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Abstract
Anomaly and failure detection methods are crucial in identifying deviations from normal system oper-
ational conditions, which allows for actions to be taken in advance, usually preventing more serious
damages. Long-lasting deviations indicate failures, while sudden, isolated changes in the data indicate
anomalies. However, in many practical applications, changes in the data do not always represent ab-
normal system states. Such changes may be recognized incorrectly as failures, while being a normal
evolution of the system, e.g. referring to characteristics of starting the processing of a new product,
i.e. realizing a domain shift. Therefore, distinguishing between failures and such ”healthy” changes in
data distribution is critical to ensure the practical robustness of the system. In this paper, we propose
a method that not only detects changes in the data distribution and anomalies but also allows us to
distinguish between failures and normal domain shifts inherent to a given process. The proposed method
consists of a modified Page-Hinkley changepoint detector for identification of the domain shift and
possible failures and supervised domain-adaptation-based algorithms for fast, online anomaly detection.
These two are coupled with an explainable artificial intelligence (XAI) component that aims at helping
the human operator to finally differentiate between domain shifts and failures. The method is illustrated
by an experiment on a data stream from the steel factory.
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1. Introduction

One of the most common approaches for automated monitoring of industrial processes is
anomaly and failure detection mechanisms. They allow for unsupervised health state monitoring
of an industrial facility and can reduce costs related to maintenance and unplanned stoppage
in production by alerting the operators of upcoming detected problems. However, in many
practical applications, industrial processes frequently adapt to shifts in production lines or
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undergo on-demand reconfiguration, resulting in data patterns that may superficially appear as
failures while being a healthy evolution of the system or a consequence of variations in products’
specifications. This may cause anomaly detection or failure detection systems to trigger many
false positive alarms in case of technical changes in the production line, or in case of nontypical
production line configuration. Our research aims at differentiating between healthy changes in
the data distribution and genuine failures that in such a scenario are indistinguishable from
state-of-the-art approaches [1]. By healthy change, we understand the permanent (in a certain
time span) change in data distribution that is not the result of a failure but is a consequence of a
characteristic of the process that the data comes from.

In this paper, we focus on the dataset from the cold rolling facility of the steel factory. The
cold rolling process aims to reduce the steel thickness to a satisfactory level, making the product
ready to be sold to customers. The dataset was generated with the simulator that reflects the
physical processes of the real facility1. Such data present the state of many sensors in the
production line as a function of time and can be treated as a data stream [2]. In such a scenario,
the following challenges can appear:

• Domain shifts – The facility produces a variety types of products, which differ in their
chemical properties and target thickness. This requires the production line to adjust rolling
parameters, which in the data stream may appear as domain shift, often falsely detected
as failure. In general, the domain shift represents a change in the data characteristics (e.g.
change in data distribution that is caused by different production parameters for different
products).

• Anomalies – Short-lasting deviations in product thickness that can make the product
defective and not be sold.

• Failures – Very rarely the failures in the facility components such as bearings, engines,
rolls, etc. may cause larger problems with the facilities. From a purely detection per-
spective, they may not be distinguishable from the domain shifts, yet carry serious
consequences when not spotted fast enough.

Most of the earlier work has been focused on solving only one of these challenges. However,
in many practical applications, a comprehensive approach is needed that addresses all three
cases simultaneously. This is important, especially in situations where many domain shifts are
present in the data stream. In such a scenario, healthy but different from the statistical point
of view data (e.g. new products, rare products, equipment upgrades, etc.) can be mistakenly
interpreted by the automated algorithms as failures, causing a lot of false positive alarms,
which leads to stoppages of production and generating large, unnecessary maintenance costs.
It happens because failures and domain shifts usually are visible as the change in the data
distribution and therefore may be indistinguishable for automated detection methods. This
makes the problem even more challenging in situations where domain adaptation algorithms
are used to quickly update the model between healthy domain shifts [3]. The domain adaptation
techniques allow learning a model from a source data distribution and updating that model

1The generator was developed in collaboration with a steel factory in Poland, and its source code cannot be released.
However, the dataset used in our work, along with the source code for the experiments to ensure full reproducibility,
is available at GitHub

https://anonymous.4open.science/r/ECAI-workshop-2024-9411


on a different (but related) target data distribution (e.g. distributions isolated after the domain
shift). In cases where there is no differentiation between failure and domain shift, the domain
adaptation mechanism can falsely consider a failure as a healthy domain shift and cause serious
damage by seamlessly adapting the model to it.

