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Abstract
We investigate basic forms of inference involving modal notions and quantifiers, called modal categorical inferences. We do so by
extending Quarc, a novel logic that assigns a primary role to quantified phrases, with modalities from the hexagon of opposition. We
show that there are two possible readings of de dicto modalities (called symmetric and asymmetric, respectively), as opposed to the
unique reading of de re modalities. We focus on the asymmetric reading of de dicto modalities and explore the logical relations that
obtain between them. These are proven in a natural deduction system, accompanied by an appropriate syntax and semantics, and
graphically represented via a dodecagon of opposition. Moreover, we show that the asymmetric reading, in contrast to the symmetric
one, preserves all properties of the hexagon for basic modal notions. Thus, it provides a particularly attractive basis on which to further
investigate quantified modal reasoning.
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1. Introduction
Many arguments in everyday reasoning involve an interac-
tion of modal notions and quantification. Representing these
arguments in a formal setting is known to be challenging,
as witnessed by the existence of a plethora of rival accounts
of quantified modal logic [1]. Although the choice of an
account can be motivated by semantic issues (e.g. the inter-
pretation of possible worlds or the identity of individuals
across worlds), a more fundamental criterion to compare al-
ternative accounts is how they formalize the syntactic struc-
ture of quantified modal statements. In the present work,
we will employ a formalism that keeps track of quantified
phrases and we will focus on the logical rendering of simple
arguments involving modal categorical statements. Impor-
tantly, our syntactic focus will unveil that two alternative
readings for some of these statements are available. As we
will see, different motivations lead to adopting one reading
or the other.

We call 𝜑 a modal categorical statement iff:

• it makes reference to two categories of individuals
(e.g. 𝑆 and 𝑃 ), one of which is used as a domain of
quantification;

• it contains one modality from a given family;
• it does not make reference to specific individuals.

A modal categorical inference is an inference from a state-
ment 𝜑1 to a statement 𝜑2 s.t. both 𝜑1 and 𝜑2 qualify as
modal categorical statements. It can also be seen as a simple
argument consisting of one premise (𝜑1) and a conclusion
(𝜑2). Here is an example:

(∗) It’s necessary that every data controller is authorized
to process user data. Therefore, it isn’t contingent
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that some data controller is authorized to process
user data.

In (∗), 𝜑1 is the first sentence and 𝜑2 the second; they are
separated by the conclusion marker ‘therefore’. The two
categories of individuals correspond to the properties ‘is a
data controller’ and ‘is authorized to process user data’;1 the
modalities involved are ‘necessity’ (in 𝜑1) and ‘contingency’
(in 𝜑2). Inferences of this kind are involved in more com-
plex arguments, ranging from patterns of syllogism (with
two premises) to tree-like argumentative structures. Thus,
understanding how modal categorical inferences work is
crucial to generally assess arguments including modalities
and quantification.

We will be concerned with modalities from the hexagon
of opposition in Fig. 1. Something will be said to be:

• necessary iff it holds in all cases;
• possible iff it holds in some cases;
• impossible iff it holds in no cases;
• avoidable iff it does not hold in some cases;
• contingent iff it holds in some cases and it does not

hold in other cases;
• absolute iff either it holds in all cases or it holds in

no cases.

For further analysis of the hexagon, see e.g. [2].2

1The analysis of the two categories of individuals involved in a modal
categorical statement could be refined by representing some of these
as many-ary predicates rather than unary predicates. Yet, our simplifi-
cation is sufficient for the purposes of the present article. In the end, a
predicate 𝑆 applied to 𝑛 terms, for 𝑛 > 1, can always be transformed
into a unary predicate 𝑆′ by incorporating 𝑛 − 1 terms in 𝑆′. For
instance, the binary predicate ‘is a friend of’ as applied to the terms
‘Sara’ and ‘John’ may be transformed into the unary predicate ‘is a
friend of John’ as applied to ‘Sara’.

2The reason why we chose to work with the hexagon, rather than the
square of opposition (without contingency and absoluteness), is that in
many contexts of reasoning hexagon modalities play a crucial role. For
instance, consider the following statement:

(∗∗) I know whether all user accounts are secure.

Statement (∗∗) is compatible with the three options below:

• I know that all user accounts are secure;
• I know that some user accounts are secure and some aren’t;
• I know that no user account is secure.

This compatibility is explained by the difference between knowing
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Figure 1: Hexagon of opposition for modalities. An arrow from 𝑥
to 𝑦 indicates subalternation: if 𝑥 is true, then 𝑦 is true too (while
the opposite direction does not hold). An orange line between 𝑥
and 𝑦 indicates contrariety : if 𝑥 is true, then 𝑦 is false. A blue line
between 𝑥 and 𝑦 indicates subcontrariety : if 𝑥 is false, then 𝑦 is
true. A red line between 𝑥 and 𝑦 indicates contradiction: 𝑥 is true
if and only if 𝑦 is false.

In this work we are interested in both the formal and the
visual representation of modal categorical inferences. As far
as the visual representation is concerned, it is well-known
that polygons of opposition, which originated in medieval
works on Aristotle’s logic, facilitate the comprehension of
logical relations and are therefore regarded as cognitively
efficient devices for deductive reasoning [3].

As far as the formal representation is concerned, we want
to employ a mathematical language that is as simple as possi-
ble and closely adheres to the structure of natural languages
(in particular, English); thus, a language that is useful to
move back and forth between formal and informal reason-
ing. In this regard, we can observe that the syntax of the
Predicate Calculus (hereafter, PC) does not keep track of
the fact that quantified phrases are used as arguments of
predication in modal categorical statements. For instance,
when we formalize argument (∗) following PC’s syntax,3 we
need to render the first sentence as a construction involving
material implication (→), namely:

◻∀𝑥(DataController(𝑥)→ Authorized(𝑥))

Yet, there is no natural language expression corresponding
to→ in (∗). Moreover, due to the use of→ and of the indi-
vidual variable 𝑥, we lose information about the fact that
the quantified phrase ‘every data controller’ plays the role
of argument of predication in (∗).

By contrast, the formalism that we are going to employ,
the Quantified Argument Calculus (shortened ‘Quarc’) [4],
allows for a simple and explicit formalization of quantified
phrases. More precisely, the quantifiers ∀ and ∃ are always
used in combination with a unary predicate 𝑃 and the result
constitutes an argument of predication. For instance, we
can use the expression

(∀DataController)Authorized

whether and knowing that. While knowing that can be interpreted
as a form of necessity/impossibility (hence, a modality in the square
of opposition), knowing whether should be interpreted as a form of
absoluteness (hence, a modality not in the square of opposition).

3We stress that our idea of reducing many-ary predicates to unary
predicates does not play any role in this argument.

to formalize ‘every data controller is authorized to process
user data’.4 As shown in [6], it is possible to define a trans-
lation mapping PC formulas into Quarc formulas thanks to
the addition of a universal predicate 𝑇 (‘is a thing’) to the
language of Quarc, as well as a converse translation.5

When we combine a modal notion and a quantifier in a
sentence, we distinguish between de re and de dicto combina-
tions.6 In the former, the modalization applies to (categories
of) individuals, whereas in the latter it applies to an entire
sub-sentence. Consider the difference between ‘someone is
known to rob banks in this area’ (de re) and ‘it is known that
someone robs banks in this area’ (de dicto). Only the former
statement, when uttered, conveys the information that we
are aware of the identity of the robber. For a discussion of
de re and de dicto combinations in modal PC, see [1].

Quarc keeps track of the distinction between de dicto and
de re modalities as follows, where ◻ denotes necessity:

De Dicto ◻(∀DataController)Authorized

De Re (∀DataController) ◻ Authorized

Modal versions of Quarc are contained in various works, in-
cluding [4, 7, 8, 9]. Although a systematic comparison of the
expressiveness of modal PC and of modal Quarc has not yet
been offered in the literature, as long as we restrict our anal-
ysis to modal categorical statements, it is clearly possible to
define a simple back-and-forth translation between the two
formal languages, following the hints provided above. We
will discuss this aspect further at the end of our article.

The analysis of modal categorical inferences in Quarc
was first put forward in [10], where 24 combinations (12
de dicto + 12 de re) of quantifiers and hexagon modalities
were identified. Here we will focus on de dicto combinations
and provide an alternative reading of these, showing that it
gives rise to a radically different family of modal categor-
ical inferences. Our aim is to emphasize that while de re
combinations have just one legitimate reading, there are
two legitimate readings for de dicto combinations, the one
proposed in [10] and the one proposed here.

