𝜎 ∈ {ad, stb, co, infad, infstb, infco}
and suppose that ℱ𝑒 is a computable argumentation frame-
work with only countably many non-empty 𝜎 extensions.
Then, there is a hyperarithmetical non-empty 𝜎 extension
of ℱ𝑒.

On the other hand, we can show that there is no bound
in the hyperarithmetical hierarchy on how complicated
this extension might be.

Theorem 3.18. Let 𝜎 ∈ {ad, stb, co, infad, infstb, infco}
and let 𝐻 be a hyperarithmetical set. Then there exists a
computable AF ℱ𝑒 with a single non-empty 𝜎 extension 𝑋
so that 𝑋 computes 𝐻 .

Proof. This follows from Theorem 3.15 by encoding a
tree with a single path 𝜋 so that 𝜋 computes 𝐻 . Such a
tree is known to exist for any hyperarithmetical 𝐻 [19,
Corollary XLIV(d)].

4. Encoding a tree into an
argumentation framework

Given a tree 𝒯 ⊆ 𝜔<𝜔 , we will define an argumentation
framework ℱ𝒯 = (𝐴𝒯 , 𝑅𝒯 ). The set of arguments 𝐴𝒯

ofℱ𝒯 is computable and consists of {𝑎𝜎 : 𝜎 ∈ 𝒯 }∪{𝑏𝜎 :
𝜎 ∈ 𝒯 } ∪ {𝑐}. The attack relation 𝑅𝒯 of ℱ𝒯 contains
all and only the following edges:

For all 𝜎 ∈ 𝒯 ,

1. 𝑏𝜎 ↣ 𝑏𝜎 ;

2. 𝑏𝜎 ↣ 𝑎𝜎 ;

3. 𝑎𝜎 ↣ 𝑏𝜏 , if |𝜎| = |𝜏 |+ 1;

4. 𝑎𝜎 ↣ 𝑎𝜏 , if |𝜎| = |𝜏 |+ 1 and 𝜏 ̸⪯ 𝜎;
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𝜆

0 1

10 11

𝑐

𝑎𝜆 𝑏𝜆

𝑎0 𝑏0 𝑎1 𝑏1

𝑎10 𝑏10 𝑎11 𝑏11

Figure 1: Example of our encoding of trees into AFs: the left-side represents the tree {𝜆, 0, 1, 10, 11}, the right-side is the
resulting AF. When applied to trees 𝑇 of infinite height, [𝑇 ] will be encoded into the stable, complete, and admissible extensions
of ℱ𝑇 . For the example shown in the figure, the only admissible extension of ℱ𝒯 is the empty one, since [𝑇 ] = ∅.

5. 𝑐 ↣ 𝑎𝜏 for every 𝜏 ∈ 𝒯 ;

6. 𝑎𝜆 ↣ 𝑐.

Figure 1 gives an example of our encoding for a fi-
nite tree. We next consider which extensions in ℱ𝒯 are
admissible, stable, or complete.

Notation. For 𝜋 ∈ [𝒯 ], let 𝑆𝜋 be the set {𝑎𝜎 : 𝜎 ≺ 𝜋}.

Lemma 4.1. A non-empty extension 𝑆 of ℱ𝒯 is stable
iff 𝑆 is complete iff 𝑆 is admissible iff 𝑆 is exactly 𝑆𝜋 for
some 𝜋 ∈ [𝒯 ].

Proof. Stable always implies complete, which always im-
plies admissible. It is straightforward to check that 𝑆𝜋 is
stable for any 𝜋 ∈ [𝒯 ], so we need only show that any
non-empty admissible extension is exactly some 𝑆𝜋 . Sup-
pose that 𝑆 is admissible. Observe that 𝑐 and 𝑏𝜎 cannot
be in 𝑆 since these are self-defeating. So some 𝑎𝜎 ∈ 𝑆
since 𝑆 is non-empty. Note that since 𝑐 ↣ 𝑎𝜎 , we must
have 𝑎𝜆 ∈ 𝑆. Next, observe that if 𝑎𝜏 ∈ 𝑆, then there
must be some 𝑖 so that 𝑎𝜏⌢𝑖 ∈ 𝑆: this is because some
element of 𝑆 must defend 𝑎𝜏 from 𝑏𝜏 and such an ele-
ment must be an 𝑎𝜎 with |𝜎| = |𝜏 |+1. But it must have
𝜏 ≺ 𝜎 as otherwise 𝑎𝜎 would attack 𝑎𝜏 . It follows that
𝑆 contains 𝑆𝜋 for some 𝜋 ∈ [𝒯 ]. Since 𝑆𝜋 is stable, 𝑆
cannot properly contain 𝑆𝜋 , so 𝑆 = 𝑆𝜋 .

We are now in a position to obtain hardness results for
the computational problems described in Definition 3.3.

Theorem 4.2. The following hold:

1. for 𝜎 ∈ {ad, stb, co, infad, infstb, infco}, NE∞
𝜎 is

Σ1
1-hard;

2. for 𝜎 ∈ {stb, infad, infstb, infco}, Exist∞𝜎 is Σ1
1-

hard;

3. for 𝜎 ∈ {ad, stb, co, infad, infstb, infco}, Cred∞
𝜎

is Σ1
1-hard.