On the other hand, it is not feasible for human experts to investigate and analyze each of the
cases of possible failure/domain shift manually. We argue that developing new techniques to
identify potential domain shifts and failures in the data, along with the assistance of a human
operator supported by explainable artificial intelligence tools, can improve the online health
monitoring of industrial processes.

Therefore, our goal is to propose a method that not only detects domain shifts and failures but
also allows to distinguish one from another. Our method is composed of the following elements:
the modified Page-Hinkley changepoint detector that identifies domain shifts and possible
failures, supervised domain-adaptation-based algorithms for fast, online anomaly detection,
and an explainable artificial intelligence (XAI) component that aims at helping the operator
differentiate between domain shifts and failures. The explanations provide insight into how the
machine learning model uses particular sensor data between domain shifts to predict anomalies.
In a case where there is a visible change in the way the data is used by the model (e.g.similar
feature value contributes very differently to the model prediction across two domain shifts),
the expert may undergo additional analysis and order a stoppage of the system in a case of
discovered failure or let the system operate if the change was a healthy domain shift. The
workflow for our approach is depicted in Fig. 1.
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Figure 1: The flow chart for differentiating between failures and domain shifts. The changepoint
detection algorithm marks possible domain shifts and failures. After that, the domain adaptation
algorithm updates the model that detects anomalies. Simultaneously human operator accompanied by
the XAI algorithm decides if the change in the data represents a healthy domain shift or a failure.

The remainder of the paper is organized as follows. In Section 2, we describe the background
of our research. In Section 3 we provide a detailed description of a proposed method, which
we later demonstrate on the steel factory data in Section 4. We summarize and discuss future
extensions of this work in Section 5.



2. Related works

In this section, we review the relevant literature and discuss previous work related to explainable
artificial intelligence, anomaly detection, and data streams, along with their applications in the
industry.

Anomaly detection involves identifying patterns in the data that deviate from expected or
normal behavior. Anomalies in data often provide significant, and sometimes critical, actionable
insights across a wide range of application domains, which makes detecting them crucial. For
example, abnormalities in credit card transactions could signal credit card fraud or identity
theft [4]. Abnormal readings from a spacecraft sensor could indicate a fault in one of the
spacecraft components [5]. One of the key beneficiaries of early anomaly detection is industrial
companies, as identifying abnormal conditions can prevent unplanned downtime, reduced
production quality, and safety breaches. The most commonly used algorithms include models
based on neural networks such as autoencoders (AE) [6] where the goal is to learn the internal
structure of the data to enable input reconstruction. This is useful for anomaly detection, as
an autoencoder trained on normal data can reconstruct these inputs well, but struggles with
anomalies, having not learned their structure during training. The other very popular approach
is a One–class support vector machines (OCVSM) [7], which identifies the characteristics of a
normal class, and any observation that deviates from this learned pattern is considered anoma-
lous. Density–based anomaly detection techniques, such as Local Outlier Factor (LOF) [8], assess
the density of each data instance neighborhood. Instances located in low-density neighborhoods
are labelled anomalous, while those in high–density neighbourhoods are considered normal. A
comprehensive comparison of anomaly detection algorithms, evaluated on three benchmark
datasets and industry platforms, was conducted in [9]. In [10] the authors employed a modified
autoencoder to not only detect anomalous behavior in the hot rolling mill process but also
identify the origins of most anomalies detected by the deep learning model. For more details,
the reader is referred to a comprehensive overview of anomaly detection techniques, covering
various research areas and application domains, which can be found in [11].