Below is the reading of de dicto combinations offered in
[10], where ◇ stands for possibility, ¬ for negation, ∧ for
conjunction and ∨ for disjunction:

• NU (Necessary Universality): ◻∀𝑆𝑃
• NP (Necessary Particularity): ◻∃𝑆𝑃
• PU (Possible Universality): ◇∀𝑆𝑃
• PP (Possible Particularity): ◇∃𝑆𝑃
• VU (Avoidable Universality): ◇∀𝑆¬𝑃
• VP (Avoidable Particularity): ◇∃𝑆¬𝑃
• IU (Impossible Universality): ◻∀𝑆¬𝑃
• IP (Impossible Particularity): ◻∃𝑆¬𝑃
• CU (Contingent Universality): ◇∀𝑆𝑃 ∧◇∀𝑆¬𝑃

• CP (Contingent Particularity): ◇∃𝑆𝑃 ∧◇∃𝑆¬𝑃

• BU (Absolute Universality): ◻∀𝑆𝑃 ∨ ◻∀𝑆¬𝑃

• BP (Absolute Particularity): ◻∃𝑆𝑃 ∨ ◻∃𝑆¬𝑃

4A similar syntactic treatment of quantified phrases can be found in
description logics [5].

5The converse translation works for a fragment of Quarc. The original
version of Quarc presented in [4] features additional syntactic devices
that are not used in the present work (e.g. reorder of predicates or
anaphora) and that are not straightforwardly translatable into the
syntax of PC.

6We can also speak of de re and de dicto modalities, given that these
combinations are named with reference to the scope of the modal
notion.
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The family of modal categorical inferences associated with
this reading is graphically represented as a dodecagon of
opposition in Fig. 2. Such a reading of de dicto combinations
ensures total symmetry with respect to the modal categorical
inferences based on de re combinations. As a matter of fact,
the dodecagon of opposition for de re combinations offered
in [10] is identical to the one in Fig. 2. For this reason,
we will say that the aforementioned reading of de dicto
combinations is the symmetric reading (with respect to de
re combinations).

However, in the symmetric reading modalities involving
negation are decomposed. Take VU (Avoidable Universality),
rendered as ◇∀𝑆¬𝑃 . The quantified phrase ∀𝑆 occurs be-
tween ◇ and ¬ and thus, in a sense, the modality at issue
is not purely de dicto (i.e. about the statement): while ◇
applies to a statement, ¬ applies to a category of individu-
als (predicate). Moreover, as a consequence of this, some
fundamental properties of hexagon modalities fail. For in-
stance, one would expect that something is avoidable iff it is
not necessary. Yet, this does not hold under the symmetric
reading. Consider again VU in the list above: assuming
the standard duality of ◻ and ◇, we can see that VU is not
equivalent to ¬NU, namely ¬◻∀𝑆𝑃 , under the symmetric
reading. Summing up, the symmetry between de re and de
dicto combinations proposed in [10] is obtained at a certain
cost.

The alternative reading of de dicto combinations that we
will propose in this article avoids the aforementioned prob-
lems. The main idea behind this reading is anticipating the
occurrence of negation in a formula so that it always ap-
pears (if at all) immediately after a modal operator. We will
call it the asymmetric reading (with respect to de re combina-
tions), since it gives rise to a dodecagon of opposition that is
highly different from the one in Fig. 2. The new dodecagon
is illustrated later in our article, in Fig. 3, once the analysis
of the asymmetric reading is carried out in rigorous terms.

PU

NP

VP

IU

NU

PP

IP

VU

CP

BP

CU

BU
Figure 2: Dodecagon for the symmetric reading of de dicto com-
binations, taken from [10]. The same colour conventions used in
the previous figure apply.

Our contribution paves the way to a systematic taxonomy
of modal categorical inferences, which have not received
much attention in the literature so far, despite their rele-
vance for everyday reasoning. We conjecture that this might
be due to the fact that PC is the underlying framework used
by many researchers working in the area of modal logic and

that the main ingredients of a modal categorical statement
require a more complex representation in modal PC.

The article is organized as follows. In sections 2 and 3
we introduce the syntax and the semantics of modal Quarc,
respectively. Section 4 contains a natural deduction calcu-
lus to build proofs. In section 5, we illustrate the modal
categorical inferences associated with the new reading of
de dicto combinations, together with the corresponding do-
decagon of opposition. Finally, section 6 indicates directions
for future research.

2. Syntax
We follow the basic set-up for the language of Quarc found
in [11], but exclude some ingredients, namely anaphora,
reorders and predicates beyond arity 1, since they are irrel-
evant for present purposes.

Definition 2.1 (Language). The language ℒ consists of the
following symbols:

(a) Denumerably many singular arguments
𝑎1, 𝑎2, 𝑎3, ....

(b) Denumerably many predicate symbols of arity 1,
𝑃1, 𝑃2, 𝑃3, ....

(c) Connectives: ∧, ∨,→, ¬.
(d) Quantifiers: ∀, ∃.
(e) One modal operator: ◻.
(f) Auxiliary symbols: brackets ((, )).

Remark 2.1. We shall use 𝑃,𝑄,𝑅,𝑆, etc. to denote arbi-
trary predicate symbols, and 𝑎, 𝑏, 𝑐, etc. to denote arbitrary
singular arguments. The lower case letter q will be used
to denote either of the quantifiers. The set of singular ar-
guments of ℒ shall be denoted by 𝑆𝐴, whereas the set of
predicate symbols will be denoted by 𝑃𝑅𝐸𝐷.

Remark 2.2. Although singular arguments are not involved
in categorical reasoning, they are needed to provide truth-
conditions for quantified statements, as we will see below.
The requirement for denumerably many singular arguments
is not a necessity, but would enable more straightforward
soundness and completeness proofs. While these aspects
are not relevant to the present investigation, we decided to
define languages in this way for the purpose of presenting a
logic that is functional beyond its applications in this paper.

Before defining the set of formulas, one further notion
needs to be introduced.

Definition 2.2 (Quantified Arguments). Let 𝑃 ∈ 𝑃𝑅𝐸𝐷.
The expressions ∀𝑃 and ∃𝑃 are called universally and par-
ticularly quantified arguments, respectively.

Definition 2.3 (Formulas). The set of ℒ-formulas 𝐹𝑂𝑅𝑀
is defined recursively as follows:

(a) Basic formulas: Let 𝑐 ∈ 𝑆𝐴 and 𝑃 ∈ 𝑃𝑅𝐸𝐷 be
given. Then 𝑐𝑃 is a basic formula.

(b) Predicate negation: Let 𝑐 and 𝑃 be as in (a). Then,
𝑐¬𝑃 is a formula.7

(c) Connectives: If 𝜑 and 𝜓 are formulas, then so are
(𝜑 ∨ 𝜓), (𝜑 ∧ 𝜓) and (𝜑 → 𝜓). If 𝜑 is a formula,
then so is ¬𝜑.

7It is possible to extend both the syntax and the semantics to allow for
finite strings of ◻ and ¬ in this position, but these are irrelevant for
our purposes.
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(d) Modals: If 𝜑 is a formula, then so is ◻𝜑.
(e) Governed formulas: Let 𝜑(𝑐) be a formula con-

taining an occurrence of some 𝑐 ∈ 𝑆𝐴, and let 𝑞𝑃 be
a quantified argument. If there is no quantified argu-
ment to the left of 𝑐 in 𝜑(𝑐), and there is no (proper)
substring 𝜓 in 𝜑(𝑐) s.t. 𝜓 is a formula which con-
tains 𝑐, then 𝜑(︀𝑞𝑃 ⇑𝑐⌋︀ is a formula. It is said to be
governed by that occurrence of 𝑞𝑃 .

(f) Nothing else is a formula.

The notion of governance provides an analogue to the usual
definitions of quantifier-scope and variable-binding in PC
(cf. [4]).

Example 2.1. The expression (◻𝑎3𝑃1 ∧ ∀𝑃5𝑃8) is a for-
mula of ℒ. However, it is not governed by ∀𝑃5. For a
formula of the form (◻𝑎3𝑃1 ∧ 𝑐𝑃8), for some 𝑐 ∈ 𝑆𝐴, does
not meet the requirements of 2.3 (e). Rather, it was gen-
erated via 2.3(c) by combining the formula ◻𝑎3𝑃1 and the
governed formula ∀𝑃5𝑃8. The latter is governed, since it
was generated from a formula of the form 𝑐𝑃8, satisfying
the conditions of 2.3(e).

Remark 2.3. We shall usually omit the brackets in conjunc-
tions, conditionals and disjunctions, as long as unique read-
ability is preserved.

Remark 2.4. While it will not be crucial for the following
discussion, we wish to remark that 𝐹𝑂𝑅𝑀 has unique
parsing. The proof for an extended syntax can be found in
[11], a simple adaption of which proves the same result for
𝐹𝑂𝑅𝑀 .