Proof. 1. Let 𝑋 ∈ Σ1
1 and let (𝒯 𝑋

𝑛 )𝑛∈𝜔 be a tree-
sequence for 𝑋 , as given by Theorem 3.7. To show Σ1

1-
hardness, we need to produce a computable function
𝑓 so that 𝑛 ∈ 𝑋 if and only if 𝑓(𝑛) ∈ NE∞

𝜎 . We let
𝑓(𝑛) be a computable index for ℱ𝒯 𝑋

𝑛 . Then Lemma 4.1
shows that 𝑛 ∈ 𝑋 if and only if 𝒯 𝑋

𝑛 is ill-founded if
and only if ℱ𝒯 𝑋

𝑛 has a non-empty 𝜎 extension for each
𝜎 ∈ {ad, stb, co, infad, infstb, infco}.

2. For each of these 𝜎, the empty set is not a 𝜎 ex-
tension, so Exist∞𝜎 = NE∞

𝜎 , which we showed above is
Σ1

1-hard.
3. In the proof of 1. above, we reduced a givenΣ1

1 set𝑋
to NE∞

𝜎 by sending 𝑛 to ℱ𝒯 𝑋
𝑛 . Note that ℱ𝒯 𝑋

𝑛 has a non-
empty𝜎 extension if and only if 𝑎𝜆 is in some𝜎 extension.
Thus sending 𝑛 to ⟨𝑒, 𝑎𝜆⟩ where 𝑒 is a computable index
for ℱ𝒯 𝑋

𝑛 shows that Cred∞
𝜎 is Σ1

1-hard.

Theorem 4.3. For 𝜎 ∈ {ad, stb, co, infad, infstb, infco},
Uni∞𝜎 is Π1

1-hard.

Proof. We first consider 𝜎 ∈ {ad, co}. Let 𝑋 ∈ Π1
1 and

let (𝒯 𝜔∖𝑋
𝑛 )𝑛∈𝜔 be a tree-sequence for its complement.

Consider the sequence of AFs (ℱ𝒯 𝜔∖𝑋
𝑛 )𝑛∈𝜔 . Note that
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∅ is an admissible extension in any AF and since every
argument in ℱ𝒯 𝜔∖𝑋

𝑛 is attacked, ∅ is also a complete
extension. Thus, ℱ𝒯 𝜔∖𝑋

𝑛 has a unique 𝜎 extension if
and only if 𝒯 𝜔∖𝑋

𝑛 is well founded if and only if 𝑛 ∈ 𝑋 ,
which shows that Uni∞ad and Uni∞co are Π1

1-hard.
For the other𝜎, ∅ is not a𝜎 extension. We use Theorem

3.10 to show Π1
1-hardness. Let 𝑋 be any Π1

1 set. Then
we get from Remark 3.11 a sequence of trees 𝒯 ′

𝑛 so that
0∞ ∈ [𝒯 ′

𝑛] for each 𝑛, and {𝑛 : 𝒯 ′
𝑛 has only one path}

is Π1
1-hard. It follows from Lemma 4.1 that this holds if

and only if ℱ𝒯 ′
𝑛 has a unique 𝜎 extension, which shows

the Π1
1-hardness of Uni∞𝜎 .

Theorem 4.4. For any 𝜎 ∈ {stb, infstb, infco, infad},
Skept∞𝜎 is Π1

1-hard.

Proof. Let 𝑋 be a Π1
1 set. Then we get from Remark 3.11

a sequence of trees 𝒯 ′
𝑛 so that 0∞ ∈ [𝒯 ′

𝑛] for each 𝑛,
and {𝑛 : 𝒯 ′

𝑛 has only one path} is Π1
1-hard. Then note

that ⟨𝑒, 𝑎0⟩ ∈ Skept∞𝜎 where 𝑒 is a computable index
for 𝒢𝑛 := ℱ𝒯 ′

𝑛
if and only if 𝒯 ′

𝑛 only has paths 𝜋 with
𝜋(0) = 0 if and only if 𝒯 ′

𝑛 has only one path (see the
definition of 𝒯 ′

𝑛 in Remark 3.11) if and only if 𝑛 ∈ 𝑋 .
This shows the Π1

1-hardness of Skept∞𝜎 .

Theorem 4.5. For 𝜎 ∈ {ad, stb, co, infad, infstb, infco}
and for any computable tree 𝒯 , there exists a computable
AF ℱ𝑒 so that Spec¬∅

𝜎 (ℱ𝑒) = Spec(𝒯 ).

Proof. Observe that for the AF ℱ𝑒 = ℱ𝒯 , it follows
from Lemma 4.1 that the non-empty 𝜎 extensions are all
infinite and are in the same Turing degrees as the paths
through 𝒯 .

5. Complexity of Cred∞
𝜎 (ℱ𝑒) and

Skept∞𝜎 (ℱ𝑒)

In this section, we examine the complexity of the
problems Cred∞

𝜎 (ℱ𝑒) and Skept∞𝜎 (ℱ𝑒) for a single
computable argumentation framework ℱ𝑒. Note that
Cred∞

𝜎 (ℱ𝑒) is no more complicated than the full
problem Cred∞

𝜎 , so Cred∞
𝜎 (ℱ𝑒) is Σ1

1 for 𝜎 ∈
{ad, stb, co, infad, infstb, infco}, and Skept∞𝜎 (ℱ𝑒) is Π1

1

for 𝜎 ∈ {stb, co, infad, infstb, infco}. Recall that Skept∞ad
is trivial.