Building a robust anomaly detection algorithm may not always meet all the needs of the
business. In complex problems, understanding the factors that contribute to anomalies is crucial
for gaining insights into the process. This understanding enables the implementation of effective
maintenance actions and strategies to prevent future abnormalities. Therefore, employing
explainable artificial intelligence solutions can be also very beneficial. XAI methods aim to
improve understandability and transparency in the model decision-making process, highlighting
which measurements contribute the most to current model decisions. A comprehensive study
of interpretable artificial intelligence can be found in [12] or [13]. Related examples of widely
used XAI methods include the following: LIME [14], SHAP [15] - as methods indicating feature
importance for predictions, LUX [16] or counterfactual explanations [17] - which show how
to change the input of the model to obtain a desired model output [18]. Nevertheless, most
XAI methods are designed for static data and do not directly handle the dynamic nature of
industrial data and the data shift. Some recent works for such applications are as follows. The
authors in [19] proposed a framework for online anomaly detection in a cold rolling mill that
includes the XAI module, helping the operator better understand the origin of the anomaly and
take the necessary actions. Ding et al. [20] applied the SHAP module to enable transparent



decision–making processes within the diagnostic framework for hot-rolled strip crown.
Generating data continuously at regular time moments and observing changes in data distri-

bution over time is a common industry practice. Furthermore, because the processing must be
done in real–time, data stream learning [21] is a suitable method for this environment. Let us
recall that a data stream can be defined as an unbounded sequence of instances which arrive at
high speed and require fast processing [2]. It introduces unprecedented challenges, especially
with respect to computational resources and limited prediction time. Besides new processing
requirements, another important challenge is that algorithms learning from streams often act
in dynamic non-stationary environments, where the data and target concepts change over time
in a phenomenon called concept drift [22].

The detailed description of handling streaming data from steel industry facilities can be found
in [23]. Changes in the data stream (referring to concept drifts) can significantly impact model
performance, potentially resulting in a decrease in production quality. Therefore, monitoring
these changes and responding to them are essential aspects of daily operations. To address this
challenge, drift detection methods could be applied, such as the Early Drift Detection Method
(EDDM) [24], Adaptive Windowing (ADWIN) [25], Page–Hinkley (PH) [26] or others [27].

However, the aforementioned methods do not cover all possible problems that occur in the
industry environment. On the one hand, re-configuring production or starting processing a new
product might result in incoming samples being marked as anomalies or failures. On the other
hand, the data characteristics of new products and potential failures can be similar, making
them difficult to distinguish for drift detection methods. In our work, we introduce a method
designed to identify changepoints in data streams indicating possible data shifts and failures
and provide explanations to assist operators in better differentiating between them.

3. Method for differentiating between failures and domain shifts

The proposed method consists of three subsequent steps: 1) distribution change discovery,
2) domain adaptation and 3) explanation of the differences between the source model and
the adapted one. First, the detector for identification of the changes in the multivariate data
stream is presented. These changes trigger a domain adaptation algorithm that adjusts the
anomaly detection model to the changing data distribution. Up to this point, it is still unknown
if the distribution change is a healthy data shift or a failure. Finally, an explainable artificial
intelligence algorithm is used to provide the feature importance for the classification algorithm
before and after the adaptation. These differences in importance are used as a decision support
component that helps the human operator differentiate between failures and domain shifts. The
general workflow of the method is presented in Figure 1.

3.1. Changepoint detector

Let us assume that the data instances arrive as the data stream 𝑆 = {x𝑖}𝑁𝑖=0, where x𝑖 = [𝑥𝑖𝑗 ]
𝑛
𝑗=1

is 𝑛–dimensional attribute vector. The first 𝑚 elements of the stream 𝑆 constitute the reference
distribution 𝑋𝑟𝑒𝑓 = {x𝑖}𝑚𝑖=0. The next object in the stream will be approximate distribution
𝑋𝑎𝑝𝑝𝑟𝑜𝑥 = {x𝑚+1}. The KL divergence between 𝑋𝑟𝑒𝑓 and 𝑋𝑎𝑝𝑝𝑟𝑜𝑥 is then estimated following



the formula presented in [28]:

̂︀𝐷𝐾𝐿(𝑋𝑟𝑒𝑓 || 𝑋𝑎𝑝𝑝𝑟𝑜𝑥) =
𝑛

𝑚

𝑚∑︁
𝑖=0

log
𝑟𝑘(x

𝑖)

𝑠𝑘(x𝑖)
+ log

1

𝑚− 1
, (1)

where 𝑟𝑘(x𝑖) and 𝑠𝑘(x
𝑖) are respectively, the Euclidean distances to the 𝑘𝑡ℎ nearest–neighbour

of x𝑖 in 𝑋𝑟𝑒𝑓 ∖ {𝑥𝑖} and 𝑋𝑎𝑝𝑝𝑟𝑜𝑥. Further, ̂︀𝐷𝐾𝐿 is added to Page–Hinkley (PH) drift detector. If
PH does not trigger an alarm (the threshold for ̂︀𝐷𝐾𝐿 is not exceeded), the reference distribution
increases by the sample 𝑥𝑚. Otherwise, the detected drift indicates the changepoint in data
stream 𝑆, which brings about the need for adjustment of the reference distribution. In this case,
the reference distribution consists of data stream objects starting from sample 𝑥𝑚

(︀
𝑋𝑟𝑒𝑓 =

{x𝑚,x𝑚+1, . . .}
)︀
.

3.2. Domain adaptation classifier

The subsequent phase is the construction of a domain adaptation classifier 𝑓 : 𝑆 → {0, 1}, where
0 represents the normal instance and 1 refers to the anomaly. As a domain adaptation model, the
feature–based classification and contrastive semantic alignment (CCSA) was selected [29]. We
assume that the data preceding the initial changepoint constitutes a source domain 𝑋𝑠 (in the
industry scenario analyzed, the source domain data originates from the most prevalent rolled
product). Let 𝐷𝑠 = {(x𝑖, 𝑦𝑖)}𝑠𝑖=0, where x𝑖 ∈ 𝑆 and 𝑦𝑖 ∈ {0, 1}. The data coming after the
changepoint belongs to the target domain 𝐷𝑡. To train the domain adaptation classifier, a small
batch of samples is taken. Let the 𝑏𝑎𝑡𝑐ℎ = 𝑘, and 𝑋𝑡𝑟𝑎𝑖𝑛 = {(x𝑖, 𝑦𝑖)}𝑙+𝑘

𝑖=𝑙 , and 𝑙 > 𝑠, 𝑘 ≪ 𝑠.
The prediction is made for the next batch of samples 𝑋𝑡𝑒𝑠𝑡 = {(x𝑖)}𝑙+2𝑘

𝑖=𝑙+𝑘. The motivation
behind this step is to obtain a classifier making accurate predictions with a limited number
of samples from the target domain. After prediction, the target domain is expanded with the
predicted batch. This procedure continues until a new changepoint is identified. Taking into
account the sudden nature of process changes, the domain adaptation model discards previous
targets and initiates adaptation to the new product from the beginning.

3.3. Explanation of the changes of model behavior between changepoints

The last step of the proposed method focuses on explaining the decision of the domain adaptation
model compared to the source model. It allows us to observe possible abnormal changes in
the usage of feature values that may indicate adaptation to failure. We have decided to use the
SHAP (SHapley Additive exPlanations) [15] because it allows for monitoring changes in feature
importance within model predictions which adapts to different domains. We hypothesize that
monitoring the evolving impact of different features on anomaly prediction over time could
help in distinguishing between failure and domain shift.

To accomplish this, the explanations are determined on each training batch of samples 𝑋𝑡𝑟𝑎𝑖𝑛.
The Shapley value is determined by evaluating the feature value across all possible combinations
with other features, weighting and summing the results:

Φ𝑗 =
∑︁

𝐾⊆{1,...,𝑛}/{𝑗}

|𝐾|!(𝑛− |𝐾| − 1)!