3. Semantics
While Quarc has been interpreted with both model-theoretic
and truth-valuational semantics, we employ the former.
Originally introduced in [6], and further developed in [7],
the model-theoretic semantics enjoy greater familiarity and
should thus be more intuitive. However, such semantics for
Quarc differ, in some respects, from those for the predicate
calculus. This further extends into the modal semantics orig-
inally presented in [7] and repeated below. A systematic
analysis of model-theoretic semantics for modal Quarc can
be found in [8].

Definition 3.1 (Frames). A frame ℱ is an ordered pair
∐︀𝑊,𝑅̃︀ of a non-empty set of possible worlds or indices 𝑊
and a binary relation 𝑅 ⊆ 𝑊 ×𝑊 . If 𝑤 ∈ 𝑊 stands in
relation 𝑅 to 𝑣 ∈𝑊 , we write 𝑤𝑅𝑣.

We will primarily be working with serial frames, i.e.
where for each 𝑤 ∈ 𝑊 there is some 𝑣 ∈ 𝑊 s.t. 𝑤𝑅𝑣.
Instead of providing a universal domain of quantification,
the model-theoretic semantics of Quarc employ only inter-
pretation functions. They specify for each predicate 𝑃 an ex-
tension, which in turn functions as a ‘local’ domain of quan-
tification. Additionally, each singular argument is mapped
to some object under an interpretation – objects which con-
stitute the members of the various predicate-extensions (cf.
[6], [7] and [12]). We follow [7] in treating elements of
extensions as tuples, whose last coordinate is an element
𝑤 ∈𝑊 of a given frame ℱ = ∐︀𝑊,𝑅̃︀.

Definition 3.2 (Interpretations). Let a frame ℱ = ∐︀𝑊,𝑅̃︀
be given. An interpretation ℐ of ℒ on ℱ is a function whose
domain is 𝑆𝐴 ∪ 𝑃𝑅𝐸𝐷 and which satisfies the following
conditions:

1. Each 𝑐 ∈ 𝑆𝐴 is assigned some object ℐ(𝑐). This
assignment is independent of any 𝑤 ∈𝑊 .8

2. Each 𝑃 ∈ 𝑃𝑅𝐸𝐷 is assigned a set ℐ(𝑃 ) consisting
of pairs ∐︀𝑥,𝑤̃︀, where 𝑥 is an object and 𝑤 ∈ 𝑊 .
Furthermore, the following constraint must be satis-
fied for each 𝑃 ∈ 𝑃𝑅𝐸𝐷: for all 𝑤 ∈𝑊 , there is an
object 𝑥 s.t. ∐︀𝑥,𝑤̃︀ ∈ ℐ(𝑃 ).

Remark 3.1. We shall sometimes talk about all 𝑥 that are
𝑃 relative to a given 𝑤 ∈ 𝑊 , for some frame ∐︀𝑊,𝑅̃︀ and
some interpretation ℐ . In that case, we shall write ⋃︀𝑃 ⋃︀𝑤 in
order to denote the set {𝑥 ∶ ∐︀𝑥,𝑤̃︀ ∈ ℐ(𝑃 )}.

In order to assign the proper truth-conditions to formulas
governed by a quantified argument 𝑞𝑃 , we need a way to
extend an interpretation and the set 𝑆𝐴 so that we can
name every object in ⋃︀𝑃 ⋃︀𝑤 , for each possible world 𝑤. This
is called an expansion.

Definition 3.3 (Expansions). Let ℐ be an interpretation of
ℒ on a frame ℱ = ∐︀𝑊,𝑅̃︀. Let 𝑐 be a singular argument
(possibly already in ℒ, i.e. 𝑆𝐴) and let 𝑥 be an object. The
(𝑐→ 𝑥)-expansion of ℐ , denoted by ℐ𝑐→𝑥, is an interpreta-
tion that satisfies the following conditions:

1. Either 𝑐 ∈ 𝑆𝐴, ℐ(𝑐) = 𝑥 and ℐ𝑐→𝑥(𝑐) = 𝑥, or 𝑐 ∉ 𝑆𝐴
and ℐ𝑐→𝑥(𝑐) = 𝑥.

2. For all 𝑐′ ∈ 𝑆𝐴 s.t. 𝑐 ≠ 𝑐′, ℐ𝑐→𝑥(𝑐
′) = ℐ(𝑐′).

3. For all 𝑃 ∈ 𝑃𝑅𝐸𝐷, ℐ𝑐→𝑥(𝑃 ) = ℐ(𝑃 ).

Remark 3.2. Observe that in the case that 𝑐 ∈ 𝑆𝐴 and yet
ℐ(𝑐) ≠ 𝑥, there is no (𝑐→ 𝑥)-expansion for ℐ .

Definition 3.4 (Truth-Conditions). Let ℱ = ∐︀𝑊,𝑅̃︀ be
a frame and ℐ an interpretation of ℒ on ℱ . The truth-
conditions for formulas in 𝐹𝑂𝑅𝑀 on ℱ over ℐ are given
by a function 𝐹𝑂𝑅𝑀 ×𝑊 → {0,1}, which obeys the rules
(i)-(vi) below. If a formula 𝜑 is assigned the value 1 in 𝑤,
we write ℐ,𝑤 ⊧ 𝜑, and ℐ,𝑤 ⊭ 𝜑 if it is assigned 0. The
conditions for a given 𝜑 are as follows:

(i) Basic formulas: Let 𝑐𝑃 be a basic formula. Then:
ℐ,𝑤 ⊧ 𝑐𝑃 iff ∐︀ℐ(𝑐),𝑤̃︀ ∈ ℐ(𝑃 ).

(ii) Predicate Negation: Let 𝑐¬𝑃 be a predicate nega-
tion. Then, ℐ,𝑤 ⊧ 𝑐¬𝑃 iff ℐ,𝑤 ⊧ ¬𝑐𝑃 .9

(ii) Sentential Negation: If 𝜑 is of the form ¬𝜓, then
ℐ,𝑤 ⊧ ¬𝜓 iff ℐ,𝑤 ⊭ 𝜓.

(iii) Connectives:

1. If 𝜑 is of the form 𝜓 ∧ 𝜒, then ℐ,𝑤 ⊧ 𝜓 ∧ 𝜒
iff ℐ,𝑤 ⊧ 𝜓 and ℐ,𝑤 ⊧ 𝜒.

2. If 𝜑 is of the form 𝜓 ∨ 𝜒, then ℐ,𝑤 ⊧ 𝜓 ∨ 𝜒
iff ℐ,𝑤 ⊧ 𝜓 or ℐ,𝑤 ⊧ 𝜒.

3. If 𝜑 is of the form 𝜓 → 𝜒, then
ℐ,𝑤 ⊧ 𝜓 → 𝜒 iff ℐ,𝑤 ⊭ 𝜓 or ℐ,𝑤 ⊧ 𝜒.

(iv) Modals: If 𝜑 is of the form ◻𝜓, then ℐ,𝑤 ⊧ ◻𝜓 iff
for every 𝑣 ∈𝑊 s.t. 𝑤𝑅𝑣, ℐ, 𝑣 ⊧ 𝜓.

(v) Universal quantification: Let 𝜑(∀𝑃 ) be governed
by the universally quantified argument ∀𝑃 . Then:
ℐ,𝑤 ⊧ 𝜑(∀𝑃 ) iff for every 𝑥 ∈ ⋃︀𝑃 ⋃︀𝑤 , ℐ𝑐→𝑥,𝑤 ⊧
𝜑(︀𝑐⇑∀𝑃 ⌋︀.

8In that sense, singular arguments are rigid designators.
9This clause only applies to formulas of the required form. As soon as
quantification is involved, this equivalence no longer holds, as is easily
verified.
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(vi) Particular quantification: Let𝜑(∃𝑃 ) be governed
by the particularly quantified argument ∃𝑃 . Then:
ℐ,𝑤 ⊧ 𝜑(∃𝑃 ) iff for some 𝑥 ∈ ⋃︀𝑃 ⋃︀𝑤 , ℐ𝑐→𝑥,𝑤 ⊧
𝜑(︀𝑐⇑∃𝑃 ⌋︀.