Here we show that even restricting to a single com-
putable argumentation framework, these sets can be Σ1

1-
complete or Π1

1-complete. We do omit discussion of
Skept∞co (ℱ𝑒), just as we omitted discussion of the hard-
ness for Skept∞co above. This is because Skept∞co (ℱ𝑒) is ex-
actly the grounded extension of ℱ . In future work giving
a systematic analysis of the complexity of the grounded
semantics in infinite argumentation frameworks, we will
examine the remaining entry in Table 2, namely that

Skept∞co is Π1
1-hard, and we will also consider the com-

plexity of Skept∞co (ℱ𝑒) for a single computable AF ℱ𝑒.
In the previous section, we built AFs ℱ𝒯 specifically

to code a single Σ1
1-question into a single question about

extensions in ℱ𝒯 , e.g., 𝒯 is ill-founded if and only if
𝑎𝜆 ∈ Cred∞

ad (ℱ𝒯 ). We will use the following notion of
a disjoint union of AFs to build a single AF ℱ so that
Cred∞

ad (ℱ) codes multiple Σ1
1 questions.

Definition 5.1. If (ℱ𝑘)𝑘∈𝜔 is a countable sequence of ar-
gumentation frameworks where each ℱ𝑘 = (𝐴𝑘, 𝑅𝑘),
then we define the disjoint union ℋ of the sequence
(ℱ𝑘)𝑘∈𝜔 as follows: ℋ = (𝐴ℋ, 𝑅ℋ), where 𝐴ℋ =
{⟨𝑎, 𝑘⟩ : 𝑎 ∈ 𝐴𝑘} and (⟨𝑎, 𝑗⟩, ⟨𝑏, 𝑘⟩) ∈ 𝑅ℋ ⇔ 𝑗 =
𝑘 ∧ (𝑎, 𝑏) ∈ 𝑅𝑘

We omit the proof of the following easy lemma.

Lemma 5.2. Let ℋ be the disjoint union of a sequence of
AFs (ℱ𝑘)𝑘∈𝜔 and 𝜎 ∈ {ad, stb, co}. A set 𝑌 ⊆ 𝐴ℋ is a
𝜎 extension of ℋ if and only if for each 𝑛, 𝑌𝑛 := {𝑐 ∈
𝐴𝑛 : ⟨𝑐, 𝑛⟩ ∈ 𝑌 } is a 𝜎 extension in ℱ𝑛.

Theorem 5.3. There is a computable argumentation
framework ℱ𝑒 so that Cred∞

ad (ℱ𝑒) = Cred∞
infad(ℱ𝑒) =

Cred∞
co (ℱ𝑒) = Cred∞

infco(ℱ𝑒) is Σ1
1-complete.

Proof. Let 𝑋 be a Σ1
1-complete set, and let (𝒯 𝑋

𝑛 )𝑛∈𝜔 be
a tree-sequence for 𝑋 . We consider the argumentation
framework ℋ𝑋 which is the disjoint union of the se-
quence (ℱ𝒯 𝑋

𝑘 )𝑘∈𝜔 of argumentation frameworks. Note
that since the sequence of trees 𝒯 𝑋

𝑘 is a computable
sequence of computable trees, ℋ𝑋 is a computably pre-
sented argumentation framework.

Note that an argument ⟨𝑎𝜎, 𝑘⟩ is a member of an ad-
missible extension in ℋ𝑋 if and only if 𝑎𝜎 is a member
of an admissible extension in ℱ𝒯 𝑋

𝑘 by Lemma 5.2 and
the fact that the empty set is an admissible extension
in all of the ℱ𝒯 𝑋

𝑛 . Similarly, ⟨𝑎𝜎, 𝑘⟩ is a member of a
complete extension in ℋ𝑋 if and only if 𝑎𝜎 is a member
of a complete extension in ℱ𝒯 𝑋

𝑘 . By Lemma 4.1, each
of these conditions is equivalent to 𝜎 being on a path in
[𝒯 𝑋

𝑘 ], thus Cred∞
ad (ℱ𝑒) = Cred∞

co (ℱ𝑒). Since all of the
non-empty admissible extensions in ℱ𝒯 𝑋

𝑘 are infinite,
these coincide with Cred∞

infad(ℱ𝑒) = Cred∞
infco(ℱ𝑒).

We now give a reduction of 𝑋 to Cred∞
ad (ℋ𝑋). We

need to give a computable function 𝑓 so that𝑛 ∈ 𝑋 if and
only if 𝑓(𝑛) ∈ Cred∞

ad (ℋ𝑋). We define 𝑓(𝑛) = ⟨𝑎𝜆, 𝑛⟩.
Then ⟨𝑎𝜆, 𝑛⟩ ∈ Cred∞

ad (ℋ𝑋) if and only if there is a path
in [𝒯 𝑋

𝑛 ] if and only if 𝑛 ∈ 𝑋 , showing the Σ1
1-hardness

of Cred∞
ad (ℋ𝑋).

With a more cumbersome construction, we now show
that we can find a single computable argumentation
framework that simultaneously witnesses the hardness
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for each of the Cred∞
𝜎 (ℱ𝑒) and Skept∞𝜎 (ℱ𝑒) which we

analyze in this paper.

Theorem 5.4. There is a single computable argu-
mentation framework ℱ𝑒 so that Cred∞

𝜎 (ℱ𝑒) is Σ1
1-

complete for each 𝜎 ∈ {ad, co, stb, infad, infco, infstb}
and Skept∞𝜎 (ℱ𝑒) is Π1

1-complete for each 𝜎 ∈
{stb, infad, infco, infstb}.