𝑛!
(𝑣𝑎𝑙𝑥(𝐾 ∪ 𝑗)− 𝑣𝑎𝑙𝑥(𝐾)), (2)
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Figure 2: Raw signal for current_2 on the left, SHAP values plotted in batches for current_2 on the right.

𝑣𝑎𝑙𝑥(𝐾) =

∫︁
𝑓(𝑥1, ..., 𝑥𝑛)𝑑P𝑥/∈𝐾 − 𝐸𝑋(𝑓(𝑋)), (3)

where 𝐾 is the subset of features in the model, and 𝑛 is the total number of features, 𝑥 is the
vector of feature values of the instance to be explained.

Such calculated Shapley values show the contribution of the feature values of a particular
instance to the prediction of the model with respect to the expected value. This contribution
can be positive or negative denoting if the particular value has a larger effect for the positive
or negative class respectively, in the case of binary classification. This information confronted
with expert knowledge on how the values of different machinery sensors contribute to healthy
and unhealthy conditions can help to determine if the classification model behaves as if it were
a healthy state (also referring to the product shift) or as if it were a failure.

To provide a broader spectrum of such a behavior of the model, we calculate and plot Shapley
values over time and present them to the expert for a final decision on the nature of the change.
The specialist should pay attention to the explanation of the features that are crucial for the
proper operations of the production line. If there is an inconsistent with expert knowledge
change in explanations for those key features, then the specialist should look at the raw signals
and decide what is the root cause of the change. The example is presented in Figure 2. The
expert indicates current_2 as a key feature for anomaly detection in bearing degradation. When
the failure begins, the median of SHAP values drops below zero, which should be an alert of
unexpected bahavior. There is also a change of characteristics in raw signals for instances where
a failure was identified. Adding the knowledge about e.g. previous repairs, the expert should
decide if the change corresponds to the new product (domain shift) or failure.

4. Experiments

This section presents a case study illustrating the use of our method in an industrial environment.
We examined the cold rolling process in a steel plant, where differentiating between failures and
new types of rolled products is crucial because of the variety of different products being rolled
over time. The following subsections describe the cold rolling dataset and the experimental
outcomes.



4.1. Cold rolling mill dataset

The cold rolling process is responsible for reducing the strip’s thickness by passing it through a
pair of rolls. Initially, the steel coil is unrolled on an uncoiler. During rolling, the strip moves
slowly between the rolling stands. Once the uncoiler grips the strip, the process speeds up to
reach the desired thickness (Figure 3). During the rolling process, various products different
in mechanical properties, thickness, width and reduction are processed. The analyzed dataset

Work roll
Uncoiler

Entry coil

Backup
roll

Exit coil

Recoiler

Tension
roll

Figure 3: The schematic diagram of four stand cold rollling mill.

comes from a simulator of a four–stand rolling mill, which was created using real measurements
from a steel company. The raw data samples are collected at regular time intervals, and all the
signals are listed in Table 1. For experimental purposes, 10000 samples were acquired containing

Table 1
Description of cold rolling mill dataset.

Feature Description Unit

ithick/othick coil thickness at the beginning/end of rolling mm
width coil width mm

ys0/ys1 yield strength at the beginning/end of rolling MPa
work_roll_diam diameter of roll mm

work_roll_mileage mileage of roll mm
reduction reduction on specific stand %
tension tension on specific stand kN

roll_speed speed of roll on specific stand m/s
force force on specific stand kN

torque torque on specific stand Nm
gap gap between two rolls on specific stand mm

current current on specific stand A

parameters from 4 types of rolled products. The dataset composition was chosen to reflect
the real–world situation, where most of the production consists of one type of product (or
related). Each product in the dataset is described by three parameters: ithick/othick/width. The
anomalies represent abnormalities in the mechanical degradation of bearings. The expert from
this particular rolling infrastructure indicates electric current and mechanical torque as the
most important parameters responsible for bearings degradation. The dataset composition is
presented below:



• Product 1 –3.4/1.61/918.67, the major (source) product which constitutes 80% of the
dataset, about 8.5% anomalies corresponding to bearings on all stands.