Example 3.1. Consider the following interpretation ℐ on
an equivalence frame with two worlds (reflexive arrows are
suppressed):

𝑥𝑃 , 𝑥𝑄, 𝑦𝑅w 𝑦𝑃 , 𝑦𝑄, 𝑥𝑅 v

with 𝑥 ≠ 𝑦 two random objects, and 𝑃 , 𝑄 and 𝑅 ∈ 𝑃𝑅𝐸𝐷.
Only the true basic formulas (for the symbols under con-
sideration) are listed in the diagram. Since each predicate
has at least one member for each world, 3.2(2.) is satisfied.
In 𝑤, ⋃︀𝑃𝑤 ⋃︀ = {𝑥}. Thus, in order to evaluate ∀𝑃𝑄, we first
pick some 𝑐 ∉ 𝑆𝐴 (for convenience) and check the truth of
𝑐𝑄 under the appropriate (𝑐→ 𝑥)-expansion. Since there
is only once case to check, and 𝑥 ∈ ⋃︀𝑄𝑤 ⋃︀, the formula is true.
Similarly, we can establish:

• ℐ,𝑤 ⊧ ∃𝑃𝑄
• ℐ,𝑤 ⊭ ∀𝑅𝑃
• ℐ, 𝑣 ⊭ ∃𝑅𝑄
• ℐ, 𝑣 ⊭ ◻∀𝑅𝑄
• etc.

Having defined truth for formulas, we can now proceed
to define validity and entailment over a class of frames in
the usual way:

Definition 3.5 (Entailment and Validity). We first define
entailment, treating validity as a special case:

• Let ℱ = ∐︀𝑊,𝑅̃︀ be a frame. A set of formulas Γ
entails a formula 𝜑 on ℱ iff for every interpretation
ℐ and every world 𝑤 ∈ 𝑊 , if 𝐼,𝑤 ⊧ 𝛾 for every
𝛾 ∈ Γ, then 𝐼,𝑤 ⊧ 𝜑. In such a case, we write
Γ ⊧ℱ 𝜑.

• Let F be a class of frames. Then, a set of formulas Γ
entails a formula 𝜑 on F iff for every ℱ ∈ F, Γ ⊧ℱ 𝜑.
In this case, we write Γ ⊧F 𝜑.

• A formula 𝜑 is a validity on a frame ℱ iff if it is
entailed by the empty set on ℱ . It is a validity on a
class of frames F just in case the empty set entails it
on F. In the latter case, we write ⊧F 𝜑.

4. Proof Theory
In this section, we introduce an unlabelled Gentzen-style
natural deduction system. It will be a Quarc-analogue of the
normal modal logic 𝐷. We choose an unlabelled system in
order to once again remain closer to the linguistic form of
quantified modal reasoning in natural language. We follow
the basic set-up found in [13] and [14].

Definition 4.1 (Proofs). A proof is a rooted tree where
every vertex is labelled with an element of 𝐹𝑂𝑅𝑀 , and
each edge is labelled with one of the rules of definition 4.2.
The root is the conclusion of the proof, and its leaves are
assumptions that are either discharged or undischarged, as
specified by the rules. We say the conclusion depends on
the undischarged assumptions. We explicitly allow empty
assumption classes (cf. [14]).

With this standard graph-theoretic set-up, the logic𝑁𝐷
◻𝑄−

can be introduced, where 𝑄− designates the simplified ver-
sion of Quarc we are employing. The rules for the ◻-free
fragment are taken from [11], while the rule ◻I is taken
from [15]. Lastly, the rules ◻¬𝐼 and ◻¬𝐸 are original.10

Definition 4.2 (𝑁𝐷
◻𝑄− ). The logic 𝑁𝐷

◻𝑄− is given by the
following rules:

1. Connectives: We adopt the standard introduction
and elimination rules for ∧, ∨ and→.
Since the symbol � is not part of the syntax, the
following rules for ¬ are chosen:

[𝜑]𝑖

⋮

𝜓

[𝜑]𝑖

⋮

¬𝜓
¬I𝑖

¬𝜑

[¬𝜑]𝑖

⋮

𝜓

[¬𝜑]𝑖

⋮

¬𝜓
¬E𝑖

𝜑

2. Predicate Negation:

𝑐¬𝑃 PS
¬𝑐𝑃

¬𝑐𝑃 SP
𝑐¬𝑃

3. Quantification: Let 𝜑(𝑞𝑃 ) be a formula governed
by the quantified argument 𝑞𝑃 . Let 𝜑(︀𝑐⇑𝑞𝑃 ⌋︀ be the
formula where the governing occurrence of 𝑞𝑃 has
been replaced by the singular argument 𝑐.
The rules for universal quantification are as follows:

(︀𝑐𝑃 ⌋︀𝑖

⋮

𝜑(︀𝑐⇑∀𝑃 ⌋︀
∀I𝑖, ∗

𝜑(︀∀𝑃 ⌋︀

𝜑(︀∀𝑃 ⌋︀ 𝑐𝑃
∀E

𝜑(︀𝑐⇑∀𝑃 ⌋︀

where the side condition ∗ requires 𝑐 to not occur
in any undischarged assumption or in 𝜑(∀𝑃 ).
Particular quantification has the following introduc-
tion rule:

𝑐𝑃 𝜑(︀𝑐⇑∃𝑃 ⌋︀
∃I

𝜑(︀∃𝑃 ⌋︀

Since no 𝑃 ∈ 𝑃𝑅𝐸𝐷 is ever empty, both quantifiers
obey the following rule:

𝜑(︀𝑞𝑃 ⌋︀

(︀𝑐𝑃 ⌋︀𝑖, (︀𝜑(︀𝑐⇑𝑞𝑃 ⌋︀⌋︀𝑖

⋮

𝜓
Imp𝑖, ∗

𝜓

where the side condition ∗ requires 𝑐 to not occur
in any undischarged assumptions, 𝜓 or 𝜑(∀𝑃 ).

4. Modality: For the modal operator ◻, we have the
following introduction rule:

𝜑
◻I, ∗

◻𝜑

where the condition ∗ says that if 𝜑 depended on
the assumptions 𝛾1, ..., 𝛾𝑘 , then ◻𝜑 now depends
on the assumptions ◻𝛾1, ...,◻𝛾𝑘 .
Lastly, given our interest in working with serial
frames, the following rules capture the modal logic
𝐷:

10The authors are indebted to Elio La Rosa for suggesting such rules.
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[𝜑]𝑖

⋮

◻𝜓

[𝜑]𝑖

⋮

◻¬𝜓
◻¬I𝑖

¬𝜑

[¬𝜑]𝑖

⋮

◻𝜓

[¬𝜑]𝑖

⋮

◻¬𝜓
◻¬E𝑖

𝜑

Remark 4.1. We allow multiple applications of ◻I, though
this will never occur in the proofs in subsection 5.2. In any
case, we keep track of the added ◻s by putting ◻ into the
superscript of an assumption 𝛾. We add the following con-
vention: if ◻𝑘 is a string of 𝑘-many ◻s, then if we discharge
𝛾◻

𝑘

, we discharge the formula ◻𝑘𝛾.

Remark 4.2. Caution must be exercised when mixing the
rule ◻I with others that use assumption classes. For ex-
ample, if we apply ¬I while having assumed 𝜑, then, if 𝜑
underwent an application of ◻I on the left branch, but not
on the right, we cannot derive ¬ ◻ 𝜑 via ¬I. For otherwise,
the application of ¬I becomes incorrect, since 𝜑 does not
have the prerequisite form on the right branch of the tree.

Definition 4.3 (Syntactic Consequence). Let Γ be a set of
formulas and 𝜑 a formula. Then, Γ proves 𝜑, or 𝜑 is a syn-
tactic consequence of Γ, just in case there are finitely many
𝛾1, ..., 𝛾𝑘 ∈ Γ s.t. there is a proof of 𝜑 with undischarged
assumptions 𝛾1, ..., 𝛾𝑘 . In such a case, we write Γ ⊢ 𝜑.11 If
Γ = ∅, 𝜑 is a theorem and we write ⊢ 𝜑.

Remark 4.3. The preceding proof system has been stated in
more generality than strictly required. For example, in ∀I,
all 𝜑(∀𝑃 )will always be of the form ∀𝑃𝑄 or ∀𝑃¬𝑄, since
the syntax only contains unary predicates. Nevertheless,
we would like to stress that the rules for the quantifiers also
work with respect to more complex syntaxes, such as those
including Quarc’s other features, like anaphora, reordered
predicates and 𝑛-ary predicates. Likewise, the rules PS and
SP are not used in subsection 5.2. However, they would be
required to established the relations of the symmetric de
dicto formalizations mentioned in sections 1 (cf. Fig. 2) and
5.4.

Since it is not the focus of the present investigation, we
merely mention the following result, without proof:

Theorem 4.1. 𝑁𝐷
◻𝑄− is both strongly sound as well as com-

plete with respect to the class of all serial frames.

We shall rely on the soundness of𝑁𝐷
◻𝑄− in subsection 5.2.