Proof. Let 𝑋 be a Π1
1-complete set and recall the se-

quence 𝒢𝑛 of argumentation frameworks constructed
in Theorem 4.4. We construct a new AF ℋ =
(𝐴ℋ, 𝑅ℋ) with 𝐴ℋ =

⋃︀
𝑛∈𝜔{⟨𝑡, 𝑛⟩ : 𝑡 ∈ 𝒢𝑛} and

(⟨𝑡, 𝑛⟩, ⟨𝑢, 𝑛′⟩) ∈ 𝑅ℋ if and only if one of the following
hold:

• 𝑛 = 𝑛′ and (𝑡, 𝑢) ∈ 𝑅𝒢𝑛

• 𝑛 ̸= 𝑛′ and 𝑡 = 𝑐, 𝑢 = 𝑎𝜆

Lemma 5.5. A subset 𝑈 of 𝐴ℋ is a non-empty admissible
extension if and only if 𝑈 is a stable extension if and only if
there is a sequence (𝜋𝑛)𝑛∈𝜔 so each 𝜋𝑛 is a path through
𝒯 ′
𝑛 and 𝑈 =

⋃︀
𝑛∈𝜔 𝑌𝑛 where each 𝑌𝑛 is {⟨𝑎𝜎, 𝑛⟩ : 𝜎 ≺

𝜋𝑛}.

Proof. Suppose that 𝑈 is a non-empty admissible exten-
sion. Observe that no element ⟨𝑏𝜎, 𝑛⟩ or ⟨𝑐, 𝑛⟩ can be in
𝑈 as these are self-defeating.

Lemma 5.6. If any element ⟨𝑎𝜎, 𝑛⟩ for some 𝜎, 𝑛 is in 𝑈 ,
then 𝑈 ∩ {⟨𝑎𝜎, 𝑛⟩ : 𝜎 ∈ 𝜔<𝜔} = {⟨𝑎, 𝑛⟩ : 𝑎 ∈ 𝑆𝜋𝑛}
for some 𝜋𝑛 ∈ [𝒯 ′

𝑛], 𝑘. Further, if there exists 𝑛 so that
⟨𝑎𝜆, 𝑛⟩ ∈ 𝑈 , then {⟨𝑎𝜆,𝑚⟩ : 𝑚 ∈ 𝜔} ⊆ 𝑈 .

Proof. As in the argument in Lemma 4.1, 𝑈 ∩ {⟨𝑎𝜎, 𝑛
′⟩ :

𝜎 ∈ 𝜔<𝜔} being non-empty implies that it equals
{⟨𝑎, 𝑛′⟩ : 𝑎 ∈ 𝑆𝜋𝑛} for some 𝜋𝑛. If ⟨𝑎𝜆, 𝑛⟩ then for
any 𝑚, the attack from ⟨𝑐,𝑚⟩ must be defended, so
⟨𝑎𝜆,𝑚⟩ ∈ 𝑈 .

Thus if 𝑆 is non-empty and admissible, then there
is some sequence (𝜋𝑛)𝑛∈𝜔 so that 𝜋𝑛 ∈ [𝒯 ′

𝑛] and⋃︀
𝑛∈𝜔 𝑌𝑛 ⊆ 𝑈 . It is straightforward to check that this

set is in fact stable, so 𝑈 cannot contain a proper superset.
Thus stable, admissible, and being a set as described all
coincide.

Since every non-empty admissible set is infinite and
stable, Cred∞

ad (ℋ) = Cred∞
stb(ℋ) = Cred∞

co (ℋ) =
Cred∞

infad(ℋ) = Cred∞
infstb(ℋ) = Cred∞

infco(ℋ). Further,
note that ⟨𝑎1, 𝑘⟩ ∈ Cred∞

ad (ℋ) if and only if there is a
𝜋 ∈ [𝒯 ′

𝑛] with 𝜋(0) = 1 if and only if 𝒯 ′
𝑛 has more than

one path if and only if 𝑛 /∈ 𝑋 , showing the Σ1
1-hardness

of Cred∞
ad (ℋ).

Fix 𝜎 ∈ {stb, infad, infstb, infco}. Then since every
non-empty admissible extension is infinite and stable,
and each 𝜎 extension is non-empty and admissible, we
see that Skept∞𝜎 (ℋ) = Skept∞stb(ℋ).

Now observe that ⟨𝑎0, 𝑛⟩ ∈ Skept∞stb(ℋ) if and only
if every 𝜋 ∈ [𝒯 ′

𝑛] has 𝜋(0) = 0 if and only if 𝑛 ∈ 𝑋 .
This gives a reduction of 𝑋 to Skept∞stb(ℋ) showing that
Skept∞stb(ℋ) is Π1

1-hard.

6. Trees coding extensions in 𝜎(ℱ)

In this section, we give upper bounds to the complexity of
Spec¬∅

𝜎 for 𝜎 ∈ {ad, stb, infad, infstb} as well as giving
upper bounds for the complexity of Uni∞𝜎 for any 𝜎 ∈
{stb, infad, infstb, infco}. We do this by describing how
to computably encode the collection of extensions in
𝜎(ℱ) into the set of paths through a tree.

The admissible case

Given a computable argumentation framework ℱ , we
will describe a computable tree 𝒯 ℱ so that the paths of
𝒯 ℱ encode the non-empty admissible extensions in ℱ .
We begin with an intuitive description of how a path 𝜋
through the tree 𝒯 ℱ will encode an admissible extension
𝑆, and we give the formal definition of 𝒯 ℱ below.

Branching in 𝒯 ℱ will come in three flavors. The first
branching is used to give the least element of the admis-
sible extension 𝑆. This is to ensure that the extension is
non-empty. If we wished to allow the empty extension,
we could omit this branching. For any 𝑗 > 0, the branch-
ing on level 2𝑗 serves to code whether or not 𝑗 ∈ 𝑆.
Branching on the odd levels serve to explain how 𝑆 sat-
isfies the hypothesis of being an admissible extension. If
𝑎𝑖 ↣ 𝑎𝑗 is the 𝑛th element of some computable enumer-
ation of all attacking pairs of arguments, then 𝜎(2𝑛+ 1)
will be 0 if 𝑎𝑗 /∈ 𝑆 and otherwise will be 𝑘 + 1 where 𝑘
is least so that 𝑎𝑘 ∈ 𝑆 and 𝑎𝑘 ↣ 𝑎𝑖.