• Product 2 –3.0/1.11/1082.43, constitutes 5% of the dataset, about 10.8% anomalies corre-
sponding to bearings on all stands.

• Failure on Product 2 – 3.0/1.11/1082.43, constitutes 5% of the dataset, about 77.4%
anomalies simulating bearings failure on stand 2.

• Product 3 –2.8/0.82/918.58, constitutes 5% of the dataset, about 6% anomalies correspond-
ing to bearings on all stands.

• Product 4 –3.5/1.44/1080.20, constitutes 5% of the dataset, about 12.6% anomalies corre-
sponding to bearings on all stands.

These elements appear in this order in the analyzed stream. Note that products 2,3 and 4
are rather rare events compared to the much longer production of the main product 1. This is
similar to research on class imbalanced and concept drifting streams, which are particularly
difficult for most learning algorithms, see [30].

4.2. Classical approaches for anomaly detection

For detecting anomalies we chose the state-of-the-art techniques like Isolation Forest (IF), Local
Outlier Factor (LOF) and One Class Support Vector Machine (OCSVM), Autoencoder (AE). The
models were trained on signals from the source product (Product 1) and evaluated on the rest
of the stream (target products). In the Figure 4 the algorithms results on current and torque
from stand 2 is presented. The dashed lines denote instances when a new product/failure
appears on the production line. Grey lines signify instances where anomalies were detected. It
is observable that all tested algorithms tend to classify both products and failures as anomalies.
The potential reason is that the measurement characteristic is different from the source product
for both of those cases. Consequently, it becomes exceedingly challenging for anomaly detection
algorithms to discriminate between failures and newly introduced rare products.

4.3. The proposed method

In the subsequent section, we present experiments conducted using the proposed method, which
leverages transfer learning and explainable artificial intelligence.

Firstly the domain adaptation from the source product to each target is conducted. For domain
adaptation, we selected the feature–based classification and contrastive semantic alignment
(CCSA) algorithm [29]. The CCSA goal is to create an encoded space where the distances
between source and target pairs with the same label are minimized, while the distances between
pairs with different labels are maximized. This model was chosen because semantic alignment
algorithms achieve good results even with a small number of samples in the target domain.
Subsequently, the SHAP explainer is applied to each target domain, and the median SHAP values
for each parameter are computed. This approach aims to determine if there are differences
in SHAP explanations (i.e. median feature importance) between products and failures. In the
Figure 5 can be observed that adaptation for failure leads to clearly different median SHAP
values for the parameters current_2 and torque_2 which expert has identified as the most critical
for failure diagnosis.
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Figure 4: Anomaly detection algorithms evaluation on target products on important signals from rolling
stand 2.

The next step was to explore whether the explanations of specific parameters changed during
the rolling process and in what places it occurred. The experiment started by calculating the KL
divergence using the formula 1 and applying PH drift detector. The experimental parameters
were defined as follows: 40% of the dataset was designated as the reference distribution, and
the features used for calculation included the current and torque on each stand. Such defined
changepoint detector marked changes in samples 8010, 8550, 9042, and 9515 when the real
points were in 8000, 8500, 9000 and 9500. The outcome of applying the PH drift detector to
the estimated KL can be observed in Figure 6. Upon detecting changepoints, we adapted from
source to target products in batches. Specifically, the CCSA model was retrained after each
batch of incoming samples from the target domain (demonstrated with batch_size=50 below).
Each time a new changepoint was detected, the adaptation process was restarted. After model
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Figure 6: Detected changepoints in the dataset.

training, a SHAP explainer was constructed using the training batch of samples. Subsequently,
the explanation of specific parameters was presented as a box plot for each training batch to
monitor the evolution of SHAP values (Figure 7). Furthermore, the maximum (red line) and
minimum (green line) SHAP values were visualised. The plots clearly indicate that for current_2
and torque_2, there is a shift in SHAP value explanations as the model begins to adapt to failure
conditions. The median and minimum SHAP values decrease compared to those observed
during the adaptation to products. Moreover, it is notable that the SHAP explanations for other
rolling stands exhibit reduced variability during failure. To assess whether changes could be
detected by an automated method, the Page-Hinkley (PH) drift detector was applied to the
medians of the SHAP values. While drifts were identified in stand 2, additional detected changes
in torque_3 and torque_4 were observed, which are likely false positives resulting from the
sensitivity of the PH detector.