A related result can be found in [12] and [9], the latter which
features an extended proof system of the one featured in
definition 4.2, including strong soundness and completeness
with respect to substitutional semantics.12

5. The Dodecagon of Opposition for
De Dicto Modalities

In this section, we establish the dodecagon of opposition for
the asymmetric de dicto reading. We begin by detailing the
latter reading of the twelve combinations of quantification
and modality (subsection 5.1). After presenting these, we
prove the resulting individual relations in𝑁𝐷

◻𝑄− (subsection
5.2) and provide example counter-models for some pairs that

11Subscripts for ⊢ are suppressed, given that 𝑁𝐷
◻𝑄− is the only logic

under consideration.
12It can be shown that the two semantics validate the same sequents,

hence the result can be transferred.

lack certain relations (subsection 5.3). Finally, we discuss
these results by comparing them to the symmetric de dicto
formalizations (5.4) of Fig. 2.

5.1. The Combinations and the Resulting
Dodecagon

Before introducing the combinations themselves, further
modal notions need to be introduced. The language intro-
duced in 2.1 has only one primitive modal operator, viz. ◻
(necessity). We shall define the remaining modal notions in
terms of ◻:

Definition 5.1 (Further Modalities). Let 𝜑 ∈ 𝐹𝑂𝑅𝑀 be
given. The following modal notions receive their own sym-
bols:

• Possibility: ◇𝜑 ∶≡ ¬ ◻ ¬𝜑.
• Absoluteness: ∆𝜑 ∶≡ ◻𝜑 ∨ ◻¬𝜑.
• Contingency: ∇𝜑 ∶≡ ¬ ◻ ¬𝜑 ∧ ¬ ◻ 𝜑.

The final two modal notions – avoidability and impos-
sibility – do not receive a special symbol, but are instead
directly rendered as ¬ ◻ 𝜑 and ◻¬𝜑, respectively.13

This definition yields the six modal notions introduced
in section 1. We shall follow the terminology established
there and denote the type of quantification with either U
(universal) or P (particular)14, and use N, P, V, B, C and I
for the six modal notions from section 1, respectively. This
yields the same twelve names as in section 1, albeit with
different logical profiles:

Definition 5.2 (Asymmetric Reading). Let 𝑆 and 𝑃 be two
predicates of ℒ. The twelve asymmetric de dicto combina-
tions are the following:

• NU: ◻∀𝑆𝑃
• NP: ◻∃𝑆𝑃
• PU: ◇∀𝑆𝑃
• PP: ◇∃𝑆𝑃
• VU: ¬ ◻ ∀𝑆𝑃
• VP: ¬ ◻ ∃𝑆𝑃

• IU: ◻¬∀𝑆𝑃
• IP: ◻¬∃𝑆𝑃
• CU: ∇∀𝑆𝑃
• CP: ∇∃𝑆𝑃
• BU: ∆∀𝑆𝑃
• BP: ∆∃𝑆𝑃

Remark 5.1. Thus, BP would be read as ‘Either, necessarily,
some 𝑆 are 𝑃 , or, necessarily, no 𝑆 are 𝑃 ’. This is quite
unlike its symmetric counterpart, which would be read as
‘Either, necessarily some 𝑆 are 𝑃 , or, necessarily, some 𝑆
are not 𝑃 ’.

Remark 5.2. In the following, if 𝑋𝑌 is a combination, we
shall write ¬𝑋𝑌 for the negation of the whole correspond-
ing formula.

Before presenting the main results, the Aristotelian rela-
tions themselves must be introduced. Given the setting of
section 3, the relations are rendered as follows:

Definition 5.3 (Aristotelian Relations). Let ⊧ denote en-
tailment on the class of all serial frames (cf. 3.5). Then, a
formula 𝜓 is a subalternate of another formula 𝜑 iff 𝜑 ⊧ 𝜓
and it is not the case that 𝜓 ⊧ 𝜑. Furthermore, two formulas
𝜑 and 𝜓 are:

• contraries iff 𝜑 ⊧ ¬𝜓,
13This is a common choice in the literature, as witnessed by [2, 16].
14The letter P also fulfills other functions in the present investigation.

However, it should always be clear by context which role is intended.
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• subcontraries iff ¬𝜑 ⊧ 𝜓,
• contradictories iff they are both contaries and sub-

contaries, i.e. 𝜑 ⊧ ¬𝜓 and ¬𝜓 ⊧ 𝜑. In such a case,
we write 𝜑 â⊧ ¬𝜓.

Given that there are twelve combinations, we must in-
vestigate a total of 66 pairs.15 In total, 16 pairs have no
Aristotelian relation between them, with the remaining 50
instantiating one of the relations in definition 5.3. These
findings are summarized in the following dodecagon:

PU

NP

VP

IU

NU

PP

IP

VU

CP

BP

CU

BU
Figure 3: The dodecagon of opposition for the asymmetric read-
ing. Colour conventions are as in previous figures.

Theorem 5.1 (Dodecagon of Asymmetric De Dicto Modali-
ties). The relations depicted in Fig. 3 obtain.

There are eleven contraries, eleven subcontraries, six con-
tradictories and 22 subalternations. We shall return to these
facts in subsection 5.4.

5.2. Proofs of the Relations
In this subsection, we prove all 50 relations, namely all
modal categorical inferences resulting from our asymmetric
reading of de dicto modalities. Instead of proving them clas-
sified by type, we will generally prove them in order of in-
creasing proof complexity. This allows for a more compact
and straightforward presentation of the proofs. As men-
tioned before, we rely on the soundness of 𝑁𝐷

◻𝑄− through-
out this section. The proofs themselves are categorized into
two types: simple proofs, which only require propositional
reasoning or straightforward modal reasoning, and complex
proofs. We consider each in turn.

5.2.1. Simple Proofs

Some of these relations hold purely by virtue of proposi-
tional reasoning. This holds for all contradictory pairs, in
particular:

Fact 5.1. The following hold:

15We disallow repetitions for reasons of triviality, and order does not
matter with respect to forming the pairs, due to the properties of
Aristotelian relations.

(i) 𝐶𝑃 â⊧ ¬𝐵𝑃

(ii) 𝐶𝑈 â⊧ ¬𝐵𝑈

(iii) 𝑃𝑈 â⊧ ¬𝐼𝑈

(iv) 𝑁𝑈 â⊧ ¬𝑉 𝑈

(v) 𝑃𝑃 â⊧ ¬𝐼𝑃

(vi) 𝑉 𝑃 â⊧ ¬𝑁𝑃

Proof. Given how the modalities are ultimately defined,
proving all these claims becomes a matter of simple propo-
sitional reasoning:

• (i) and (ii) are instances of the de Morgan rules.
For example, 𝐶𝑃 â⊧ ¬𝐵𝑃 becomes the claim
¬ ◻ ¬∃𝑆𝑃 ∧ ¬ ◻ ∃𝑆𝑃 â⊧ ¬(◻∃𝑆𝑃 ∨ ◻¬∃𝑆𝑃 ).

• (iv) is an instance of double negation elimination/in-
troduction: ◻∀𝑆𝑃 â⊧ ¬¬ ◻ ∀𝑆𝑃 .

• (iii), (v) and (vi) are instances of the schema 𝜑 â⊧ 𝜑.
For example, 𝑃𝑈 â⊧ ¬𝐼𝑈 is the claim that ¬ ◻
¬∀𝑆𝑃 â⊧ ¬ ◻ ¬∀𝑆𝑃 .

Similarly, further relations are provable by applications
of propositional reasoning. This applies to the following
pairs:

Fact 5.2. The following hold:

(i) 𝐼𝑈 ⊧ 𝐵𝑈

(ii) 𝑁𝑈 ⊧ 𝐵𝑈

(iii) 𝐶𝑈 ⊧ 𝑃𝑈

(iv) 𝐶𝑈 ⊧ 𝑉 𝑈

(v) 𝑁𝑃 ⊧ 𝐵𝑃

(vi) 𝐶𝑃 ⊧ 𝑃𝑃

(vii) 𝐶𝑃 ⊧ 𝑉 𝑃

(viii) 𝐼𝑃 ⊧ 𝐵𝑃

(ix) 𝑁𝑈 ⊧ ¬𝐶𝑈

(x) 𝐼𝑈 ⊧ ¬𝐶𝑈

(xi) 𝐶𝑃 ⊧ ¬𝐼𝑃

(xii) 𝑁𝑃 ⊧ ¬𝐶𝑃

(xiii) ¬𝑉 𝑈 ⊧ 𝐵𝑈

(xiv) ¬𝐵𝑃 ⊧ 𝑉 𝑃

(xv) ¬𝑃𝑃 ⊧ 𝐵𝑃

(xvi) ¬𝑃𝑈 ⊧ 𝐵𝑈

Proof. We group the proofs by the type of relation they
establish:

• The subalternations (i)-(viii) are established either by
a single application of ∨I or ∧E. For example, 𝐼𝑈 ⊧
𝐵𝑈 is the claim that ◻¬∀𝑆𝑃 ⊧ ◻∀𝑆𝑃 ∨ ◻¬∀𝑆𝑃 ,
and 𝐶𝑃 ⊧ 𝑉 𝑃 is the claim that ¬ ◻ ¬∃𝑆𝑃 ∧ ¬ ◻
∃𝑆𝑃 ⊧ ¬ ◻ ∃𝑆𝑃 .