Let ℱ = (𝐴ℱ , 𝑅ℱ ) be a computable AF. Let (𝑔𝑛)𝑛∈𝜔

be a computable sequence of all elements of 𝑅ℱ . If 𝑔𝑛 =
(𝑎𝑖, 𝑎𝑗), we denote 𝑎𝑖 by 𝑔−𝑛 and 𝑎𝑗 by 𝑔+𝑛 . We now
define the tree 𝒯 ℱ .

Definition 6.1. Any given string 𝜎 ∈ 𝜔<𝜔 defines two
subsets of arguments in 𝐴ℱ :

• In𝜎 = {𝑎𝜎(0)}∪{𝑎𝑗 : 𝑗 > 0∧𝜎(2𝑗) = 1}∪{𝑎𝑘 :
(∃𝑗)(𝜎(2𝑗 + 1) = 𝑘 + 1)} ∪ {𝑎𝑖 : (∃𝑗)(𝜎(2𝑗 +
1) > 0 ∧ 𝑔+𝑗 = 𝑎𝑖)};

• Out𝜎 = {𝑎𝑖 : 𝑖 < 𝜎(0)}∪{𝑎𝑗 : 𝑗 > 0∧𝜎(2𝑗) =
0}∪{𝑎𝑖 : (∃𝑗)(𝜎(2𝑗+1) = 0∧𝑔+𝑗 = 𝑎𝑖)}∪{𝑎𝑖 :

(∃𝑗)(𝜎(2𝑗 + 1) > 𝑖+ 1 ∧ 𝑎𝑖 ↣ 𝑔−𝑗 )}.

We define 𝒯 ℱ as the set of 𝜎 so that

• In𝜎 is conflict-free;
• In𝜎 ∩ Out𝜎 = ∅
• If 0 < 2𝑗 < |𝜎|, then 𝜎(2𝑗) ∈ {0, 1};
• If 2𝑗 + 1 < |𝜎| and 𝜎(2𝑗 + 1) = 𝑘 + 1, then
𝑎𝑘 ↣ 𝑔−𝑗 .
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Theorem 6.2. Let ℱ be a (computable) argumentation
framework. Then the non-empty admissible extensions of
ℱ are in (computable) bijection with the paths in 𝒯 ℱ .

Proof. Given a non-empty admissible extension 𝑆 of ℱ ,
we define the corresponding path 𝜋 in 𝒯 ℱ as follows. Let
𝜋(0) be the least element of 𝑆. For 𝑗 > 0, let 𝜋(2𝑗) = 1
if 𝑎𝑗 ∈ 𝑆 and 𝜋(2𝑗) = 0 otherwise. Let 𝜋(2𝑛+ 1) be 0
if 𝑔+𝑛 /∈ 𝑆 and be 𝑘 + 1 where 𝑘 is least so that 𝑎𝑘 ∈ 𝑆
and 𝑎𝑘 ↣ 𝑔−𝑛 otherwise. It is straightforward to check
that 𝜋 ∈ [𝒯 ℱ ].

Given a path 𝜋 through 𝒯 ℱ , first note that whenever
there is some 𝜎 ≺ 𝜋 so that 𝑎𝑛 ∈ In𝜎 , then 𝜋(2𝑛) = 1.
This is because whenever 𝜎 ⪯ 𝜏 , then In𝜎 ⊆ In𝜏 . Then
since 𝜏 := 𝜋 ↾max(|𝜎|,2𝑛+1) is in 𝒯 ℱ , we cannot have
𝜏(2𝑛) = 0 since 𝑎𝑛 ∈ In𝜏 . Thus 𝜋(2𝑛) = 𝜏(2𝑛) = 1. It
follows that

⋃︀
𝜎≺𝜋 In𝜎 = {𝑎𝑛 : 𝜋(2𝑛) = 1}. The same

argument shows that
⋃︀

𝜎≺𝜋 Out𝜎 = {𝑎𝑛 : 𝜋(2𝑛) = 0}.
Let 𝑆 = {𝑎𝑛 : 𝜋(2𝑛) = 1}.

Note that 𝑆 is conflict-free, since if 𝑎𝑖, 𝑎𝑗 ∈ 𝑆 then
there is some long enough 𝜎 ≺ 𝜋 so that 𝑎𝑖, 𝑎𝑗 ∈ In𝜎 .
Since 𝜎 ∈ 𝒯 ℱ , it follows that In𝜎 is conflict-free, so
𝑎𝑖 ̸↣ 𝑎𝑗 . Next, observe that 𝑆 defends itself. If 𝑎𝑖 ↣ 𝑎𝑗

and 𝑎𝑗 ∈ 𝑆, then there is some 𝑛 so that 𝑔𝑛 = (𝑎𝑖, 𝑎𝑗).
Then consider 𝜎 = 𝜋 ↾𝑛+1. We must have 𝜎(𝑛) = 𝑘+1
for some 𝑘 with 𝑎𝑘 ∈ 𝑆 and 𝑎𝑘 ↣ 𝑎𝑖.

Finally, note that both the map from 𝜋 to 𝑆 and from 𝑆
to 𝜋 are computable if ℱ is computable and are inverses
of each other.

Corollary 6.3. For every computable AF ℱ𝑒, there exists
a computable tree 𝒯 so that Spec¬∅

ad (ℱ𝑒) = Spec(𝒯 ).