The proposed method is designed to assist experts in detecting potential failures when raw
data points are insufficient. In cases of some products, the signal may closely resemble the



failure state, making it challenging to definitively classify by operator as healthy or failure. The
evolving boxplots significantly change their characteristic when the domain adaptation model
begins adapting to failure conditions. The abrupt decrease or increase in the median of SHAP
values should alert experts and be a starting point for in–depth analysis. By examining these
plots, experts in specific rolling infrastructures could combine our analysis with raw signals and
the machinery condition (e.g. recent bearing replacement, last renovation etc.) to determine if a
failure is beginning in the rolling mill. Automating the decision–making process to distinguish
between failures and new products remains a direction for future research.
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Figure 7: Boxplots of SHAP values important for bearing diagnosis.

5. Discussion and summary

In this work, we propose a method that allows for human-guided differentiation between failures
and healthy domain shifts. We presented the feasibility of our approach on a dataset from a



cold rolling facility of a steel factory and published the source code along with the dataset used
in experiments for full reproducibility. We demonstrated that with state-of-the-art anomaly
detection methods, it is not possible to distinguish between healthy domain shift and failure. On
the other hand, our approach adds an additional information layer that human operators can
use to make a more informed decision about the nature of changes in the data. We consulted
the results with an expert from the steel factory, who confirmed the correctness of the results
obtained with our method.

Although our primary focus in this work was on the industrial application of the method, it is
more generic and can be extended to other cases where the following conditions are met: (1) The
data come sequentially and may represent different distributions (domain shifts). (2) There are
some hidden similarities between the distributions that can be captured by domain adaptation
(transfer learning) algorithms. (3) The data is analysed in batches, and in each batch, the majority
of samples are considered candidates for the healthy / failure distribution, while the minority is
considered anomalous. These conditions can also be found in other areas where the data exhibit
dynamic and non-stationary characteristics and adaptability is one of the features of the system.
In particular, such a situation is present in various predictive maintenance applications where
typical maintenance actions such as replacements of an old component may cause changes in
the data that result in the degradation of existing AI models [23]. Another example is network
traffic monitoring [31] or electricity grid monitoring [32], where many different changes in the
data appear that may reflect the normal change in electricity or bandwidth demand or a failure
or attack. Reaching beyond the industrial cases in patient health monitoring, one can observe
the same challenges, especially in online, long-term monitoring of patient health state, smart
home installations, or ambient assisted living setups, where changes in habits may be confused
with life-risk situations [33].

Future works can include many different path directions, as outlined in the following para-
graphs. In the current version of the method, the human operator is responsible for the analysis
of the explanations. This process can be automated to some extent by the analysis of the
dynamics of explanations over time, instead of raw feature values. This technique has been
shown to be effective in similar use cases, as described in [34].

The other direction is to focus on concept drift instead of domain shift. Recent works approach
concept drift handling with the usage of domain adaptation techniques [35]. However, they
mostly address the problem of performance of the model, not touching the explainability aspect.
Extending the work presented in our research with concept drift detection and explanation can
scale the applicability of the approach to areas where keeping human in the loop is crucial (e.g.
medicine, healthcare, etc.).

Finally, one of the limitations of the presented approach, which is also one of the hardest
problems to handle in streaming data, is proper changepoint identification in the case of gradual
data shifts. Furthermore, the work presented in this aims primarily to distinguish between
failures and domain shifts. It does not explicitly explain the root causes of the failures or the
domain shifts. In this work, we discuss the preliminary results of our method, and in future
works, we aim to address all of the above.
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