• The contraries (ix)-(xii) are proven either by a singe
application of ∧E – as in the case of (xi) – or a com-
bination of ∧E and ¬I, as in the cases of (ix), (x) and
(xii), since they are of the form 𝜑 ⊧ ¬(𝜓 ∧ ¬𝜑) or
𝜑 ⊧ ¬(¬𝜑 ∧ 𝜓).16

• The remaining cases are subcontraries, and are
proven by a combination of double negation elim-
ination and ∨I – (xiii), (xv) and (xvi) – or by using
the de Morgan rules and ∧E, as in (xiv). The latter
is the claim that ¬(◻∃𝑆𝑃 ∨ ◻¬∃𝑆𝑃 ) ⊧ ¬ ◻ ∃𝑆𝑃 ,
and the former are of the form ¬¬𝜑 ⊧ 𝜑 ∨ 𝜓.

A number of the relations depicted in theorem 5.1 are the
result of an application of ◻¬𝐼 , as well as double negation
elimination:

Fact 5.3. The following hold:

16Observe that the sequent in (xi) coincides with the one in (vi).
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(i) 𝑁𝑈 ⊧ 𝑃𝑈

(ii) 𝑁𝑃 ⊧ 𝑃𝑃

(iii) 𝐼𝑃 ⊧ 𝑉 𝑃

(iv) 𝐼𝑈 ⊧ 𝑉 𝑈

(v) 𝑁𝑈 ⊧ ¬𝐼𝑈

(vi) 𝑁𝑃 ⊧ ¬𝐼𝑃

(vii) ¬𝑃𝑃 ⊧ 𝑉 𝑃

(viii) ¬𝑃𝑈 ⊧ 𝑉 𝑈

Proof. Most of these pairs can be established with a single
application of ◻¬𝐼 . This holds for (i)-(vi).17 We prove (iv):

◻¬∀𝑆𝑃 (︀◻∀𝑆𝑃 ⌋︀1
◻¬I1

¬ ◻ ∀𝑆𝑃

This result, in turn, establishes (viii):

¬¬ ◻ ¬∀𝑆𝑃
DNE

◻¬∀𝑆𝑃
5.3(iv)

¬ ◻ ∀𝑆𝑃

Lastly, (vii) has the same proof as (viii), except with particu-
lar quantification instead of universal one.

With these facts, thirty of the fifty relations have been
established. We now turn to the more complex cases.

5.2.2. Complex Proofs

We begin by noticing the following fact:

Fact 5.4. ∀𝑆𝑃 ⊧ ∃𝑆𝑃

Proof.

∀𝑆𝑃

(︀𝑎𝑆⌋︀1 (︀𝑎𝑃 ⌋︀1

∃I
∃𝑆𝑃 Imp1

∃𝑆𝑃

In the following, we treat this proof as an admissible rule
with the name Sub (‘subalternation’).18 As an immediate
corollary, we gain the entailment ¬∃𝑆𝑃 ⊧ ¬∀𝑆𝑃 . The
corresponding proof will also be treated as an admissible
rule, named CSub (‘contrapositive subalternation’). With
these basic building blocks, we can establish the following:

Fact 5.5. The following hold:

(i) 𝑁𝑈 ⊧ 𝑁𝑃

(ii) 𝑁𝑈 ⊧ 𝑃𝑃

(iii) 𝑁𝑈 ⊧ ¬𝐼𝑃

(iv) 𝑁𝑈 ⊧ 𝐵𝑃

(v) 𝑉 𝑃 ⊧ ¬𝑁𝑈

(vi) 𝑉 𝑃 ⊧ 𝑉 𝑈

(vii) 𝑁𝑈 ⊧ ¬𝐶𝑃

(viii) ¬𝑉 𝑈 ⊧ 𝑁𝑃

Proof. We first prove (i):

∀𝑆𝑃◻ Sub
∃𝑆𝑃

◻I
◻∃𝑆𝑃

Recall that according to remark 4.1, we add◻ as a superscript
to all undischarged assumptions after applying ◻I. Thus, the
conclusion ◻∃𝑆𝑃 now depends on the assumption ◻∀𝑆𝑃 .
This proof can in turn be extended to yield (ii):

∀𝑆𝑃◻
5.5(i)

◻∃𝑆𝑃 (︀◻¬∃𝑆𝑃 ⌋︀2
◻¬I2

¬ ◻ ¬∃𝑆𝑃
17Moreover, the sequents in (i) and (v), as well as (ii) and (vi), coincide.
18Essentially the same proof also establishes 𝜑(∀𝑃 ) ⊧ 𝜑(∃𝑃 ), irre-

spective of the complexity of 𝜑 and the underlying syntax, so long as
the quantified arguments ∀𝑃 and ∃𝑃 are governing 𝜑.

Additionally, (iii) is the same sequent as (ii). Certain propo-
sitional arguments further prove (iv)-(viii). First, (iv) is
proven by applying ∨I to the conclusion of the proof in
(i). Second, (v) is ultimately the same sequent as (vi):
¬ ◻ ∃𝑆𝑃 ⊧ ¬ ◻ ∀𝑆𝑃 , which is the contraposition of (i).
Third, (vii) has the following proof:

∀𝑆𝑃◻
5.5(i)

◻∃𝑆𝑃

(︀¬ ◻ ¬∃𝑆𝑃 ∧ ¬ ◻ ∃𝑆𝑃 ⌋︀2

∧E
¬ ◻ ∃𝑆𝑃

¬I2
¬(¬ ◻ ¬∃𝑆𝑃 ∧ ¬ ◻ ∃𝑆𝑃 )

Finally, (viii) is established as follows:

¬¬ ◻ ∀𝑆𝑃
DNE

◻∀𝑆𝑃

(︀∀𝑆𝑃◻⌋︀2

5.5(i)
◻∃𝑆𝑃

→I2
◻∀𝑆𝑃 → ◻∃𝑆𝑃

→E
◻∃𝑆𝑃

Observe that, given how ◻I works, ∀𝑆𝑃◻ must first be
discharged, for we cannot reason with ◻∀𝑆𝑃 directly to
◻∃𝑆𝑃 .

From these proofs, we can further derive the following
results:

Fact 5.6. Fact 5.5 further entails the following:

(i) 𝐶𝑃 ⊧ 𝑉 𝑈
(ii) ¬𝑉 𝑈 ⊧ 𝑃𝑃

(iii) ¬𝑉 𝑈 ⊧ 𝐵𝑃

Proof. (i) follows directly from ∧E applied to ¬ ◻ ¬∃𝑆𝑃 ∧
¬ ◻ ∃𝑆𝑃 and by proceeding as in 5.5(v)/(vi). (ii) follows
from 5.5(viii) by applying ◻¬𝐼 :

¬¬ ◻ ∀𝑆𝑃
5.5(viii)

◻∃𝑆𝑃 (︀◻¬∃𝑆𝑃 ⌋︀2
◻¬I2

¬ ◻ ¬∃𝑆𝑃

To prove (iii), we use the proof of 5.6(i) as a starting point
and apply ∨ to its conclusion to yield ◻∃𝑆𝑃 ∨◻¬∃𝑆𝑃 .