Proof. It follows immediately from Theorem 6.2 that
Spec¬∅

ad (ℱ𝑒) = Spec(𝒯 ℱ𝑒).

Corollary 6.4. For every computable AF ℱ𝑒, there exists
a computable tree ̂︀𝒯 so that Spec¬∅

infad(ℱ𝑒) = Spec(̂︀𝒯 ).

Proof. The tree needed here is a slight alteration of the
tree 𝒯 ℱ . In 𝒯 ℱ , we made 𝜎(0) tell us the least 𝑘 so
𝑎𝑘 ∈ 𝑆 so as to ensure that 𝑆 ̸= ∅. We do the same on
infinitely many layers, e.g., instead of having 𝜎(2𝑛) be 0
or 1 to tell us whether or not 𝑛 ∈ 𝑆, we have 𝜎(2𝑛) tell
us the 𝑛th least number 𝑘 so that 𝑎𝑘 ∈ 𝑆. With the tree
altered like this, paths are in computable bijection with
the infinite admissible extensions.

Corollary 6.5. Uni∞infad is Π1
1.

Proof. 𝑒 is in Uniinfad if and only if the tree ̂︀𝒯 in Corollary
6.4 has a unique path. By Theorem 3.10, this is a Π1

1

condition.

The stable case

Similarly, we can construct a tree encoding the stable
extensions by making 𝜎(𝑛) = 0 if 𝑎𝑛 ∈ 𝑆 and otherwise
making 𝜎(𝑛) be 𝑘 + 1 where 𝑘 is least so that 𝑎𝑘 ∈ 𝑆
and 𝑎𝑘 ↣ 𝑎𝑛.

Definition 6.6. Any given string 𝜎 ∈ 𝜔<𝜔 defines two
subsets of arguments in 𝐴ℱ :

• In𝜎 = {𝑎𝑖 : 𝜎(𝑖) = 0} ∪ {𝑎𝜎(𝑖)−1 : 𝑖 < |𝜎| ∧
𝜎(𝑖) > 0};

• Out𝜎 = {𝑎𝑖 : 𝑖 < |𝜎| ∧ 𝜎(𝑖) > 0} ∪ {𝑎𝑖 :
(∃𝑗)𝜎(𝑗) > 𝑖+ 1 ∧ 𝑎𝑖 ↣ 𝑎𝑗)}.

We define 𝒯 ℱ as the set of 𝜎 so that

• In𝜎 is conflict-free;
• In𝜎 ∩ Out𝜎 = ∅
• If 𝑗 < |𝜎| and 𝜎(𝑗) = 𝑘 + 1, then 𝑎𝑘 ↣ 𝑎𝑗 .

Theorem 6.7. Let ℱ be a (computable) argumentation
framework. Then the stable extensions of ℱ are in (com-
putable) bijection with the paths in 𝒯 ℱ .

Proof. Given a stable extension 𝑆 of ℱ , we define the
corresponding path 𝜋 in 𝒯 ℱ as follows. For each 𝑛, let
𝜋(𝑛) be 0 if 𝑎𝑛 ∈ 𝑆 and let 𝜋(𝑛) be 𝑘 + 1 where 𝑘
is least so that 𝑎𝑘 ∈ 𝑆 and 𝑎𝑘 ↣ 𝑎𝑛 otherwise. It is
straightforward to check that 𝜋 ∈ [𝒯 ℱ ].

Given a path 𝜋 through 𝒯 ℱ , first note that whenever
there is some 𝜎 ≺ 𝜋 so that 𝑎𝑛 ∈ In𝜎 , then 𝜋(𝑛) = 0.
This is because whenever 𝜎 ⪯ 𝜏 , then In𝜎 ⊆ In𝜏 . Then
since 𝜏 = 𝜋 ↾max(|𝜎|,𝑛+1) is on 𝒯 ℱ , we cannot have
𝜏(𝑛) ̸= 0 since 𝑎𝑛 ∈ In𝜏 and therefore cannot be in
Out𝜏 . It follows that

⋃︀
𝜎≺𝜋 In𝜎 = {𝑎𝑛 : 𝜋(𝑛) = 0}. Let

𝑆 = {𝑎𝑛 : 𝜋(𝑛) = 0}.
Note that 𝑆 is conflict-free, since if 𝑎𝑖, 𝑎𝑗 ∈ 𝑆, then

𝑎𝑖 ̸↣ 𝑎𝑗 since 𝜎 = 𝜋 ↾max(𝑖,𝑗)+1 is in 𝒯 ℱ , and thus In𝜎

is conflict-free. Next observe that for any 𝑛, either 𝑎𝑛 ∈
𝑆 or there is some 𝑚 so that 𝑎𝑚 ∈ 𝑆 and 𝑎𝑚 ↣ 𝑎𝑛.
In particular, if 𝜋(𝑛) = 0, then 𝑎𝑛 ∈ 𝑆 and otherwise
𝑎𝜋(𝑛)−1 ∈ 𝑆 and 𝑎𝜋(𝑛)−1 ↣ 𝑎𝑛.

Finally, note that both the map from 𝜎 to 𝑆 and from 𝑆
to 𝜎 are computable if ℱ is computable and are inverses
of each other.

Corollary 6.8. For any computable AF ℱ𝑒 there exists a
computable tree 𝒯 so that Spec¬∅

stb (ℱ𝑒) = Spec(𝒯 ).

Proof. This follows directly from Theorem 6.7 along with
the fact that ∅ is never a stable extension.