We now turn to the amodal entailment ¬∃𝑆𝑃 ⊧ ¬∀𝑆𝑃 .
It provides the basis for the remaining proofs:

Fact 5.7. The following entailments obtain:

(i) 𝐼𝑃 ⊧ 𝐼𝑈
(ii) 𝐼𝑃 ⊧ 𝐵𝑈

(iii) 𝐼𝑃 ⊧ 𝑉 𝑈
(iv) 𝐼𝑃 ⊧ ¬𝑃𝑈
(v) 𝑃𝑈 ⊧ 𝑃𝑃

(vi) ¬𝐼𝑈 ⊧ 𝑃𝑃

(vii) 𝐶𝑈 ⊧ 𝑃𝑃

(viii) 𝐶𝑈 ⊧ ¬𝐼𝑃

(ix) ¬𝐵𝑈 ⊧ 𝑃𝑃

Proof. We once again prove (i) first:

¬∃𝑆𝑃◻
CSub

¬∀𝑆𝑃
◻I

◻¬∀𝑆𝑃

Via an application of ∨I, we immediately yield (ii). Via ◻¬𝐼 ,
we establish (iii):

¬∃𝑆𝑃◻
5.7(i)

◻¬∀𝑆𝑃 (︀◻∀𝑆𝑃 ⌋︀1
◻¬I1

¬ ◻ ∀𝑆𝑃

From (i) and double negation introduction, we can prove (iv).
(v) is established in the following way, where CP refers to
the transformation of a conditional into its contrapositive:
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(︀¬∃𝑆𝑃◻⌋︀1

5.7(i)
◻¬∀𝑆𝑃

→I1
◻¬∃𝑆𝑃 → ◻¬∀𝑆𝑃

CP
¬ ◻ ¬∀𝑆𝑃 → ¬ ◻ ¬∃𝑆𝑃 ¬ ◻ ¬∀𝑆𝑃

→E
¬ ◻ ¬∃𝑆𝑃

Since (vi) is the same sequent as (v), we have therefore
also established (vi). Furthermore, we can prove (vii) via
applying ∧E to ¬◻¬∀𝑆𝑃 ∧¬◻∀𝑆𝑃 and then proceeding as
in the proof of (v). (viii) is the same sequent as (vii), and (ix)
is proven by first applying the de Morgan laws to ¬𝐵𝑈 to
obtain 𝐶𝑈 (cf. 5.1(ii)), and then proceeding as in (vii).

With these results, theorem 5.1 has been established:

Proof of theorem 5.1. Follows from facts 5.1, 5.2, 5.3, 5.5, 5.6
and 5.7.

5.3. Sample Counter-Models for the
Remaining Pairs

The remaining sixteen pairs do not instantiate any Aris-
totelian relation. Proving this is mostly straightforward. We
showcase one pair in detail, as well as two further failures
of entailment that explain a large portion of the remaining
cases. We will always exhibit 𝑆5-counter-models in order to
avoid the suspicion that the relevant relations do not obtain
due to the underlying accessibility relation. The reflexive
arrows are suppressed throughout.

Example 5.1. Consider the pair 𝐼𝑈 /𝑉 𝑃 , i.e. ◻¬∀𝑆𝑃 and
¬ ◻ ∃𝑆𝑃 .

• 𝐼𝑈 ⊭ 𝑉 𝑃 :

𝑦𝑃, 𝑥𝑆, 𝑦𝑆w 𝑥𝑃,𝑥𝑆, 𝑦𝑆 v

where 𝑥 and 𝑦 are two distinct objects. We can see
that for each world 𝑖, 𝑖 ∈ {𝑤, 𝑣}, ⋃︀𝑆⋃︀𝑖 ∩ ⋃︀𝑃 ⋃︀𝑖 ≠ ∅ and
⋃︀𝑆⋃︀𝑖 ⊈ ⋃︀𝑃 ⋃︀𝑖. As such, ◻¬∀𝑆𝑃 and ◻∃𝑆𝑃 are both
true in 𝑤.

• 𝑉 𝑃 ⊭ 𝐼𝑈 :

𝑦𝑃, 𝑥𝑆w 𝑥𝑃,𝑥𝑆 v

where 𝑥 and 𝑦 are once again dummy objects, dis-
tinct from each other. By construction: ⋃︀𝑆⋃︀𝑤∩⋃︀𝑃 ⋃︀𝑤 =
∅ and ⋃︀𝑆⋃︀𝑣 ⊆ ⋃︀𝑃 ⋃︀𝑣 . It follows that ¬ ◻ ¬∀𝑆𝑃 and
¬ ◻ ∃𝑆𝑃 are both true in 𝑤.

• ¬𝐼𝑈 ⊭ 𝑉 𝑃 : We keep 𝑤 from the first and 𝑣 from
the second counter-model. In that case, ◇∀𝑆𝑃 and
◻∃𝑆𝑃 are both true in 𝑤.

• : 𝐼𝑈 ⊭ ¬𝑉 𝑃 is established with the following
counter-model:

𝑦𝑃, 𝑥𝑆w 𝑥𝑃, 𝑦𝑆 v

In this case, both ◻¬∀𝑆𝑃 and ¬ ◻ ∃𝑆𝑃 are true in
𝑤, as is easily verified.

The fact that no relation obtains for this pair immediately
explains why certain other entailments also fail to obtain.
Thus, since IU does not entail VP, neither does ∆∀𝑆𝑃 entail
∇∃𝑆𝑃 , even if ◻∀𝑆𝑃 entails ◇∃𝑆𝑃 , as per 5.5(ii). In a
similar vein, the following entailments also fail to hold:

Example 5.2. 𝐶𝑈 ⊭ 𝑉 𝑃 :

𝑥𝑆, 𝑥𝑃w 𝑦𝑆, 𝑥𝑆, 𝑥𝑃 v

By construction, 𝑤 makes ◇∀𝑆𝑃 true, since ∀𝑆𝑃 is true
in 𝑤. In 𝑣, 𝑦 is 𝑆 but not 𝑃 , making ∀𝑆𝑃 false at 𝑣. Thus,
¬ ◻ ∀𝑆𝑃 is true at 𝑤. As a consequence, 𝑤 makes ∇∀𝑆𝑃
true. However, ∃𝑆𝑃 is true in both worlds, hence 𝑤 makes
¬ ◻ ∃𝑆𝑃 false.

As a final example, we demonstrate that 𝐼𝑈 does not
entail 𝐵𝑃 , since it entails neither disjunct:

Example 5.3. 𝐼𝑈 ⊭ 𝐵𝑃 :
Consider the following model:

𝑥𝑆, 𝑧𝑃w 𝑥𝑆, 𝑦𝑆, 𝑥𝑃 v

In 𝑤, ∃𝑆𝑃 is false and ¬∀𝑆𝑃 true. The latter formula is
also true in 𝑣, but so is ∃𝑆𝑃 . Thus, ◻∀𝑆𝑃 is true in 𝑤, but
neither ◻∃𝑆𝑃 nor ◻¬∃𝑆𝑃 .

With this last example, we also have a counter-model
to verify that ◻¬∀𝑆𝑃 ⊭ ◻∃𝑆𝑃 (i.e. 𝐼𝑈 ⊭ 𝑁𝑃 ), or that
∆∀𝑆𝑃 ⊭∆∃𝑆𝑃 (i.e. 𝐵𝑈 ⊭ 𝐵𝑃 ). Lastly, as these counter-
models demonstrate, it is straightforward to invalidate the
purported entailments of the remaining pairs, thus we omit
the remaining counter-models.

5.4. Comparison to the Symmetric De Dicto
Reading

We conclude this section by comparing the results of the-
orem 5.1 with the symmetric de dicto reading from [10]
presented in section 1. The difference between the two
lies in the placement of negation. Whereas the symmetric
reading employs predicate negation, ¬ shifts into senten-
tial position in the asymmetric one. In the setting of the
symmetric reading, the same 66 pairs of formulas can be
investigated, which yield the dodecagon of Fig. 2.

Thus, with the symmetric reading, we end up with six
contradictories, twelve contraries and subcontraries, and
24 subalternations, for a total of 54 pairs instantiating an
Aristotelian relation. Thus, at first glance, by going from
the asymmetric reading to the symmetric one, we only seem
to gain four additional relations. However, this superficial
glance obscures the vast differences between the two do-
decagons.

In total, only 32 pairs do not change the relation they
instantiate, whereas 34 do. The former do not include any
contradictions, and the latter include two cases of subalter-
nation where the direction of entailment is reversed. Ulti-
mately, the 34 pairs that change their instantiated relation
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Table 1
List of pairs that differ between formalizations

Pair Sym. Asym. Pair Sym. Asym.