Corollary 6.9. For any computable AF ℱ𝑒 there exists a
computable tree 𝒯 so that Spec¬∅

infstb(ℱ𝑒) = Spec(𝒯 ).
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Proof. We add layers of branching to the tree as in Corol-
lary 6.4 so that, e.g., 𝜎(2𝑛) = 𝑚 means that 𝑚 is the 𝑛th
least number so that 𝑎𝑛 ∈ 𝑆. This produces a tree ̂︂𝒯 ℱ

so that the paths are in computable bijection with the
infinite stable extensions of ℱ .

Corollary 6.10. Uni∞stb and Uni∞infstb are Π1
1.

Proof. As the paths through 𝒯 ℱ𝑒 are in bijection with
the stable extensions, 𝑒 ∈ Uni∞stb if and only if 𝒯 ℱ𝑒 has a
unique path. As the paths through ̂︀𝒯 ℱ (see Corollary 6.9)
are in bijection with the infinite stable extensions in ℱ𝑒,
we have 𝑒 ∈ Uniinfstb if and only if ̂︀𝒯 ℱ𝑒 has a unique path.
By Theorem 3.10, these are both Π1

1 conditions.

The complete case

Given an argumentation framework ℱ , we can similarly
construct a tree 𝒯 ℱ so that paths through 𝒯 ℱ code com-
plete extensions. In order to ensure that 𝑓ℱ (𝑆) ⊆ 𝑆, we
will need the paths in 𝒯 ℱ to not only code sets 𝑆 but
also their attacked sets 𝑆+.

Given an extension 𝑆, we will let 𝜋 ∈ 𝒯 ℱ encode 𝑆
and 𝑆+ as follows:

• 𝜋(2𝑛) = 0 if 𝑎𝑛 ∈ 𝑆 and otherwise 𝜋(2𝑛) =
𝑘+1 where 𝑘 is least so 𝑎𝑘 /∈ 𝑆+ and 𝑎𝑘 ↣ 𝑎𝑛.

• 𝜋(2𝑛+1) = 0 if 𝑎𝑛 /∈ 𝑆+ and otherwise 𝜋(2𝑛+
1) = 𝑘 + 1 where 𝑘 is least so 𝑎𝑘 ∈ 𝑆 and
𝑎𝑘 ↣ 𝑎𝑛.

Note that 𝜋(2𝑛) explains why 𝑎𝑛 is either in 𝑆 or it is
not in 𝑓ℱ (𝑆), i.e., 𝑓ℱ (𝑆) ⊆ 𝑆, while 𝜋(2𝑛+ 1) simply
verifies that the elements which 𝜋 says are in 𝑆+ are in
fact in 𝑆+.

Formally, we define 𝒯 ℱ as follows:

Definition 6.11. Any given string 𝜎 ∈ 𝜔<𝜔 defines four
subsets of arguments in 𝐴ℱ :

• In𝜎 = {𝑎𝑖 : 𝜎(2𝑖) = 0} ∪ {𝑎𝑘 : (∃𝑗)(𝜎(2𝑗 +
1) = 𝑘 + 1}

• Out𝜎 = {𝑎𝑖 : 𝜎(2𝑖) ̸= 0} ∪ {𝑎𝑖 : (∃𝑗)𝜎(2𝑗 +
1) > 𝑖+ 1 ∧ 𝑎𝑖 ↣ 𝑎𝑗)}

• InSplus𝜎 = {𝑎𝑖 : (∃𝑗)(𝜎(2𝑗) > 𝑖 + 1 ∧ 𝑎𝑖 ↣
𝑎𝑗)} ∪ {𝑎𝑖 : 𝜎(2𝑖+ 1) ̸= 0}

• OutSplus𝜎 = {𝑎𝑖 : (∃𝑗)𝜎(2𝑗) = 𝑖 + 1} ∪ {𝑎𝑖 :
𝜎(2𝑖+ 1) = 0}

We define 𝒯 ℱ as the set of 𝜎 so that

1. In𝜎 is conflict-free;

2. In𝜎 ∩ Out𝜎 = ∅;

3. InSplus𝜎 ∩ OutSplus𝜎 = ∅;

4. If 𝜎(2𝑗) = 𝑘 + 1, then 𝑎𝑘 ↣ 𝑎𝑗 ;

5. If 𝜎(2𝑗 + 1) = 𝑘 + 1, then 𝑎𝑘 ↣ 𝑎𝑗 ;

6. For 𝑗, 𝑘 < |𝜎|, if 𝑎𝑘 ∈ OutSplus𝜎 and 𝑎𝑗 ∈ In𝜎

then 𝑎𝑗 ̸↣ 𝑎𝑘 ;

7. For 𝑛,𝑚 < |𝜎|, if 𝑎𝑛 ∈ OutSplus𝜎 and 𝑎𝑚 ∈ In𝜎 ,
then 𝑎𝑛 ̸↣ 𝑎𝑚 (i.e., 𝜎 does not contradict 𝑆 ⊆
𝑓ℱ (𝑆)).

Theorem 6.12. The complete extensions of ℱ are in bi-
jection with the set of paths [𝒯 ℱ ].

Proof. Let 𝑆 be any complete extension. We can define
𝜋 from 𝑆 as described at the beginning of this section. It
is straightforward to verify that each condition (1-7) of
Definition 6.11 is satisfied by 𝜋 ↾𝑛 for each 𝑛.