𝐶𝑃 ⇑𝐵𝑃 SubC Contrad 𝐶𝑈⇑𝐵𝑈 Cont Contrad
𝑃𝑈⇑𝐼𝑈 Cont Contrad 𝑁𝑈⇑𝑉 𝑈 Cont Contrad
𝑃𝑃 ⇑𝐼𝑃 SubC Contrad 𝑉 𝑃 ⇑𝑁𝑃 SubC Contrad
𝐶𝑃 ⇑𝐼𝑃 none Cont 𝑁𝑃 ⇑𝐶𝑃 none Cont
𝑉 𝑈⇑𝐵𝑈 none SubC 𝑃𝑈⇑𝐵𝑈 none SubC
𝑁𝑃 ⇑𝐼𝑃 none Cont 𝑃𝑈⇑𝑉 𝑈 none SubC
𝑉 𝑃 ⇑𝑁𝑈 Contrad Cont 𝑉 𝑈⇑𝑁𝑃 Contrad SubC
𝐶𝑃 ⇑𝑉 𝑈 none Subalt (→) 𝐼𝑃 ⇑𝐵𝑈 none Subalt (→)
𝐼𝑃 ⇑𝑉 𝑈 none Subalt (→) 𝐼𝑈⇑𝑃𝑃 Contrad SubC
𝐼𝑈⇑𝐶𝑃 Cont none 𝐶𝑈⇑𝑁𝑃 Cont none
𝐵𝑈⇑𝑉 𝑃 SubC none 𝑃𝑈⇑𝐵𝑃 SubC none
𝐵𝑈⇑𝐶𝑃 Contrad none 𝐵𝑃 ⇑𝐶𝑈 Contrad none
𝐶𝑈⇑𝑉 𝑃 Subalt (→) none 𝐶𝑈⇑𝐶𝑃 Subalt (→) none
𝐼𝑈⇑𝐵𝑃 Subalt (→) none 𝐼𝑈⇑𝑉 𝑃 Subalt (→) none
𝐵𝑈⇑𝐵𝑃 Subalt (→) none 𝐼𝑈⇑𝑁𝑃 Cont none
𝑃𝑈⇑𝑉 𝑃 SubC none 𝐼𝑃 ⇑𝑃𝑈 Contrad Cont
𝐼𝑃 ⇑𝐼𝑈 Subalt (←) Subalt (→) 𝑉 𝑃 ⇑𝑉 𝑈 Subalt (←) Subalt (→)

contain twelve cases of pairs whose relation merely shifts,
and 22 where the pair only instantiates a relation in one of
the two readings. Thus, there are vast differences between
the two dodecagons.

For clarity of reference, the 34 pairs that undergo change
are detailed in table 1. In case a pair instantiates a sub-
alternation, the arrow denotes the direction of entailment
relative to the way the pair is listed in the left column. Subal-
ternations are abbreviated with Subalt, contradictions with
Contrad, contraries with Cont and subcontraries with SubC.

Instead of discussing all these pairs in detail, we would
like to zero in on a few interesting facts. First, shifting the po-
sition of the negation can have the effect of a contraposition,
as in the pairs 𝐼𝑃 ⇑𝐼𝑈 and 𝑉 𝑃 ⇑𝑉 𝑈 , where the direction of
entailment reverses when transitioning from one setting to
the other. Second, many of the relations in the symmetric
setting obtain due to two underlying entailments:

Fact 5.8. The following hold:

1. ¬(∀𝑆𝑃 ) ⊧ ∃𝑆¬𝑃
2. ¬(∃𝑆𝑃 ) ⊧ ∀𝑆¬𝑃

Proof. The proof for 1. proceeds indirectly:

¬(∀𝑆𝑃 )

(︀¬∃𝑆¬𝑃 ⌋︀3
(︀𝑎𝑆⌋︀2

(︀¬𝑎𝑃 ⌋︀1

SP
𝑎¬𝑃

∃I
∃𝑆¬𝑃

¬E1
𝑎𝑃

∀I2
∀𝑆𝑃

¬E3
∃𝑆¬𝑃

whereas 2. is established straightforwardly:

¬∃𝑆𝑃

(︀𝑎𝑆⌋︀2 (︀𝑎𝑃 ⌋︀1

∃I
∃𝑆𝑃

¬I1
¬𝑎𝑃 SP
𝑎¬𝑃

∀I2
∀𝑆¬𝑃

Naturally, since predicate negation is completely absent in
the asymmetric setting of definition 5.1, these entailments
become irrelevant to establishing any of the relations in
the latter context. As a consequence, many entailments are
weakened or strengthened. Third, the shifting of negation
and the resulting lack of predicate negation can also change
the formula so much that entailments can be lost completely.
For example, whereas ◇∀𝑆𝑃 ∧ ◇∀𝑆¬𝑃 ⊧ ◇∃𝑆𝑃 (i.e.
𝐶𝑈 ⊧ 𝑉 𝑃 ) holds in the symmetric setting, the correspond-
ing pair ◇∀𝑆𝑃 ∧◇¬∀𝑆𝑃 and ◇¬∃𝑆𝑃 from definition 5.1
do not instantiate any relation (cf. example 5.2). Fourth, the
fact that most changes happen to pairs that are contrary
or subcontrary (or both) in one of the settings is unsurpris-
ing. For given that many subalternations in either context
hold purely due to simple propositional or modal reasoning,
they are insensitive to the subtleties regarding the difference
between predicate and sentence negation. Thus, we find
that out of the 32 pairs that do not undergo change when
switching settings, 17 are subalternations. Finally, and most
importantly, whereas the dodecagon in Fig. 2 does not pre-
serve the hexagon of opposition, the asymmetric reading
generates one that does (cf. Fig. 3), as can be read off from
the figures.

6. Conclusion and Future Work
In this article we analyzed one of the basic building blocks
of modal quantified reasoning, namely modal categorical in-
ferences. We did this within Quarc, a formal framework that
significantly departs from Predicate Logic in representing
natural language sentences, especially due to the pivotal
role it assigns to quantified phrases. We focused on de dicto
combinations of modalities and quantifiers in modal categor-
ical statements and proposed a new reading for them, which
we called asymmetric, as opposed to the symmetric reading
presented in [10]. The crucial differences between the sym-
metric and the asymmetric reading can be summarized as
below:

• as shown in [10], the symmetric reading gives rise
to the same dodecagon of opposition as the one ob-
tained for de re modalities and yet violates some
fundamental properties of hexagon modalities;
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• the asymmetric reading gives rise to a radically dif-
ferent dodecagon of opposition and yet preserves all
fundamental properties of hexagon modalities.

Clearly, our results can be transferred to other formal frame-
works, thanks to the use of translation functions. For in-
stance, consider definition 5.2. The following simple pro-
cedure indicates how one can move from a formula 𝜑 of
modal Quarc that represents a modal categorical statement
to an equivalent formula of modal PC (for reading disam-
biguation, we use quotation marks to delimit a string of
symbols):

• One must add the string of symbols ‘𝑥(’ immediately
after the quantifier in 𝜑, thus getting 𝜑1.

• If 𝜑1 contains ∀, then one must add the string of
symbols ‘𝑥→’ immediately after𝑆 (i.e. the predicate
forming the quantified argument in 𝜑), otherwise 𝜑1

contains ∃ and one must add the string of symbols
‘𝑥∧’ immediately after 𝑆. In any of these cases, one
gets 𝜑2.

• One must add the string of symbols ‘𝑥)’ at the end
of 𝜑2, thus getting 𝜑3.

It is easy to verify that 𝜑3 is a formula of modal PC. Follow-
ing this procedure, if our starting point is e.g. 𝜑 =◇∀𝑆𝑃
(which represents PU), we get 𝜑3 =◇∀𝑥(𝑆𝑥→ 𝑃𝑥).

Looking into the future, a natural direction to follow
is developing a theory of modal categorical syllogism. A
syllogism of this kind consists of two premises 𝜑 and 𝜓 and
a conclusion 𝜒, all of which qualify as modal categorical
statements. Here is an example:

(∗ ∗ ∗) I don’t know whether all rooms on this floor have
an access code. I know that all rooms with an access
code are inaccessible to guests. Therefore, it’s pos-
sible that all rooms on this floor are inaccessible to
guests.

A simple formalization of (∗ ∗ ∗) can be as follows, where
𝑅 stands for ‘is a room on this floor’, 𝐶 for ‘has an access
code’ and 𝐴 for ‘is accessible to guests’:

{◇∀𝑅𝐶 ∧◇¬∀𝑅𝐶, ◻∀𝐶¬𝐴} ⊧◇∀𝑅¬𝐴

An important task is identifying all possible triples of (forms
of) modal categorical statements that give rise to a valid
syllogism. Moreover, one can look at the interaction be-
tween de re and de dicto combinations, or at the interaction
between symmetric and asymmetric de dicto combinations,
to identify other patterns of valid syllogism. The example
provided above already illustrates some noteworthy inter-
action, since it has the following structure, where 𝑠 stands
for ‘symmetric reading’ and 𝑎 for ‘asymmetric reading’:

{CU(𝑎), IU(𝑠)} ⊧ VU(𝑠)

Finally, one can analyse patterns of valid syllogism, where
some categories of individuals are treated as 𝑛-ary relations
(𝑛 > 1) rather than properties (i.e. unary relations), general-
izing the definition of a modal categorical statement used
here.

As far as modalities are concerned, one can take into ac-
count more complex statements formalized via at least two
modal operators (e.g. ‘it is necessarily possible that...’, ‘it is
known that it is unknown that...’) or a family of modalities

different from the one in the hexagon of opposition. Exten-
sive research has been done on generalizations of the modal
square of opposition, including works on solid figures such
as cubes of opposition, whose definition varies with authors
[17, 18]. It would be interesting to extend our framework in
order to cover similar families of modalities.
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