Given a path 𝜋 ∈ [𝒯 ℱ ], we can define sets 𝑆 = {𝑖 :
𝜋(2𝑖) = 0} and 𝑈 = {𝑖 : 𝜋(2𝑖+ 1) ̸= 0}. We note that
when 𝜎 ⪯ 𝜏 , In𝜎 ⊆ In𝜏 . It follows from this fact, as in
the previous theorems, that 𝑆 =

⋃︀
𝜎≺𝜋 In𝜎 . Similarly,

𝑈 =
⋃︀

𝜎≺𝜋 InSplus𝜎 .
Next we see that 𝑈 = 𝑆+. If 𝑛 ∈ 𝑈 , then 𝜋(2𝑛+1) ̸=

0 and by condition 5, we have 𝑎𝜋(2𝑛+1)−1 attacks 𝑎𝑛. But
then 𝑎𝜋(2𝑛+1)−1 ∈ In𝜋↾2𝑛+2 , so 𝑎𝜋(2𝑛+1)−1 ∈ 𝑆. Thus
𝑈 ⊆ 𝑆+. On the other hand if 𝑛 /∈ 𝑈 , then condition
6 for all 𝜎 of length > 2𝑛 + 1 ensures that there is no
𝑎𝑗 ∈ 𝑆 so 𝑎𝑗 ↣ 𝑎𝑛. Thus 𝑆+ ⊆ 𝑈 .

Finally, we verify that 𝑆 is complete. 𝑆 is clearly con-
flict free by Condition 1. Condition 7 ensures that any
𝑎𝑚 ∈ 𝑆 is also in 𝑓ℱ (𝑆), since if 𝑛 /∈ 𝑈 , then 𝑎𝑛 ̸↣ 𝑎𝑚.
To see that 𝑓ℱ (𝑆) ⊆ 𝑆, note that any 𝑎𝑛 /∈ 𝑆 has
𝜋(𝑛) ̸= 0 and 𝑎𝜋(𝑛)−1 /∈ 𝑆+ and 𝑎𝜋(𝑛)−1 ↣ 𝑎𝑛 by
condition 4. Thus 𝑎𝑛 /∈ 𝑓ℱ (𝑆).

Remark 6.13. The map from paths 𝜋 ∈ [𝒯 ℱ ] to com-
plete extensions 𝑆 ⊆ 𝐴ℱ is computable, but to compute
𝜋 ∈ 𝒯 ℱ we need both 𝑆 and 𝑆+. Thus, we are able to
say that for any computable AF ℱ𝑒, the set of Turing
degrees of pairs (𝑆, 𝑆+) where 𝑆 is a complete exten-
sion is always Spec(𝒯 ) for a computable tree 𝒯 , but note
that 𝑆 and 𝑆+ are not generally of the same Turing de-
gree. Thus, we are currently unable to fully characterize
Spec¬∅

co or Spec¬∅
infco.

Corollary 6.14. Uni∞infco is Π1
1.

Proof. We can alter the tree 𝒯 ℱ𝑒 as in Corollary 6.4 to get
a new tree ̂︀𝒯 so that the paths through ̂︀𝒯 are in bijection
with the infinite complete extensions. Then 𝑒 ∈ Uni∞infco

if and only if ̂︀𝒯 has a unique path. Theorem 3.10 shows
that this is a Π1

1 condition.

Corollary 6.15. Fix𝜎 ∈ {ad, stb, co, infad, infstb, infco}
and suppose that ℱ𝑒 has only countably many non-empty
𝜎 extensions. Then there is a hyperarithmetical set 𝑆 so
that {𝑎𝑛 : 𝑛 ∈ 𝑆} is a 𝜎 extension of ℱ𝑒.
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Proof. If 𝜎 ∈ {ad, stb, infad, infstb}, let 𝒯 be a tree so
that Spec¬∅

𝜎 (ℱ𝑒) = Spec(𝒯 ). If 𝜎 ∈ {𝑐𝑜, infco}, let 𝒯 be
a tree so that the set of Turing degrees of pairs (𝑆, 𝑆+) of
𝜎 extensions is exactly Spec(𝒯 ). Then 𝒯 is a computable
tree with countably many paths. By a classic result of
Kreisel [22, Theorem 3.9], 𝒯 has a hyperarithmetical
path, which corresponds to a hyperarithmetical 𝑆 so that
{𝑎𝑛 : 𝑛 ∈ 𝑆} is a 𝜎 extension of ℱ𝑒.

7. Conclusion and future work
In this paper, we initiated a systematic exploration of
the complexity issues inherent to infinite argumenta-
tion frameworks. To pursue this direction, we employed
computability-theoretic techniques which are ideally
suited for assessing the complexity of infinite mathemati-
cal objects. Our focus was on the credulous and skeptical
acceptance of arguments, as well as the existence and
uniqueness of extensions, for admissible, complete, and
stable semantics. We introduced and explored new se-
mantics that are meaningful exclusively in the infinite
setting, concerning the existence of infinite extensions
that satisfy a given semantics 𝜎. The computational prob-
lems we examined were found to be maximally complex,
properly belonging to the complexity classes of Σ1

1 and
Π1

1 sets. Furthermore, we showed that the techniques
introduced here enable the construction of a single argu-
mentation framework witnessing our hardness results,
thereby proving that solving these problems is not only
challenging for the entire class of argumentation frame-
works but also remains difficult for an individual, specific
framework.

A plethora of intriguing questions regarding the com-
plexity of infinite AFs remains open. First, we shall fill the
gaps that we left behind (such as proving theΠ1

1-hardness
for Skept∞co ). Next, we aim at investigating whether the
computational problems considered in this paper become
more tractable if we restrict to special classes of AFs, such
as the finitary ones (i.e., those in which each argument
receives finitely many attacks only [8]). Finally, future
research will extend our analysis to analogous problems
associated with other key semantics for AFs, including
grounded, preferred, and ideal semantics. Given that the
definitions of these semantics are more intricate than
those we examined here, we anticipate the need for addi-
tional techniques to thoroughly analyze them.
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